Ejemplo n.º 1
0
def train(modelin=args.model,
          modelout=args.out,
          log=args.log,
          logname=args.logname,
          device=args.device):
    # define logger
    if log:
        logger = Logger(logname)

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = Model1(k=199, feature_transform=False)
    if modelin != "":
        #model_dict = model.state_dict()
        #pretrained_dict = torch.load(modelin)
        #pretrained_dict = {k: v for k,v in pretrained_dict.items() if k in model_dict}
        #model_dict.update(pretrained_dict)
        #model.load_state_dict(pretrained_dict)
        model.load_state_dict(torch.load(modelin))
    #calib_net.to(device=device)
    #sfm_net.to(device=device)
    opt1 = torch.optim.Adam(calib_net.parameters(), lr=1e-1)
    opt2 = torch.optim.Adam(sfm_net.parameters(), lr=1e-1)

    # dataloader
    data = dataloader.Data()
    loader = data.batchloader
    batch_size = data.batchsize

    # mean shape and eigenvectors for 3dmm
    mu_lm = torch.from_numpy(data.mu_lm).float()  #.to(device=device)
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    mu_lm = torch.stack(batch_size * [mu_lm.to(device=device)])
    shape = mu_lm
    lm_eigenvec = torch.from_numpy(data.lm_eigenvec).float().to(device=device)
    lm_eigenvec = torch.stack(batch_size * [lm_eigenvec])

    M = data.M
    N = data.N

    # main training loop
    for epoch in itertools.count():
        for j, batch in enumerate(loader):

            # get the input and gt values
            x_cam_gt = batch['x_cam_gt'].to(device=device)
            shape_gt = batch['x_w_gt'].to(device=device)
            fgt = batch['f_gt'].to(device=device)
            x_img = batch['x_img'].to(device=device)
            #beta_gt = batch['beta_gt'].to(device=device)
            #x_img_norm = batch['x_img_norm']
            #x_img_gt = batch['x_img_gt'].to(device=device)
            batch_size = fgt.shape[0]

            one = torch.ones(batch_size, M * N, 1).to(device=device)
            x_img_one = torch.cat([x_img, one], dim=2)
            x_cam_pt = x_cam_gt.permute(0, 1, 3,
                                        2).reshape(batch_size, 6800, 3)
            x = x_img.permute(0, 2, 1).reshape(batch_size, 2, M, N)

            ptsI = x_img_one.reshape(batch_size, M, N,
                                     3).permute(0, 1, 3, 2)[:, :, :2, :]

            f = calib_net(x)
            f = f + 300
            K = torch.zeros((batch_size, 3, 3)).float().to(device=device)
            K[:, 0, 0] = f.squeeze()
            K[:, 1, 1] = f.squeeze()
            K[:, 2, 2] = 1

            # ground truth l1 error
            opt1.zero_grad()
            f_error = torch.mean(torch.abs(f - fgt))
            f_error.backward()
            opt1.step()

            print(
                f"f/fgt: {f[0].item():.1f}/{fgt[0].item():.1f} | f/fgt: {f[1].item():.1f}/{fgt[1].item():.1f} | f/fgt: {f[2].item():.1f}/{fgt[2].item():.1f} | f/fgt: {f[3].item():.1f}/{fgt[3].item():.1f} "
            )
            continue

            # dual optimization
            for outerloop in itertools.count():
                # calibration
                shape = shape.detach()
                for iter in itertools.count():
                    opt1.zero_grad()
                    f, _, _ = calib_net(x)
                    f = f + 300
                    K = torch.zeros(
                        (batch_size, 3, 3)).float().to(device=device)
                    K[:, 0, 0] = f.squeeze()
                    K[:, 1, 1] = f.squeeze()
                    K[:, 2, 2] = 1

                    # ground truth l1 error
                    f_error = torch.mean(torch.abs(f - fgt))

                    # differentiable PnP pose estimation
                    error1 = []
                    for i in range(batch_size):
                        km, c_w, scaled_betas, alphas = util.EPnP(
                            ptsI[i], shape[i], K[i])
                        Xc, R, T, mask = util.optimizeGN(
                            km, c_w, scaled_betas, alphas, shape[i], ptsI[i],
                            K[i])
                        error2d = util.getReprojError2(ptsI[i],
                                                       shape[i],
                                                       R,
                                                       T,
                                                       K[i],
                                                       show=False,
                                                       loss='l1')
                        error1.append(error2d.mean())

                    # batched loss
                    #loss1 = torch.stack(error1).mean() + f_error
                    loss1 = f_error

                    # stopping condition
                    if iter > 10 and prev_loss < loss1: break
                    else: prev_loss = loss1

                    # optimize network
                    loss1.backward()
                    opt1.step()
                    print(
                        f"iter: {iter} | error: {loss1.item():.3f} | f/fgt: {f[0].item():.1f}/{fgt[0].item():.1f} | f/fgt: {f[1].item():.1f}/{fgt[1].item():.1f} | f/fgt: {f[2].item():.1f}/{fgt[2].item():.1f} | f/fgt: {f[3].item():.1f}/{fgt[3].item():.1f} "
                    )

                # structure from motion
                f = f.detach()
                for iter in itertools.count():
                    opt2.zero_grad()

                    betas, _, _ = sfm_net(x)
                    betas = betas.unsqueeze(-1)
                    shape = mu_lm + torch.bmm(
                        lm_eigenvec, betas).squeeze().view(batch_size, N, 3)

                    K = torch.zeros(
                        (batch_size, 3, 3)).float().to(device=device)
                    K[:, 0, 0] = f.squeeze()
                    K[:, 1, 1] = f.squeeze()
                    K[:, 2, 2] = 1

                    # ground truth shape error
                    error3d = torch.mean(torch.abs(shape - shape_gt))

                    # differentiable PnP pose estimation
                    error2 = []
                    for i in range(batch_size):
                        km, c_w, scaled_betas, alphas = util.EPnP(
                            ptsI[i], shape[i], K[i])
                        Xc, R, T, mask = util.optimizeGN(
                            km, c_w, scaled_betas, alphas, shape[i], ptsI[i],
                            K[i])
                        error2d = util.getReprojError2(ptsI[i],
                                                       shape[i],
                                                       R,
                                                       T,
                                                       K[i],
                                                       show=False,
                                                       loss='l1')
                        error2.append(error2d.mean())

                    # batched loss
                    loss2 = torch.stack(error2).mean() + error3d

                    # stopping condition
                    if iter > 10 and prev_loss < loss2: break
                    else: prev_loss = loss2

                    # optimize network
                    loss2.backward()
                    opt2.step()
                    print(
                        f"iter: {iter} | error: {loss2.item():.3f} | f/fgt: {f[0].item():.1f}/{fgt[0].item():.1f}"
                    )

                # outerloop stopping condition
                if outerloop == 1: break

            # get errors
            rmse = torch.mean(torch.abs(shape - shape_gt))
            f_error = torch.mean(torch.abs(fgt - f) / fgt)

            # get shape error from image projection
            print(
                f"f/fgt: {f[0].item():.3f}/{fgt[0].item():.3f} | rmse: {rmse:.3f} | f_rel: {f_error.item():.4f}  | loss1: {loss1.item():.3f} | loss2: {loss2.item():.3f}"
            )

        # save model and increment weight decay
        print("saving!")
        torch.save(sfm_net.state_dict(),
                   os.path.join('model', 'sfm_' + modelout))
        torch.save(calib_net.state_dict(),
                   os.path.join('model', 'calib_' + modelout))
def test_sfm(modelin=args.model, outfile=args.out, optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    calib_path = os.path.join('model', 'calib_' + modelin)
    sfm_path = os.path.join('model', 'sfm_' + modelin)

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i * 100 for i in range(4, 15)]
    for f_test in f_vals:
        # create dataloader
        #f_test = 1000
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        training_pred = np.zeros((10, 100, 68, 3))
        training_gt = np.zeros((10, 100, 68, 3))

        for j, data in enumerate(loader):
            if j == 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']

            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M, N, 2)).permute(0, 2, 1)
            x = ptsI.unsqueeze(0).permute(0, 2, 1, 3)

            # test camera calibration
            #calib_net.load_state_dict(torch.load(calib_path))
            opt2 = torch.optim.Adam(sfm_net.parameters(), lr=1e-5)
            sfm_net.eval()
            trainfc(sfm_net)
            f = 2000
            for iter in itertools.count():
                opt2.zero_grad()

                # shape prediction
                betas = sfm_net.forward2(x)
                betas = torch.clamp(betas, -20, 20)
                shape = torch.sum(betas * lm_eigenvec, 1)
                shape = shape.reshape(68, 3) + mu_lm
                shape = shape - shape.mean(0).unsqueeze(0)

                rmse = torch.norm(shape_gt - shape, dim=1).mean().detach()
                K = torch.zeros((3, 3)).float()
                K[0, 0] = f
                K[1, 1] = f
                K[2, 2] = 1
                km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
                Xc, R, T, mask = util.optimizeGN(km, c_w, scaled_betas, alphas,
                                                 shape, ptsI, K)
                error2d = util.getReprojError2(ptsI,
                                               shape,
                                               R,
                                               T,
                                               K,
                                               show=False,
                                               loss='l2')
                error_time = util.getTimeConsistency(shape, R, T)

                loss = error2d.mean() + 0.01 * error_time
                loss.backward()
                opt2.step()
                print(
                    f"iter: {iter} | error: {loss.item():.3f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} "
                )

                if iter == 100: break
                training_pred[j, iter, :, :] = shape.detach().cpu().numpy()
                training_gt[j, iter, :, :] = shape_gt.detach().cpu().numpy()

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,
                                                  shape,
                                                  R,
                                                  T,
                                                  K,
                                                  show=False)
            reproj_errors3 = torch.norm(shape_gt - shape, dim=1).mean()
            rel_errors = util.getRelReprojError3(x_cam_gt, shape, R, T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{j}  | f/fgt: {f:.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_shape.append(np.stack(shape_pred, axis=0))
        print(
            f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {reproj_error.item():.4f} |  rmse: {avg_3d:.4f}  |"
        )

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['training_pred'] = training_pred
    matdata['training_gt'] = training_gt
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
Ejemplo n.º 3
0
def test(modelin=args.model,outfile=args.out,optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]
    for f_test in f_vals:
        # create dataloader
        #f_test = 1000
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j,data in enumerate(loader):
            if j == 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']

            all_depth.append(np.mean(T_gt[:,2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x = ptsI.unsqueeze(0).permute(0,2,1,3)

            # run the model
            f = calib_net(x) + 300
            betas = sfm_net(x)
            betas = betas.squeeze(0).unsqueeze(-1)
            shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)

            # additional optimization on initial solution
            if optimize:
                calib_net.load_state_dict(torch.load(calib_path))
                sfm_net.load_state_dict(torch.load(sfm_path))
                calib_net.eval()
                sfm_net.eval()
                trainfc(calib_net)
                trainfc(sfm_net)
                opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
                opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-2)
                curloss = 100
                for outerloop in itertools.count():

                    # camera calibration
                    shape = shape.detach()
                    for iter in itertools.count():
                        opt1.zero_grad()
                        f = calib_net.forward2(x) + 300
                        K = torch.zeros(3,3).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        f_error = torch.mean(torch.abs(f - fgt))
                        rmse = torch.norm(shape_gt - shape,dim=1).mean()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                        #error2d = util.getReprojError2_(ptsI,Xc,K,show=True,loss='l2')
                        error_time = util.getTimeConsistency(shape,R,T)

                        loss = error2d.mean() + 0.01*error_time
                        if iter == 5: break
                        loss.backward()
                        opt1.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # sfm
                    f = f.detach()
                    for iter in itertools.count():
                        opt2.zero_grad()

                        # shape prediction
                        betas = sfm_net.forward2(x)
                        shape = torch.sum(betas * lm_eigenvec,1)
                        shape = shape.reshape(68,3) + mu_lm
                        shape = shape - shape.mean(0).unsqueeze(0)
                        K = torch.zeros((3,3)).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                        rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                        error_time = util.getTimeConsistency(shape,R,T)

                        loss = error2d.mean() + 0.01*error_time
                        if iter == 5: break
                        if iter > 10 and prev_loss < loss:
                            break
                        else:
                            prev_loss = loss
                        loss.backward()
                        opt2.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # closing condition for outerloop on dual objective
                    if torch.abs(curloss - loss) < 0.01: break
                    curloss = loss
            else:
                K = torch.zeros(3,3).float()
                K[0,0] = f
                K[1,1] = f
                K[2,2] = 1
                km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            all_fpred.append(f.detach().numpy()[0])

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K,show=False)
            reproj_errors3 = torch.norm(shape_gt - shape,dim=1).mean()
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.stack(f_pred))
        out_shape.append(np.stack(shape_pred,axis=0))
        print(f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {reproj_error.item():.4f} |  rmse: {avg_3d:.4f}  |")

    out_shape = np.stack(out_shape)
    out_f = np.stack(out_f)
    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
Ejemplo n.º 4
0
def testBIWIID(modelin=args.model,outfile=args.out,optimize=args.opt):
    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # define loader
    loader = dataloader.BIWIIDLoader()
    f_pred = []
    shape_pred = []
    error_2d = []
    error_relf = []
    error_rel3d = []
    for idx in range(len(loader)):
        batch = loader[idx]
        x_cam_gt = batch['x_cam_gt']
        fgt = batch['f_gt']
        x_img = batch['x_img']
        x_img_gt = batch['x_img_gt']
        M = x_img_gt.shape[0]
        N = 68

        ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
        x = ptsI.unsqueeze(0).permute(0,2,1,3)

        # run the model
        f = calib_net(x) + 300
        betas = sfm_net(x)
        betas = betas.squeeze(0).unsqueeze(-1)
        shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)

        # additional optimization on initial solution
        if optimize:
            calib_net.load_state_dict(torch.load(calib_path))
            sfm_net.load_state_dict(torch.load(sfm_path))
            calib_net.eval()
            sfm_net.eval()
            trainfc(calib_net)
            trainfc(sfm_net)

            opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
            opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-5)
            curloss = 100

            for outerloop in itertools.count():

                # camera calibration
                shape = shape.detach()
                for iter in itertools.count():
                    opt1.zero_grad()
                    f = calib_net.forward2(x) + 300
                    K = torch.zeros(3,3).float()
                    K[0,0] = f
                    K[1,1] = f
                    K[2,2] = 1

                    f_error = torch.mean(torch.abs(f - fgt))
                    #rmse = torch.norm(shape_gt - shape,dim=1).mean()

                    # differentiable PnP pose estimation
                    km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
                    Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                    error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                    error_time = util.getTimeConsistency(shape,R,T)

                    loss = error2d.mean() + 0.01*error_time

                    if iter == 5: break
                    #if iter > 10 and prev_loss < loss:
                    #    break
                    #else:
                    #    prev_loss = loss
                    loss.backward()
                    opt1.step()
                    print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} ")

                # sfm
                f = f.detach()
                for iter in itertools.count():
                    opt2.zero_grad()

                    # shape prediction
                    betas = sfm_net.forward2(x)
                    shape = torch.sum(betas * lm_eigenvec,1)
                    shape = shape.reshape(68,3) + mu_lm
                    shape = shape - shape.mean(0).unsqueeze(0)

                    K = torch.zeros((3,3)).float()
                    K[0,0] = f
                    K[1,1] = f
                    K[2,2] = 1

                    #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                    #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                    # differentiable PnP pose estimation
                    km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                    Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                    error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                    error_time = util.getTimeConsistency(shape,R,T)

                    loss = error2d.mean() + 0.01*error_time
                    if iter == 5: break
                    prev_loss = loss.item()
                    loss.backward()
                    opt2.step()
                    print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} ")

                # closing condition for outerloop on dual objective
                if torch.abs(curloss - loss) < 0.01: break
                curloss = loss
        else:
            K = torch.zeros(3,3).float()
            K[0,0] = f
            K[1,1] = f
            K[2,2] = 1
            km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

        # get errors
        reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K)
        rel_errors = util.getRelReprojError3(x_cam_gt,shape,R,T)

        reproj_error = reproj_errors2.mean()
        rel_error = rel_errors.mean()
        f_error = torch.abs(fgt - f) / fgt

        # save final prediction
        f_pred.append(f.detach().cpu().item())
        shape_pred.append(shape.detach().cpu().numpy())

        error_2d.append(reproj_error.cpu().data.item())
        error_rel3d.append(rel_error.cpu().data.item())
        error_relf.append(f_error.cpu().data.item())

        print(f" f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")
        #end for

    # prepare output file
    out_shape = np.stack(shape_pred)
    out_f = np.stack(f_pred)

    matdata = {}
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    matdata['error_2d'] = np.array(error_2d)
    matdata['error_rel3d'] = np.array(error_rel3d)
    matdata['error_relf'] = np.array(error_relf)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(error_2d)}")
    print(f"MEAN seterror_rel3d: {np.mean(error_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(error_relf)}")
Ejemplo n.º 5
0
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
    #end function


####################################################################################3
if __name__ == '__main__':

    model = CalibrationNet3()
    test(model)
    #testBIWI(model)
Ejemplo n.º 6
0
def test(modelin=args.model,outfile=args.out,optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path,map_location='cpu'))
        sfm_net.load_state_dict(torch.load(sfm_path,map_location='cpu'))
    calib_net.to(args.device)
    sfm_net.to(args.device)
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().to(args.device).detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().to(args.device).detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().to(args.device).detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    batch_size = 10
    lm_eigenvec = torch.stack(batch_size*[lm_eigenvec])

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]
    for f_test in f_vals:
        f_test = 1000

        # create dataloader
        data = dataloader.TestData()
        data.batchsize = batch_size
        loader = data.createLoader(f_test)

        # containers
        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = data.batchsize;

        for j,data in enumerate(loader):
            # load the data
            x_cam_gt = data['x_cam_gt'].to(args.device)
            shape_gt = data['x_w_gt'].to(args.device)
            fgt = data['f_gt'].to(args.device)
            x_img = data['x_img'].to(args.device)
            x_img_gt = data['x_img_gt'].to(args.device)
            T_gt = data['T_gt'].to(args.device)

            # reshape and form data
            one = torch.ones(batch_size,M*N,1).to(device=args.device)
            x_img_one = torch.cat([x_img,one],dim=2)
            x_cam_pt = x_cam_gt.permute(0,1,3,2).reshape(batch_size,6800,3)
            x = x_img.permute(0,2,1).reshape(batch_size,2,M,N)
            ptsI = x_img_one.reshape(batch_size,M,N,3).permute(0,1,3,2)[:,:,:2,:]

            # run the model
            f = calib_net(x) + 300
            betas = sfm_net(x)
            betas = betas.squeeze(0).unsqueeze(-1)
            shape = mu_lm + torch.bmm(lm_eigenvec,betas).squeeze().view(batch_size,N,3)

            # additional optimization on initial solution
            if optimize:
                calib_net.load_state_dict(torch.load(calib_path,map_location=args.device))
                sfm_net.load_state_dict(torch.load(sfm_path,map_location=args.device))
                calib_net.train()
                sfm_net.train()
                opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
                opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-2)
                curloss = 100
                for outerloop in itertools.count():

                    # camera calibration
                    shape = shape.detach()
                    for iter in itertools.count():
                        opt1.zero_grad()
                        f = torch.mean(calib_net.forward2(x) + 300)
                        K = torch.zeros(3,3).float().to(device=args.device)
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        # ground truth l1 error
                        f_error = torch.mean(torch.abs(f - fgt))

                        # rmse
                        rmse = torch.norm(shape_gt - shape,dim=2).mean()

                        # differentiable PnP pose estimation
                        error1 = []
                        for i in range(batch_size):
                            km, c_w, scaled_betas, alphas = util.EPnP(ptsI[i],shape[i],K)
                            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape[i],ptsI[i],K)
                            error2d = util.getReprojError2(ptsI[i],shape[i],R,T,K,show=False,loss='l1')
                            error1.append(error2d.mean())

                        # loss
                        loss = torch.stack(error1).mean()

                        # stopping condition
                        if iter == 5: break
                        if iter > 5 and prev_loss < loss:
                            break
                        else:
                            prev_loss = loss

                        # update
                        loss.backward()
                        opt1.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.mean().item():.1f}/{fgt.mean().item():.1f} | error2d: {loss.item():.3f} | rmse: {rmse.item():.3f} ")

                    # sfm
                    f = f.detach()
                    for iter in itertools.count():
                        opt2.zero_grad()

                        # shape prediction
                        betas = sfm_net.forward2(x)
                        betas = betas.unsqueeze(-1)
                        shape = mu_lm + torch.bmm(lm_eigenvec,betas).squeeze().view(batch_size,N,3)
                        K = torch.zeros((3,3)).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                        rmse = torch.norm(shape_gt - shape,dim=2).mean()

                        # differentiable PnP pose estimation
                        error1 = []
                        for i in range(batch_size):
                            km, c_w, scaled_betas, alphas = util.EPnP(ptsI[i],shape[i],K)
                            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape[i],ptsI[i],K)
                            error2d = util.getReprojError2(ptsI[i],shape[i],R,T,K,show=False,loss='l1')
                            errorTime = util.getTimeConsistency(shape[i],R,T)
                            error1.append(error2d.mean())

                        #loss = torch.stack(error1).mean() + 0.01*torch.stack(error2).mean()
                        loss = torch.stack(error1).mean()

                        if iter == 5: break
                        if iter > 5 and prev_loss < loss:
                            break
                        else:
                            prev_loss = loss
                        loss.backward()
                        opt2.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.mean().item():.1f}/{fgt.mean().item():.1f} | error2d: {loss.item():.3f} | rmse: {rmse.item():.3f} ")
                    # closing condition for outerloop on dual objective
                    if torch.abs(curloss - loss) < 0.01: break
                    curloss = loss
            else:
                K = torch.zeros((batch_size,3,3)).float().to(device=args.device)
                K[:,0,0] = f.squeeze()
                K[:,1,1] = f.squeeze()
                K[:,2,2] = 1
                km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            #all_fpred.append(batch_size*[f.detach().item()])
            e2d,e3d,eshape,e2d_all,e3d_all,d_all = util.getBatchError(ptsI.detach(),shape.detach(),K.detach(),x_cam_gt,shape_gt)
            f_error = torch.squeeze(torch.abs(fgt - f)/fgt)

            e2d = e2d.cpu().numpy()
            e3d = e3d.cpu().numpy()
            eshape = eshape.cpu().numpy()
            f_error = f_error.cpu().squeeze().numpy()
            e2d_all = e2d_all.cpu().numpy()
            e3d_all = e3d_all.cpu().numpy()
            d_all = d_all.cpu().numpy()

            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())
            all_depth.append(d_all.flatten())
            all_f.append(np.array([fgt.mean()] * d_all.flatten().shape[0]))
            all_fpred.append(np.array([f.mean()]*d_all.flatten().shape[0]))

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f.mean().item():.3f}/{fgt.mean().item():.3f} |  f_error_rel: {f_error.mean().item():.4f}  | rmse: {eshape.mean().item():.4f}  | rel rmse: {np.mean(e3d):.4f}    | 2d error: {np.mean(e2d):.4f}")

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.array(f_pred))
        out_shape.append(np.concatenate(shape_pred,axis=0))
        print(f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {avg_2d:.4f} |  rmse: {avg_3d:.4f}  |")

    out_shape = np.stack(out_shape)
    out_f = np.stack(out_f)
    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_depth = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['out_shape'] = out_shape
    matdata['out_f'] = out_f
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")