def get_tickets(): """Endpoint for getting all ticket data for one customer, by provided customer ID. --- parameters: - name: customer_id in: query type: integer required: true definitions: TicketList: type: array items: $ref: '#/definitions/Ticket' Ticket: type: object properties: ticket_id: type: integer customer_id: type: integer stake: type: number payout: type: number responses: 200: description: Array of ticket objects schema: $ref: '#/definitions/TicketList' """ customer_id = request.args.get('customer_id', 0, type=int) tickets = db.query_by_customer_id(customer_id) return jsonify({"data": to_json(tickets)})
def get_ticket(ticket_id: int) -> dict: tickets = db.query_by_ticket_id(ticket_id) if len(tickets) == 0: raise ValueError('ticket with provided ticket_id not found') return to_json(tickets[0])
def respond(): train_request = dict({ "selected": True, "model": dict({ "arch": model.to_json(), "weights": model.get_weights(), "loss": model.loss, "optimizer": model.optimizer, "metrics_names": ['accuracy'] }), "version": version, "hparam": dict({ "epochs": 1, "batch_size": 32 }) }) reject_message = dict({"selected": False}) ready_clients_copy = ready_clients.copy() while len(ready_clients_copy) > 0: request = responder.recv_pyobj() client_id = request["client_id"] if client_id in selected_clients: responder.send_pyobj(train_request) else: responder.send_pyobj(reject_message) ready_clients_copy.remove(client_id)
def save_model(model): json_arch = model.to_json() json_path = os.path.join("model", "architecture.json") with open(json_path, 'w') as arch_file: arch_file.write(json_arch) model_path = os.path.join("model", "weights.h5") model.save_weights(model_path)
def save_model(self, name, model): logging.info("save_model - saving model...") # serialize model to JSON model_json = model.to_json() with open("classifiers/" + name + ".json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("classifiers/" + name + "_weights.h5") logging.info("save_model - saved model to disk")
def save_model(model, history): np.save('Result/'+fileName+'_histo', history) print(fileName+'_histo.npy has been saved!') #serialize model to json model_json = model.to_json() with open('Result/'+fileName+'.json', 'w') as file: file.write(model_json) print(fileName+'.json has been saved!') #model.save_weights(fileName+'.h5') print('Mode saved!')
def save_model(model): ############################################################################### # This function saves the weights and the model # # Input: # model: This is the model that it will be saved # Output: # None ############################################################################### model_json = model.to_json() with open("../resources/model.json", "w") as json_file: json_file.write(model_json) model.save_weights("../resources/weights.h5")
def saveModel(model, name): json_string = model.to_json() open('./model/'+ name +'_model.json', 'w').write(json_string) model.save_weights('./model/'+ name +'_model_weights.h5', overwrite = True) print("Saving the Model.")
def get_customer_tickets(customer_id: int) -> list: tickets = db.query_by_customer_id(customer_id) return to_json(tickets)
#!/usr/bin/python import time import six.moves.cPickle import model import yelp_reader model, tokeniser, dictionarySize = model.train(yelp_reader, oneHot = True, oneHotAveraged = True, contextHashes = False) jsonModel = model.to_json() open('model.json', 'w').write(jsonModel) open('model-dictionary-size.dat', 'w').write(str(dictionarySize)) six.moves.cPickle.dump(tokeniser, open("tokeniser.pkl", "wb")) model.save_weights('model-' + str(time.time()) + '.h5')
def spark_application_discovery_by_workspace(workspace_config, workspace_context): if time.time() - workspace_context.get( 'application_discovery_time', 0) >= workspace_config.spark_application_discovery_interval_sec: metrics.application_discovery_count.labels( workspace_name=workspace_config.workspace_name).inc() try: print('spark application discovery...') bearer_token = workspace_context.get('bearer_token') if not bearer_token: return synapse_host = workspace_config.synapse_host() synapse_api_version = workspace_config.synapse_api_version workspace_name = workspace_config.workspace_name with metrics.application_discovery_duration_histogram.labels( workspace_name).time(): application_list = get_spark_applications( synapse_host, synapse_api_version, bearer_token) workspace_scrape_configs = generate_spark_application_scrape_configs( application_list, workspace_name, synapse_host, synapse_api_version) if workspace_config.service_discovery_output_folder: folder = os.path.join( workspace_config.service_discovery_output_folder, f'workspace/{workspace_name}/') write_string_to_path(folder, 'bearer_token', bearer_token) write_string_to_path(folder, 'application_discovery.json', model.to_json(workspace_scrape_configs)) workspace_context[ 'workspace_scrape_configs'] = workspace_scrape_configs workspace_context['application_list'] = application_list workspace_context['application_discovery_time'] = int(time.time()) print( f'spark application discovery, found targets: {len(application_list)}.' ) # spark pool metrics spark_pool_applications = {} for app in application_list: spark_pool_applications.setdefault(app.spark_pool_name, 0) spark_pool_applications[app.spark_pool_name] += 1 print( f'{app.spark_pool_name}/sessions/{app.livy_id}/applications/{app.spark_application_id}\tstate:{app.state}' ) for spark_pool_name, application_count in spark_pool_applications.items( ): metrics.application_discovery_target.labels( workspace_name=workspace_name, spark_pool_name=spark_pool_name).set(application_count) # spark application metrics metrics.application_info._metrics = {} metrics.application_submit_time._metrics = {} metrics.application_queue_duration._metrics = {} metrics.application_running_duration._metrics = {} for app in application_list: app_base_labels = dict(workspace_name=workspace_name, spark_pool_name=app.spark_pool_name, name=app.name, application_id=app.spark_application_id, livy_id=app.livy_id) metrics.application_info.labels( subscription_id=workspace_config.subscription_id, resource_group=workspace_config.resource_group, tenant_id=workspace_config.tenant_id, **app_base_labels).set(1) metrics.application_submit_time.labels(**app_base_labels).set( app.submit_time_seconds) metrics.application_queue_duration.labels( **app_base_labels).set(app.queued_duration_seconds) metrics.application_running_duration.labels( **app_base_labels).set(app.running_duration_seconds) except: metrics.application_discovery_failed_count.labels( workspace_name=workspace_config.workspace_name).inc() traceback.print_exc()