Ejemplo n.º 1
0
    def test(self, config):
        """Testing routine"""
        # Initialize Dataset for testing.
        test_data = torchvision.datasets.ImageFolder(
            root=os.path.join(config.data_dir, "test"),
            transform=torchvision.transforms.ToTensor())

        # Create data loader for the test dataset with two number of workers and no
        # shuffling.
        te_data_loader = torch.utils.data.DataLoader(
            dataset=test_data,
            batch_size=config.batch_size,
            num_workers=config.numWorker,
            shuffle=False)

        # Create model
        model = AutoEncoder()

        # Move to GPU if you have one.
        if torch.cuda.is_available():
            model = model.cuda()

        # Create loss objects
        data_loss = nn.MSELoss()

        # Fix gpu -> cpu bug
        compute_device = 'cuda' if torch.cuda.is_available() else 'cpu'

        # Load our best model and set model for testing
        load_res = torch.load(os.path.join(config.save_dir, "best_model.pth"),
                              map_location=compute_device)

        model.load_state_dict(load_res["model"])

        model.eval()

        # Implement The Test loop
        prefix = "Testing: "
        te_loss = []
        te_acc = []
        for data in tqdm(te_data_loader, desc=prefix):
            # Split the data
            x, y = data

            # Send data to GPU if we have one
            if torch.cuda.is_available():
                x = x.cuda()
                y = y.cuda()

            # Don't invoke gradient computation
            with torch.no_grad():
                # Compute logits
                logits = model.forward(x)
                # Compute loss and store as numpy
                loss = data_loss(logits, x.float())
                te_loss += [loss.cpu().numpy()]
                # Compute accuracy and store as numpy
                pred = torch.argmax(logits, dim=1)
                acc = torch.mean(torch.eq(pred.vewi(x.size()),
                                          x).float()) * 100.0
                te_acc += [acc.cpu().numpy()]

        # Report Test loss and accuracy
        print("Test Loss = {}".format(np.mean(te_loss)))  # TODO proper logging
        print("Test Accuracy = {}%".format(
            np.mean(te_acc)))  # TODO proper logging
Ejemplo n.º 2
0
    max_labels = 0
    total_loss = 0
    total = 0
    with tqdm(total=train_gen.get_total_samples() / batch_size) as pbar:
        for audios, labels in train_gen.generator():
            indexs = np.random.permutation(audios.shape[0])
            audios = audios[indexs]
            labels = labels[indexs]
            if np.min(audios) != 0 and np.max(audios) != 0 and np.min(labels) != 0 and np.max(labels) != 0:
                audios = audios / 60
                labels = labels / 60
                audios = torch.from_numpy(audios).float().cuda()
                labels = torch.from_numpy(labels).float().cuda()

                optimizer.zero_grad()
                outputs = network.forward(audios)
                loss = criterion(outputs, labels)
                loss.backward()
                optimizer.step()

                total_loss += loss.item()
                total += 1

            pbar.update(1)

    train_loss = total_loss / total

    network.eval()
    total_loss = 0
    total = 0
    with torch.no_grad():
Ejemplo n.º 3
0
    def train(self, config):
        """Training routine"""
        # Initialize datasets for both training and validation
        train_data = torchvision.datasets.ImageFolder(
            root=os.path.join(config.data_dir, "train"),
            transform=torchvision.transforms.ToTensor())
        valid_data = torchvision.datasets.ImageFolder(
            root=os.path.join(config.data_dir, "valid"),
            transform=torchvision.transforms.ToTensor())

        # Create data loader for training and validation.
        tr_data_loader = torch.utils.data.DataLoader(
            dataset=train_data,
            batch_size=config.batch_size,
            num_workers=config.numWorker,
            shuffle=True)
        va_data_loader = torch.utils.data.DataLoader(
            dataset=valid_data,
            batch_size=config.batch_size,
            num_workers=config.numWorker,
            shuffle=False)

        # Create model instance.
        #model = Model()
        model = AutoEncoder()

        # Move model to gpu if cuda is available
        if torch.cuda.is_available():
            model = model.cuda()
        # Make sure that the model is set for training
        model.train()

        # Create loss objects
        data_loss = nn.MSELoss()

        # Create optimizier
        optimizer = optim.Adam(model.parameters(), lr=config.learn_rate)
        # No need to move the optimizer (as of PyTorch 1.0), it lies in the same
        # space as the model

        # Create summary writer
        tr_writer = SummaryWriter(
            log_dir=os.path.join(config.log_dir, "train"))
        va_writer = SummaryWriter(
            log_dir=os.path.join(config.log_dir, "valid"))

        # Create log directory and save directory if it does not exist
        if not os.path.exists(config.log_dir):
            os.makedirs(config.log_dir)
        if not os.path.exists(config.save_dir):
            os.makedirs(config.save_dir)

        # Initialize training
        iter_idx = -1  # make counter start at zero
        best_va_acc = 0  # to check if best validation accuracy
        # Prepare checkpoint file and model file to save and load from
        checkpoint_file = os.path.join(config.save_dir, "checkpoint.pth")
        bestmodel_file = os.path.join(config.save_dir, "best_model.pth")

        # Check for existing training results. If it existst, and the configuration
        # is set to resume `config.resume==True`, resume from previous training. If
        # not, delete existing checkpoint.
        if os.path.exists(checkpoint_file):
            if config.resume:
                # Use `torch.load` to load the checkpoint file and the load the
                # things that are required to continue training. For the model and
                # the optimizer, use `load_state_dict`. It's actually a good idea
                # to code the saving part first and then code this part.
                print("Checkpoint found! Resuming")  # TODO proper logging
                # Read checkpoint file.

                # Fix gpu -> cpu bug
                compute_device = 'cuda' if torch.cuda.is_available() else 'cpu'
                load_res = torch.load(checkpoint_file,
                                      map_location=compute_device)

                # Resume iterations
                iter_idx = load_res["iter_idx"]
                # Resume best va result
                best_va_acc = load_res["best_va_acc"]
                # Resume model
                model.load_state_dict(load_res["model"])

                # Resume optimizer
                optimizer.load_state_dict(load_res["optimizer"])
                # Note that we do not resume the epoch, since we will never be able
                # to properly recover the shuffling, unless we remember the random
                # seed, for example. For simplicity, we will simply ignore this,
                # and run `config.num_epoch` epochs regardless of resuming.
            else:
                os.remove(checkpoint_file)

        # Training loop
        for epoch in range(config.num_epoch):
            # For each iteration
            prefix = "Training Epoch {:3d}: ".format(epoch)

            for data in tqdm(tr_data_loader, desc=prefix):
                # Counter
                iter_idx += 1

                # Split the data
                # x is img, y is label
                x, y = data
                #print(x)
                # Send data to GPU if we have one
                if torch.cuda.is_available():
                    x = x.cuda()
                    y = y.cuda()

                # Apply the model to obtain scores (forward pass)
                logits = model.forward(x)
                # Compute the loss
                loss = data_loss(logits, x.float())
                # Compute gradients
                loss.backward()
                # Update parameters
                optimizer.step()
                # Zero the parameter gradients in the optimizer
                optimizer.zero_grad()

                # Monitor results every report interval
                if iter_idx % config.rep_intv == 0:
                    # Compute accuracy (No gradients required). We'll wrapp this
                    # part so that we prevent torch from computing gradients.
                    with torch.no_grad():
                        pred = torch.argmax(logits, dim=1)
                        acc = torch.mean(
                            torch.eq(pred.view(x.size()), x).float()) * 100.0
                    # Write loss and accuracy to tensorboard, using keywords `loss`
                    # and `accuracy`.
                    tr_writer.add_scalar("loss", loss, global_step=iter_idx)
                    tr_writer.add_scalar("accuracy", acc, global_step=iter_idx)

                    # Save
                    torch.save(
                        {
                            "iter_idx": iter_idx,
                            "best_va_acc": best_va_acc,
                            "model": model.state_dict(),
                            "optimizer": optimizer.state_dict(),
                            "loss": loss,
                            "epoch": epoch,
                            "acc": acc
                        }, checkpoint_file)

                # Validate results every validation interval
                if iter_idx % config.val_intv == 0:
                    # List to contain all losses and accuracies for all the
                    # training batches
                    va_loss = []
                    va_acc = []
                    # Set model for evaluation
                    model = model.eval()
                    for data in va_data_loader:

                        # Split the data
                        x, y = data

                        # Send data to GPU if we have one
                        if torch.cuda.is_available():
                            x = x.cuda()
                            y = y.cuda()

                        # Apply forward pass to compute the losses
                        # and accuracies for each of the validation batches
                        with torch.no_grad():
                            # Compute logits
                            logits = model.forward(x)
                            # Compute loss and store as numpy
                            loss = data_loss(logits, x.float())
                            va_loss += [loss.cpu().numpy()]
                            # Compute accuracy and store as numpy
                            pred = torch.argmax(logits, dim=1)
                            acc = torch.mean(
                                torch.eq(pred.view(x.size()),
                                         x).float()) * 100.0
                            va_acc += [acc.cpu().numpy()]
                    # Set model back for training
                    model = model.train()
                    # Take average
                    va_loss = np.mean(va_loss)
                    va_acc = np.mean(va_acc)

                    # Write to tensorboard using `va_writer`
                    va_writer.add_scalar("loss", va_loss, global_step=iter_idx)
                    va_writer.add_scalar("accuracy",
                                         va_acc,
                                         global_step=iter_idx)
                    # Check if best accuracy
                    if va_acc > best_va_acc:
                        best_va_acc = va_acc
                        # Save best model using torch.save. Similar to previous
                        # save but at location defined by `bestmodel_file`
                        torch.save(
                            {
                                "iter_idx": iter_idx,
                                "best_va_acc": best_va_acc,
                                "model": model.state_dict(),
                                "optimizer": optimizer.state_dict(),
                                "loss": loss,
                                "acc": acc
                            }, bestmodel_file)