Ejemplo n.º 1
0
class Agent():
    """Interacts with and learns from the environment."""
    
    def __init__(self, config):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.device = config.device
        self.state_size = config.state_size
        self.action_size = config.action_size
        self.seed = np.random.seed(config.seed)

        self.gamma = config.gamma
        self.tau = config.tau
        self.num_agents = config.num_agents
        self.learning_steps = 0
        self.write_frequency = 1000

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(config).to(self.device)
        self.actor_target = Actor(config).to(self.device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=config.lr_actor)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(config).to(self.device)
        self.critic_target = Critic(config).to(self.device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=config.lr_critic, weight_decay=config.weight_decay)

        if config.use_same_initial_weights_for_target:
            self.soft_update(self.critic_local, self.critic_target, 1.0)
            self.soft_update(self.actor_local, self.actor_target, 1.0)

        # Noise process
        self.noise = OUNoise((config.num_agents,config.action_size), config.seed)

        # Replay memory
        self.memory = ReplayBuffer(config.device, config.action_size, config.buffer_size, config.batch_size, config.seed)
    
    def step(self, state, action, reward, next_state, done, writer=None):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        for i in range(self.num_agents):
            self.memory.add(state[i,:], action[i,:], reward[i], next_state[i,:], done[i])

        # Learn, if enough samples are available in memory
        if len(self.memory) > self.memory.batch_size:
            experiences = self.memory.sample()
            self.learn(experiences, self.gamma, writer)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().to(self.device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.learning_steps = 0
        self.noise.reset()

    def learn(self, experiences, gamma, writer=None):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)

        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()
        
        if writer is not None:
            if self.learning_steps % self.write_frequency == 0:
                writer.add_scalar('data/critic_loss',critic_loss, self.learning_steps)
                for n, p in filter(lambda np: np[1].grad is not None, self.critic_local.named_parameters()):
                    writer.add_histogram("critic_local."+n+".grad", p.grad.data.cpu().numpy(), global_step=self.learning_steps)
                    writer.add_histogram("critic_local."+n, p.data.cpu().numpy(), global_step=self.learning_steps)

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()
        
        if writer is not None:
            if self.learning_steps % self.write_frequency == 0:
                writer.add_scalar('data/actor_loss',actor_loss, self.learning_steps)
                for n, p in filter(lambda np: np[1].grad is not None, self.actor_local.named_parameters()):
                    writer.add_histogram("actor_local."+n+".grad", p.grad.data.cpu().numpy(), global_step=self.learning_steps)
                    writer.add_histogram("actor_local."+n, p.data.cpu().numpy(), global_step=self.learning_steps)

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, self.tau)
        self.soft_update(self.actor_local, self.actor_target, self.tau)
        self.learning_steps += 1

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
Ejemplo n.º 2
0
class DDPG:
    def __init__(self, env, args):
        ob_space = env.observation_space
        goal_dim = env.goal_dim
        ob_dim = ob_space.shape[0]
        self.ob_dim = ob_dim
        self.ac_dim = ac_dim = 7
        self.goal_dim = goal_dim
        self.num_iters = args.num_iters
        self.random_prob = args.random_prob
        self.tau = args.tau
        self.reward_scale = args.reward_scale
        self.gamma = args.gamma

        self.log_interval = args.log_interval
        self.save_interval = args.save_interval
        self.rollout_steps = args.rollout_steps
        self.env = env
        self.batch_size = args.batch_size
        self.train_steps = args.train_steps
        self.closest_dist = np.inf
        self.warmup_iter = args.warmup_iter
        self.max_grad_norm = args.max_grad_norm
        self.use_her = args.her
        self.k_future = args.k_future
        self.model_dir = os.path.join(args.save_dir, 'model')
        self.pretrain_dir = args.pretrain_dir
        os.makedirs(self.model_dir, exist_ok=True)
        self.global_step = 0
        self.actor = Actor(ob_dim=ob_dim,
                           act_dim=ac_dim,
                           hid1_dim=args.hid1_dim,
                           hid2_dim=args.hid2_dim,
                           hid3_dim=args.hid3_dim,
                           init_method=args.init_method)
        self.critic = Critic(ob_dim=ob_dim,
                             act_dim=ac_dim,
                             hid1_dim=args.hid1_dim,
                             hid2_dim=args.hid2_dim,
                             hid3_dim=args.hid3_dim,
                             init_method=args.init_method)
        if args.resume or args.test or args.pretrain_dir is not None:
            self.load_model(args.resume_step, pretrain_dir=args.pretrain_dir)
        if not args.test:
            self.actor_target = Actor(ob_dim=ob_dim,
                                      act_dim=ac_dim,
                                      hid1_dim=args.hid1_dim,
                                      hid2_dim=args.hid2_dim,
                                      hid3_dim=args.hid3_dim,
                                      init_method=args.init_method)
            self.critic_target = Critic(ob_dim=ob_dim,
                                        act_dim=ac_dim,
                                        hid1_dim=args.hid1_dim,
                                        hid2_dim=args.hid2_dim,
                                        hid3_dim=args.hid3_dim,
                                        init_method=args.init_method)
            self.actor_optim = self.construct_optim(self.actor,
                                                    lr=args.actor_lr)
            cri_w_decay = args.critic_weight_decay
            self.critic_optim = self.construct_optim(self.critic,
                                                     lr=args.critic_lr,
                                                     weight_decay=cri_w_decay)
            self.hard_update(self.actor_target, self.actor)
            self.hard_update(self.critic_target, self.critic)

            self.actor_target.eval()
            self.critic_target.eval()
            if args.noise_type == 'ou_noise':
                mu = np.zeros(ac_dim)
                sigma = float(args.ou_noise_std) * np.ones(ac_dim)
                self.action_noise = OrnsteinUhlenbeckActionNoise(mu=mu,
                                                                 sigma=sigma)
            elif args.noise_type == 'uniform':
                low_limit = args.uniform_noise_low
                high_limit = args.uniform_noise_high
                dec_step = args.max_noise_dec_step
                self.action_noise = UniformNoise(low_limit=low_limit,
                                                 high_limit=high_limit,
                                                 dec_step=dec_step)

            elif args.noise_type == 'gaussian':
                mu = np.zeros(ac_dim)
                sigma = args.normal_noise_std * np.ones(ac_dim)
                self.action_noise = NormalActionNoise(mu=mu, sigma=sigma)

            self.memory = Memory(limit=int(args.memory_limit),
                                 action_shape=(int(ac_dim), ),
                                 observation_shape=(int(ob_dim), ))
            self.critic_loss = nn.MSELoss()
            self.ob_norm = args.ob_norm
            if self.ob_norm:
                self.obs_oms = OnlineMeanStd(shape=(1, ob_dim))
            else:
                self.obs_oms = None

        self.cuda()

    def test(self, render=False, record=True, slow_t=0):
        dist, succ_rate = self.rollout(render=render,
                                       record=record,
                                       slow_t=slow_t)
        print('Final step distance: ', dist)

    def train(self):
        self.net_mode(train=True)
        tfirststart = time.time()
        epoch_episode_rewards = deque(maxlen=1)
        epoch_episode_steps = deque(maxlen=1)
        total_rollout_steps = 0
        for epoch in range(self.global_step, self.num_iters):
            episode_reward = 0
            episode_step = 0
            self.action_noise.reset()
            obs = self.env.reset()
            obs = obs[0]
            epoch_actor_losses = []
            epoch_critic_losses = []
            if self.use_her:
                ep_experi = {
                    'obs': [],
                    'act': [],
                    'reward': [],
                    'new_obs': [],
                    'ach_goals': [],
                    'done': []
                }
            for t_rollout in range(self.rollout_steps):
                total_rollout_steps += 1
                ran = np.random.random(1)[0]
                if self.pretrain_dir is None and epoch < self.warmup_iter or \
                        ran < self.random_prob:
                    act = self.random_action().flatten()
                else:
                    act = self.policy(obs).flatten()
                new_obs, r, done, info = self.env.step(act)
                ach_goals = new_obs[1].copy()
                new_obs = new_obs[0].copy()
                episode_reward += r
                episode_step += 1
                self.memory.append(obs, act, r * self.reward_scale, new_obs,
                                   ach_goals, done)
                if self.use_her:
                    ep_experi['obs'].append(obs)
                    ep_experi['act'].append(act)
                    ep_experi['reward'].append(r * self.reward_scale)
                    ep_experi['new_obs'].append(new_obs)
                    ep_experi['ach_goals'].append(ach_goals)
                    ep_experi['done'].append(done)
                if self.ob_norm:
                    self.obs_oms.update(new_obs)
                obs = new_obs
            epoch_episode_rewards.append(episode_reward)
            epoch_episode_steps.append(episode_step)
            if self.use_her:
                for t in range(episode_step - self.k_future):
                    ob = ep_experi['obs'][t]
                    act = ep_experi['act'][t]
                    new_ob = ep_experi['new_obs'][t]
                    ach_goal = ep_experi['ach_goals'][t]
                    k_futures = np.random.choice(np.arange(
                        t + 1, episode_step),
                                                 self.k_future - 1,
                                                 replace=False)
                    k_futures = np.concatenate((np.array([t]), k_futures))
                    for future in k_futures:
                        new_goal = ep_experi['ach_goals'][future]
                        her_ob = np.concatenate(
                            (ob[:-self.goal_dim], new_goal), axis=0)
                        her_new_ob = np.concatenate(
                            (new_ob[:-self.goal_dim], new_goal), axis=0)
                        res = self.env.cal_reward(ach_goal.copy(), new_goal,
                                                  act)
                        her_reward, _, done = res
                        self.memory.append(her_ob, act,
                                           her_reward * self.reward_scale,
                                           her_new_ob, ach_goal.copy(), done)
            self.global_step += 1
            if epoch >= self.warmup_iter:
                for t_train in range(self.train_steps):
                    act_loss, cri_loss = self.train_net()
                    epoch_critic_losses.append(cri_loss)
                    epoch_actor_losses.append(act_loss)

            if epoch % self.log_interval == 0:
                tnow = time.time()
                stats = {}
                if self.ob_norm:
                    stats['ob_oms_mean'] = safemean(self.obs_oms.mean.numpy())
                    stats['ob_oms_std'] = safemean(self.obs_oms.std.numpy())
                stats['total_rollout_steps'] = total_rollout_steps
                stats['rollout/return'] = safemean(
                    [rew for rew in epoch_episode_rewards])
                stats['rollout/ep_steps'] = safemean(
                    [l for l in epoch_episode_steps])
                if epoch >= self.warmup_iter:
                    stats['actor_loss'] = np.mean(epoch_actor_losses)
                    stats['critic_loss'] = np.mean(epoch_critic_losses)
                stats['epoch'] = epoch
                stats['actor_lr'] = self.actor_optim.param_groups[0]['lr']
                stats['critic_lr'] = self.critic_optim.param_groups[0]['lr']
                stats['time_elapsed'] = tnow - tfirststart
                for name, value in stats.items():
                    logger.logkv(name, value)
                logger.dumpkvs()
            if (epoch == 0 or epoch >= self.warmup_iter) and \
                    self.save_interval and\
                    epoch % self.save_interval == 0 and \
                    logger.get_dir():
                mean_final_dist, succ_rate = self.rollout()
                logger.logkv('epoch', epoch)
                logger.logkv('test/total_rollout_steps', total_rollout_steps)
                logger.logkv('test/mean_final_dist', mean_final_dist)
                logger.logkv('test/succ_rate', succ_rate)

                tra_mean_dist, tra_succ_rate = self.rollout(train_test=True)
                logger.logkv('train/mean_final_dist', tra_mean_dist)
                logger.logkv('train/succ_rate', tra_succ_rate)

                # self.log_model_weights()
                logger.dumpkvs()
                if mean_final_dist < self.closest_dist:
                    self.closest_dist = mean_final_dist
                    is_best = True
                else:
                    is_best = False
                self.save_model(is_best=is_best, step=self.global_step)

    def train_net(self):
        batch_data = self.memory.sample(batch_size=self.batch_size)
        for key, value in batch_data.items():
            batch_data[key] = torch.from_numpy(value)
        obs0_t = batch_data['obs0']
        obs1_t = batch_data['obs1']
        obs0_t = self.normalize(obs0_t, self.obs_oms)
        obs1_t = self.normalize(obs1_t, self.obs_oms)
        obs0 = Variable(obs0_t).float().cuda()
        with torch.no_grad():
            vol_obs1 = Variable(obs1_t).float().cuda()

        rewards = Variable(batch_data['rewards']).float().cuda()
        actions = Variable(batch_data['actions']).float().cuda()
        terminals = Variable(batch_data['terminals1']).float().cuda()

        cri_q_val = self.critic(obs0, actions)
        with torch.no_grad():
            target_net_act = self.actor_target(vol_obs1)
            target_net_q_val = self.critic_target(vol_obs1, target_net_act)
            # target_net_q_val.volatile = False
            target_q_label = rewards
            target_q_label += self.gamma * target_net_q_val * (1 - terminals)
            target_q_label = target_q_label.detach()

        self.actor.zero_grad()
        self.critic.zero_grad()
        cri_loss = self.critic_loss(cri_q_val, target_q_label)
        cri_loss.backward()
        if self.max_grad_norm is not None:
            torch.nn.utils.clip_grad_norm(self.critic.parameters(),
                                          self.max_grad_norm)
        self.critic_optim.step()

        self.critic.zero_grad()
        self.actor.zero_grad()
        net_act = self.actor(obs0)
        net_q_val = self.critic(obs0, net_act)
        act_loss = -net_q_val.mean()
        act_loss.backward()

        if self.max_grad_norm is not None:
            torch.nn.utils.clip_grad_norm(self.actor.parameters(),
                                          self.max_grad_norm)
        self.actor_optim.step()

        self.soft_update(self.actor_target, self.actor, self.tau)
        self.soft_update(self.critic_target, self.critic, self.tau)
        return act_loss.cpu().data.numpy(), cri_loss.cpu().data.numpy()

    def normalize(self, x, stats):
        if stats is None:
            return x
        return (x - stats.mean) / stats.std

    def denormalize(self, x, stats):
        if stats is None:
            return x
        return x * stats.std + stats.mean

    def net_mode(self, train=True):
        if train:
            self.actor.train()
            self.critic.train()
        else:
            self.actor.eval()
            self.critic.eval()

    def load_model(self, step=None, pretrain_dir=None):
        model_dir = self.model_dir
        if pretrain_dir is not None:
            ckpt_file = os.path.join(self.pretrain_dir, 'model_best.pth')
        else:
            if step is None:
                ckpt_file = os.path.join(model_dir, 'model_best.pth')
            else:
                ckpt_file = os.path.join(model_dir,
                                         'ckpt_{:08d}.pth'.format(step))
        if not os.path.isfile(ckpt_file):
            raise ValueError("No checkpoint found at '{}'".format(ckpt_file))
        mutils.print_yellow('Loading checkpoint {}'.format(ckpt_file))
        checkpoint = torch.load(ckpt_file)
        if pretrain_dir is not None:
            actor_dict = self.actor.state_dict()
            critic_dict = self.critic.state_dict()
            actor_pretrained_dict = {
                k: v
                for k, v in checkpoint['actor_state_dict'].items()
                if k in actor_dict
            }
            critic_pretrained_dict = {
                k: v
                for k, v in checkpoint['critic_state_dict'].items()
                if k in critic_dict
            }
            actor_dict.update(actor_pretrained_dict)
            critic_dict.update(critic_pretrained_dict)
            self.actor.load_state_dict(actor_dict)
            self.critic.load_state_dict(critic_dict)
            self.global_step = 0
        else:
            self.actor.load_state_dict(checkpoint['actor_state_dict'])
            self.critic.load_state_dict(checkpoint['critic_state_dict'])
            self.global_step = checkpoint['global_step']
        if step is None:
            mutils.print_yellow('Checkpoint step: {}'
                                ''.format(checkpoint['ckpt_step']))

        self.warmup_iter += self.global_step
        mutils.print_yellow('Checkpoint loaded...')

    def save_model(self, is_best, step=None):
        if step is None:
            step = self.global_step
        ckpt_file = os.path.join(self.model_dir,
                                 'ckpt_{:08d}.pth'.format(step))
        data_to_save = {
            'ckpt_step': step,
            'global_step': self.global_step,
            'actor_state_dict': self.actor.state_dict(),
            'actor_optimizer': self.actor_optim.state_dict(),
            'critic_state_dict': self.critic.state_dict(),
            'critic_optimizer': self.critic_optim.state_dict()
        }

        mutils.print_yellow('Saving checkpoint: %s' % ckpt_file)
        torch.save(data_to_save, ckpt_file)
        if is_best:
            torch.save(data_to_save,
                       os.path.join(self.model_dir, 'model_best.pth'))

    def rollout(self, train_test=False, render=False, record=False, slow_t=0):
        test_conditions = self.env.train_test_conditions \
            if train_test else self.env.test_conditions
        done_num = 0
        final_dist = []
        episode_length = []
        for idx in range(test_conditions):
            if train_test:
                obs = self.env.train_test_reset(cond=idx)
            else:
                obs = self.env.test_reset(cond=idx)
            for t_rollout in range(self.rollout_steps):
                obs = obs[0].copy()
                act = self.policy(obs, stochastic=False).flatten()
                obs, r, done, info = self.env.step(act)
                if render:
                    self.env.render()
                    if slow_t > 0:
                        time.sleep(slow_t)
                if done:
                    done_num += 1
                    break
            if record:
                print('dist: ', info['dist'])
            final_dist.append(info['dist'])
            episode_length.append(t_rollout)
        final_dist = np.array(final_dist)
        mean_final_dist = np.mean(final_dist)
        succ_rate = done_num / float(test_conditions)
        if record:
            with open('./test_data.json', 'w') as f:
                json.dump(final_dist.tolist(), f)

            print('\nDist statistics:')
            print("Minimum: {0:9.4f} Maximum: {1:9.4f}"
                  "".format(np.min(final_dist), np.max(final_dist)))
            print("Mean: {0:9.4f}".format(mean_final_dist))
            print("Standard Deviation: {0:9.4f}".format(np.std(final_dist)))
            print("Median: {0:9.4f}".format(np.median(final_dist)))
            print("First quartile: {0:9.4f}"
                  "".format(np.percentile(final_dist, 25)))
            print("Third quartile: {0:9.4f}"
                  "".format(np.percentile(final_dist, 75)))
            print('Success rate:', succ_rate)
        if render:
            while True:
                self.env.render()
        return mean_final_dist, succ_rate

    def log_model_weights(self):
        for name, param in self.actor.named_parameters():
            logger.logkv('actor/' + name, param.clone().cpu().data.numpy())
        for name, param in self.actor_target.named_parameters():
            logger.logkv('actor_target/' + name,
                         param.clone().cpu().data.numpy())
        for name, param in self.critic.named_parameters():
            logger.logkv('critic/' + name, param.clone().cpu().data.numpy())
        for name, param in self.critic_target.named_parameters():
            logger.logkv('critic_target/' + name,
                         param.clone().cpu().data.numpy())

    def random_action(self):
        act = np.random.uniform(-1., 1., self.ac_dim)
        return act

    def policy(self, obs, stochastic=True):
        self.actor.eval()
        ob = Variable(torch.from_numpy(obs)).float().cuda().view(1, -1)
        act = self.actor(ob)
        act = act.cpu().data.numpy()
        if stochastic:
            act = self.action_noise(act)
        self.actor.train()
        return act

    def cuda(self):
        self.critic.cuda()
        self.actor.cuda()
        if hasattr(self, 'critic_target'):
            self.critic_target.cuda()
            self.actor_target.cuda()
            self.critic_loss.cuda()

    def construct_optim(self, net, lr, weight_decay=None):
        if weight_decay is None:
            weight_decay = 0
        params = mutils.add_weight_decay([net], weight_decay=weight_decay)
        optimizer = optim.Adam(params, lr=lr, weight_decay=weight_decay)
        return optimizer

    def soft_update(self, target, source, tau):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_(target_param.data * (1.0 - tau) +
                                    param.data * tau)

    def hard_update(self, target, source):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_(param.data)