Ejemplo n.º 1
0
def detect_images(widget=None):
    if not widget:
        args = arg_parse()
    else:
        args = widget.args

    read_dir = time.time()
    print_info(widget, False, "info", "Reading addresses.....")
    images = args.images
    im_list = []
    img = None
    try:
        for img in images:
            if os.path.isabs(img):
                im_list.append(img)
            else:
                im_list.append(osp.join(osp.realpath('.'), img))
    except FileNotFoundError:
        print_info(widget, True, "error", "No file or directory with the name {}".format(img))

    if not os.path.exists(args.det):
        os.makedirs(args.det)
    print_info(widget, False, "info", "Finished reading addresses")
    finish_read_dir = time.time()

    batch_size = int(args.bs)
    confidence = float(args.confidence)
    nms_thesh = float(args.nms_thresh)
    namesfile = args.names

    cuda_present = torch.cuda.is_available()

    classes = load_classes(namesfile)
    num_classes = len(classes)

    # Set up the neural network
    load_net = time.time()
    print_info(widget, False, "info", "Loading network.....")
    model = Darknet(args.cfg)
    model.load_weights(args.weights)
    print_info(widget, False, "info", "Network successfully loaded")
    finish_load_net = time.time()

    model.net_info["height"] = args.reso
    model.net_info["width"] = args.reso
    inp_dim = int(model.net_info["height"])
    assert inp_dim % 32 == 0
    assert inp_dim > 32

    # If there's a GPU availible, put the model on GPU
    if cuda_present:
        model.cuda()
    # Set the model in evaluation mode (for Batchnorm layers)
    model.eval()
    # Detection phase

    load_batch = time.time()
    print_info(widget, False, "info", "Loading batches.....")
    loaded_ims = [cv2.imread(x) for x in im_list]

    im_batches = list(map(prep_image, loaded_ims, [inp_dim for _ in range(len(im_list))]))
    im_dim_list = [(x.shape[1], x.shape[0]) for x in loaded_ims]
    im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2)

    leftover = 0
    if len(im_dim_list) % batch_size:
        leftover = 1

    if batch_size != 1:
        num_batches = len(im_list) // batch_size + leftover
        im_batches = [torch.cat((im_batches[i * batch_size: min((i + 1) * batch_size,
                                                                len(im_batches))])) for i in range(num_batches)]

    if cuda_present:
        im_dim_list = im_dim_list.cuda()

    output = torch.empty((0, 0))

    print_info(widget, False, "info", "Finished loading batches....")
    start_det_loop = time.time()
    for i, batch in enumerate(im_batches):
        # load the image
        start = time.time()
        print_info(widget, False, "info", f"Detecting batch no {i}....")
        if cuda_present:
            batch = batch.cuda()
        with torch.no_grad():
            prediction = model(batch, cuda_present)

        prediction = write_results(prediction, confidence, num_classes, nms_conf=nms_thesh)

        end = time.time()

        if type(prediction) == int:

            for im_num, image in enumerate(im_list[i * batch_size: min((i + 1) * batch_size, len(im_list))]):
                im_id = i * batch_size + im_num
                msg = "{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start) / batch_size)
                msg += "\n{0:20s} {1:s}".format("Objects Detected:", "")
                msg += "\n----------------------------------------------------------"
                print_info(widget, False, 'batch_info', msg, im_id)
            continue

        prediction[:, 0] += i * batch_size  # transform the atribute from index in batch to index in imlist

        if np.size(output, 0) == 0:  # If we have't initialised output
            output = prediction
        else:
            output = torch.cat((output, prediction))

        for im_num, image in enumerate(im_list[i * batch_size: min((i + 1) * batch_size, len(im_list))]):
            im_id = i * batch_size + im_num
            objs = [classes[int(x[-1])] for x in output if int(x[0]) == im_id]
            msg = "{0:20s} predicted in {1:6.3f} seconds".format(image.split("/")[-1], (end - start) / batch_size)
            msg += "\n{0:20s} {1:s}".format("Objects Detected:", " ".join(objs))
            msg += "\n----------------------------------------------------------"
            print_info(widget, False, 'batch_info', msg, im_id)

        if cuda_present:
            torch.cuda.synchronize()
        print_info(widget, False, "info", f"Finished detecting batch no {i}")

    if np.size(output, 0) == 0:
        print_info(widget, False, 'no_detections', "No detections were made")
        print_info(widget, False, 'finished')
        return

    # Start rescaling
    print_info(widget, False, "info", "Output processing....")
    output_rescale = time.time()
    im_dim_list = torch.index_select(im_dim_list, 0, output[:, 0].long())

    scaling_factor = torch.min(inp_dim / im_dim_list, 1)[0].view(-1, 1)

    output[:, [1, 3]] -= (inp_dim - scaling_factor * im_dim_list[:, 0].view(-1, 1)) / 2
    output[:, [2, 4]] -= (inp_dim - scaling_factor * im_dim_list[:, 1].view(-1, 1)) / 2

    output[:, 1:5] /= scaling_factor

    # set padding space black
    for i in range(output.shape[0]):
        output[i, [1, 3]] = torch.clamp(output[i, [1, 3]], 0.0, im_dim_list[i, 0])
        output[i, [2, 4]] = torch.clamp(output[i, [2, 4]], 0.0, im_dim_list[i, 1])
    class_load = time.time()
    print_info(widget, False, "info", "Finished output processing.")

    # Start draw
    print_info(widget, False, "info", "Drawing boxes....")
    draw = time.time()
    images_handler = ImagesHandler(classes, output, loaded_ims, args.det, im_list, batch_size)
    images_handler.write()
    print_info(widget, False, "images_ready", images_handler.imageList)
    end = time.time()
    print_info(widget, False, "info", "Finished drawing boxes")

    msg = "\n\nSUMMARY"
    msg += "\n----------------------------------------------------------"
    msg += "\n{:25s}: {}".format("Task", "Time Taken (in seconds)")
    msg += "\n"
    msg += "\n{:25s}: {:2.3f}".format("Reading addresses", finish_read_dir - read_dir)
    msg += "\n{:25s}: {:2.3f}".format("Loading network", finish_load_net - load_net)
    msg += "\n{:25s}: {:2.3f}".format("Loading batch", start_det_loop - load_batch)
    msg += "\n{:25s}: {:2.3f}".format("Detection (" + str(len(im_list)) + " images)", output_rescale - start_det_loop)
    msg += "\n{:25s}: {:2.3f}".format("Output Processing", class_load - output_rescale)
    msg += "\n{:25s}: {:2.3f}".format("Drawing Boxes", end - draw)
    msg += "\n{:25s}: {:2.3f}".format("Average time_per_img", (end - load_batch) / len(im_list))
    msg += "\n----------------------------------------------------------"
    print_info(widget, False, 'info', msg)
    torch.cuda.empty_cache()

    print_info(widget, False, 'finished')
Ejemplo n.º 2
0
                        help="the image to predict (default: %(default)s)")

    parser.add_argument("--weight", required=True, metavar="/path/to/yolov4.weights", help="the path of weight file")

    parser.add_argument("--save-img", metavar="predicted-img", help="the path to save predicted image")

    args = parser.parse_args()

    return args


if __name__ == "__main__":
    args = parse_args()

    img: Image.Image = Image.open(args.img_file)
    img = img.resize((608, 608))

    # C*H*W
    img_data = to_image(img)

    net = Darknet(img_data.size(0))
    net.load_weights(args.weight)
    net.eval()

    with torch.no_grad():
        boxes, confs = net(img_data.unsqueeze(0))

        idxes_pred, boxes_pred, probs_pred = utils.post_processing(boxes, confs, 0.4, 0.6)

    utils.plot_box(boxes_pred, args.img_file, args.save_img)
Ejemplo n.º 3
0
def detect(kitti_weights='../checkpoints/best_weights_kitti.pth', config_path='../config/yolov3-kitti.cfg',
           class_path='../data/names.txt'):
    """
        Script to run inference on sample images. It will store all the inference results in /output directory (
        relative to repo root)
        
        Args
            kitti_weights: Path of weights
            config_path: Yolo configuration file path
            class_path: Path of class names txt file
            
    """
    cuda = torch.cuda.is_available()
    os.makedirs('../output', exist_ok=True)

    # Set up model
    model = Darknet(config_path, img_size=416)
    model.load_weights(kitti_weights)

    if cuda:
        model.cuda()
        print("Cuda available for inference")

    model.eval()  # Set in evaluation mode

    dataloader = DataLoader(ImageFolder("../data/samples/", img_size=416),
                            batch_size=2, shuffle=False, num_workers=0)

    classes = load_classes(class_path)  # Extracts class labels from file

    Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor

    imgs = []  # Stores image paths
    img_detections = []  # Stores detections for each image index

    print('data size : %d' % len(dataloader))
    print('\nPerforming object detection:')
    prev_time = time.time()
    for batch_i, (img_paths, input_imgs) in enumerate(dataloader):
        # Configure input
        input_imgs = Variable(input_imgs.type(Tensor))

        # Get detections
        with torch.no_grad():
            detections = model(input_imgs)
            detections = non_max_suppression(detections, 80, 0.8, 0.4)
            # print(detections)

        # Log progress
        current_time = time.time()
        inference_time = datetime.timedelta(seconds=current_time - prev_time)
        prev_time = current_time
        print('\t+ Batch %d, Inference Time: %s' % (batch_i, inference_time))

        # Save image and detections
        imgs.extend(img_paths)
        img_detections.extend(detections)

    # Bounding-box colors
    # cmap = plt.get_cmap('tab20b')
    cmap = plt.get_cmap('tab10')
    colors = [cmap(i) for i in np.linspace(0, 1, 20)]

    print('\nSaving images:')
    # Iterate through images and save plot of detections
    for img_i, (path, detections) in enumerate(zip(imgs, img_detections)):

        print("(%d) Image: '%s'" % (img_i, path))

        # Create plot
        img = np.array(Image.open(path))
        plt.figure()
        fig, ax = plt.subplots(1)
        ax.imshow(img)

        kitti_img_size = 416

        # The amount of padding that was added
        pad_x = max(img.shape[0] - img.shape[1], 0) * (kitti_img_size / max(img.shape))
        pad_y = max(img.shape[1] - img.shape[0], 0) * (kitti_img_size / max(img.shape))
        # Image height and width after padding is removed
        unpad_h = kitti_img_size - pad_y
        unpad_w = kitti_img_size - pad_x

        # Draw bounding boxes and labels of detections
        if detections is not None:
            print(type(detections))
            print(detections.size())
            unique_labels = detections[:, -1].cpu().unique()
            n_cls_preds = len(unique_labels)
            bbox_colors = random.sample(colors, n_cls_preds)
            for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:

                print('\t+ Label: %s, Conf: %.5f' % (classes[int(cls_pred)], cls_conf.item()))
                # Rescale coordinates to original dimensions
                box_h = int(((y2 - y1) / unpad_h) * (img.shape[0]))
                box_w = int(((x2 - x1) / unpad_w) * (img.shape[1]))
                y1 = int(((y1 - pad_y // 2) / unpad_h) * (img.shape[0]))
                x1 = int(((x1 - pad_x // 2) / unpad_w) * (img.shape[1]))

                color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
                # Create a Rectangle patch
                bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2,
                                         edgecolor=color,
                                         facecolor='none')
                # Add the bbox to the plot
                ax.add_patch(bbox)
                # Add label
                plt.text(x1, y1 - 30, s=classes[int(cls_pred)] + ' ' + str('%.4f' % cls_conf.item()), color='white',
                         verticalalignment='top',
                         bbox={'color': color, 'pad': 0})

        # Save generated image with detections
        plt.axis('off')
        plt.gca().xaxis.set_major_locator(NullLocator())
        plt.gca().yaxis.set_major_locator(NullLocator())
        plt.savefig('../output/%d.png' % (img_i), bbox_inches='tight', pad_inches=0.0)
        plt.close()
class ReadFramesThread:
    def __init__(self, path, args, with_tracking, widget, queue_size=3000):
        # initialize the file video stream along with the boolean
        # used to indicate if the thread should be stopped or not
        self.stream = cv2.VideoCapture(path)
        self.widget = widget
        self.tracking = with_tracking
        if not self.stream:
            if type(path) == int:
                print_info(widget, True, "error",
                           f"Error opening web cam on {path}")
            else:
                print_info(widget, True, "error",
                           f"Error opening video file {path}")
        self.stopped = False
        self.canceled = False
        self.paused = False
        self.ready = False
        # initialize the queue used to store frames read from
        # the video file
        self.Q = Queue(maxsize=queue_size)
        self.imread = Queue(maxsize=queue_size)
        self.Q_processed = Queue(maxsize=queue_size)

        self.inp_dim = int(args.reso)
        self.batch_size = int(args.bs)
        self.names_file = args.names
        self.confidence = float(args.confidence)
        self.nms_thresh = float(args.nms_thresh)
        self.is_classifier = args.is_classifier
        self.classes = load_classes(self.names_file)
        self.num_classes = len(self.classes)

        self.model = None
        self.model_classifier = None
        if self.is_classifier:
            print_info(widget, False, "info",
                       "Loading network for detection.....", -1)
            self.model = Darknet(args.classifier_cfg)
            self.model.load_weights(args.classifier_weights)
            print_info(widget, False, "info",
                       "Network for detection successfully loaded", 0)

            print_info(widget, False, "info",
                       "Loading network for classification.....", -1)
            self.model_classifier = Darknet(args.cfg)
            self.model_classifier.load_weights(args.weights)
            print_info(widget, False, "info",
                       "Network for classification successfully loaded", 0)

            self.model_classifier.net_info["height"] = args.reso
            self.inp_dim = int(self.model_classifier.net_info["height"])
            # If there's a GPU availible, put the model on GPU
            self.cuda = torch.cuda.is_available()
            if self.cuda:
                self.model_classifier.cuda()
            # Set the model in evaluation mode
            self.model_classifier.eval()

            self.classifier_confidence = self.confidence
            self.classifier_nms_thesh = self.nms_thresh
            self.classifier_classes = self.classes
            self.classifier_num_classes = self.num_classes
            self.classifier_names_file = self.names_file
            self.classifier_inp_dim = self.inp_dim

            self.inp_dim = args.classifier_inp_dim
            self.confidence = args.classifier_confidence
            self.nms_thresh = args.classifier_nms_thresh
            self.names_file = args.classifier_names
            self.classes = load_classes(self.names_file)
            self.num_classes = len(self.classes)

        else:
            print_info(widget, False, "info", "Loading network.....", -1)
            self.model = Darknet(args.cfg)
            self.model.load_weights(args.weights)
            print_info(widget, False, "info", "Network successfully loaded", 0)

        self.model.net_info["height"] = self.inp_dim
        assert self.inp_dim % 32 == 0
        assert self.inp_dim > 32

        # If there's a GPU availible, put the model on GPU
        self.cuda = torch.cuda.is_available()
        if self.cuda:
            self.model.cuda()
        # Set the model in evaluation mode
        self.model.eval()

        # if tracking selected, initialize sort class
        self.mot_tracking = None
        if self.tracking == "sort":
            self.mot_tracking = Sort(max_age=30, min_hits=3)
        elif self.tracking == "deep_sort":
            print_info(widget, False, "info", "Loading Deep Sort model ...",
                       -1)
            self.mot_tracking = DeepSort()
            print_info(widget, False, "info", "Deep Sort model loaded", -1)

    def start(self):
        # start a thread to read frames from the file video stream
        t = Thread(target=self.update, args=())
        # t.daemon = True
        t.start()
        return self

    def update(self):
        frames = 0
        start = time.time()
        print_info(self.widget, False, "info", "Began capturing", -2)
        # keep looping infinitely
        while True:
            # if the thread indicator variable is set, stop the
            # thread
            if self.stopped:
                break
            if self.canceled:
                current_time = time.time()
                print_info(self.widget, False, "info", "Canceled processing",
                           current_time - start)
                return
            if self.paused:
                self.widget.obj.pauseMutex.lock()
                self.widget.obj.pauseCond.wait(self.widget.obj.pauseMutex)
                self.widget.obj.pauseMutex.unlock()
                self.paused = False
            # otherwise, ensure the queue has room in it
            if not self.Q.full():
                # read the next frame from the file
                (grabbed, frame) = self.stream.read()
                # if the `grabbed` boolean is `False`, then we have
                # reached the end of the video file
                if not grabbed:
                    self.stop()
                    self.ready = True
                    return
                # add the frame to the queue
                self.Q.put(prep_image(frame, self.inp_dim))
                self.imread.put(frame)

                frames += 1
                current_time = time.time()
                msg = " FPS of the video is {:5.4f}".format(
                    frames / (current_time - start))
                print_info(self.widget, False, "info", msg,
                           current_time - start)

                if frames % self.batch_size == 0:
                    self.process_frames()
        if not self.Q.empty():
            self.process_frames()

    def read(self):
        # return next frame in the queue
        return self.Q.get()

    def more(self):
        # return True if there are still frames in the queue
        return self.Q.qsize() > 0

    def stop(self):
        # indicate that the thread should be stopped
        self.stopped = True

    def cancel(self):
        self.canceled = True

    def pause(self):
        self.paused = True

    def has_batch(self):
        if self.Q.qsize() >= self.batch_size:
            return True
        if self.Q.qsize() > 0 and self.stopped:
            return True
        return False

    def get_batch(self):
        if (self.Q.qsize() >= self.batch_size) or (self.Q.qsize() > 0
                                                   and self.stopped):
            res = np.empty((0, 0))
            im_dim_list = []
            imread_list = []
            for _ in range(self.batch_size):
                img = self.Q.get()
                if np.size(res, 0) == 0:
                    res = img
                else:
                    res = torch.cat((res, img))
                img = self.imread.get()
                im_dim_list.append((img.shape[1], img.shape[0]))
                imread_list.append(img)
            im_dim_list = torch.FloatTensor(im_dim_list).repeat(1, 2)
            return res, im_dim_list, imread_list
        return False, False, False

    def process_frames(self):
        batch_nr = -1
        batch, im_dims, imread = self.get_batch()
        if imread:
            batch_nr += 1
            if self.cuda:
                im_dims = im_dims.cuda()
                batch = batch.cuda()
            with torch.no_grad():
                output = self.model(batch, self.cuda)

            for frame_id in range(np.size(output, 0)):
                nr_frame = self.batch_size * batch_nr + frame_id + 1
                im_dim = im_dims[frame_id]
                frame = output[frame_id].unsqueeze(0)
                frame = write_results(frame,
                                      self.confidence,
                                      self.num_classes,
                                      nms_conf=self.nms_thresh)

                if np.size(frame, 0) > 0:
                    im_dim = im_dim.repeat(frame.size(0), 1)
                    scaling_factor = torch.min(416 / im_dim, 1)[0].view(-1, 1)

                    frame[:, [1, 3]] -= (self.inp_dim - scaling_factor *
                                         im_dim[:, 0].view(-1, 1)) / 2
                    frame[:, [2, 4]] -= (self.inp_dim - scaling_factor *
                                         im_dim[:, 1].view(-1, 1)) / 2

                    frame[:, 1:5] /= scaling_factor

                    for i in range(frame.shape[0]):
                        frame[i, [1, 3]] = torch.clamp(frame[i, [1, 3]], 0.0,
                                                       im_dim[i, 0])
                        frame[i, [2, 4]] = torch.clamp(frame[i, [2, 4]], 0.0,
                                                       im_dim[i, 1])

                    if self.is_classifier:
                        frame = self.apply_classifier_model(
                            imread[frame_id], frame)

                if self.tracking == "sort":
                    if self.cuda:
                        frame = frame.cpu()
                    frame = self.mot_tracking.update(frame)
                    if self.cuda:
                        frame = torch.from_numpy(frame).cuda()
                elif self.tracking == "deep_sort":
                    if self.cuda:
                        frame = frame.cpu()
                    tracker, detections_class = self.mot_tracking.update(
                        imread[frame_id], frame)
                    frame = []
                    for track in tracker.tracks:
                        if not track.is_confirmed(
                        ) or track.time_since_update > 1:
                            continue

                        bbox = track.to_tlbr(
                        )  # Get the corrected/predicted bounding box
                        id_num = int(track.track_id
                                     )  # Get the ID for the particular track.

                        # Draw bbox from tracker.
                        frame.append(
                            np.concatenate(([id_num + 1], bbox, [
                                track.conf_score, track.class_score, track.cid
                            ])).reshape(1, -1))
                    if len(frame) > 0:
                        frame = np.concatenate(frame)
                        if self.cuda:
                            frame = torch.from_numpy(frame).cuda()
                    else:
                        frame = torch.empty((0, 8))

                if np.size(frame, 0) == 0:
                    image_handler = ImageHandler(nr_frame, batch_nr,
                                                 f"frame{nr_frame}",
                                                 imread[frame_id],
                                                 self.tracking)
                    self.Q_processed.put(image_handler)
                    continue

                image_handler = ImageHandler(nr_frame, batch_nr,
                                             f"frame{nr_frame}",
                                             imread[frame_id], self.tracking)
                if self.is_classifier:
                    image_handler.write(frame, self.classifier_classes)
                else:
                    image_handler.write(frame, self.classes)
                self.Q_processed.put(image_handler)

    def get_image(self):
        return self.Q_processed.get()

    def has_images(self):
        return not self.Q_processed.empty()

    def apply_classifier_model(self, imread, frame):
        # get crops from detections in frame
        crops = torch.empty((0, 0))
        detections = frame[:, 1:5]
        for d in detections:
            for i in range(len(d)):
                if d[i] < 0:
                    d[i] = 0
            img_h, img_w, img_ch = imread.shape
            xmin, ymin, xmax, ymax = d
            if xmin > img_w:
                xmin = img_w
            if ymin > img_h:
                ymin = img_h
            ymin = abs(int(ymin))
            ymax = abs(int(ymax))
            xmin = abs(int(xmin))
            xmax = abs(int(xmax))
            try:
                crop = imread[ymin:ymax, xmin:xmax, :]
                crop = prep_image(crop, self.classifier_inp_dim)
                if np.size(crops, 0) == 0:
                    crops = crop
                else:
                    crops = torch.cat((crops, crop))
            except:
                continue
        if self.cuda:
            crops = crops.cuda()
        with torch.no_grad():
            output = self.model_classifier(crops, self.cuda)
        for frame_id in range(np.size(output, 0)):
            new_det = output[frame_id].unsqueeze(0)
            new_det = write_results(new_det,
                                    self.classifier_confidence,
                                    self.classifier_num_classes,
                                    nms_conf=self.classifier_nms_thesh)
            if np.size(new_det, 0) > 0:
                index = torch.argmax(new_det[:, 6])
                frame[frame_id, 6:8] = new_det[index, 6:8]
            else:
                frame[frame_id, 6] = -1
        frame = frame[frame[:, 6] >= 0]
        return frame
Ejemplo n.º 5
0
left_over = 0
if (len(loaded_imgs) % batch_size):
    left_over = 1

num_batches = (len(loaded_imgs) // batch_size) + left_over

batches = [
    det_imgs[i * batch_size:min((i + 1) * batch_size, len(loaded_imgs))]
    for i in range(num_batches)
]

batches = [torch.cat(batch, 0) for batch in batches]

net = Darknet()
net = net.cuda()
net.load_weights()
net.eval()

write = 0


def put_rectangle(x, results):
    c1 = tuple(x[1:3].int())
    c2 = tuple(x[3:5].int())
    img = results[int(x[0])]
    cls = int(x[-1])
    label = "{0}".format(classes[cls])
    cv2.rectangle(img, c1, c2, [255, 0, 0], 1)
    t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
    c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
    cv2.rectangle(img, c1, c2, [0, 255, 0], -1)
Ejemplo n.º 6
0
def main(train_path="../data/train/images/",
         val_path="../data/train/images/",
         labels_path="../data/train/yolo_labels/",
         weights_path="../checkpoints/",
         preload_weights_file="darknet53.conv.74",
         output_path="../output",
         yolo_config_file="../config/yolov3-kitti.cfg",
         fraction=1,
         learning_rate=1e-3,
         weight_decay=1e-4,
         batch_size=2,
         epochs=30,
         freeze_struct=[True, 5]):
    """
        This is the point of entry to the neural network program.
        All the training history will be saved as a csv in the output path
        
        Args
            train_path (string): Directory containing the training images
            val_path (string):: Directory containing the val images
            labels_path (string):: Directory containing the yolo format labels for data
            weights_path (string):: Directory containing the weights (new weights for this program will also be added here)
            preload_weights_file (string): Name of preload weights file
            output_path (string): Directory to store the training history outputs as csv
            yolo_config_file (string): file path of yolo configuration file
            fraction (float): fraction of data to use for training
            learning_rate (float): initial learning rate
            weight_decay (float): weight decay value
            batch_size (int): batch_size for both training and validation
            epochs (int): maximum number of epochs to train the model
            freeze_struct (list): [bool, int] indicating whether to freeze the Darknet backbone and until which epoch should it be frozen
            
        Returns
            None
    
    """

    # Set up checkpoints path
    checkpoints_path = weights_path

    # Set up env variables and create required directories
    os.makedirs(output_path, exist_ok=True)
    os.makedirs(checkpoints_path, exist_ok=True)

    # Set up cuda
    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    print("Available device = ", device)

    # Create model and load pretrained darknet weights
    model = Darknet(yolo_config_file)
    print("Loading imagenet weights to darknet")
    model.load_weights(os.path.join(weights_path, preload_weights_file))
    model.to(device)
    #print(model)

    # Create datasets
    train_dataset = KITTI2D(train_path,
                            labels_path,
                            fraction=fraction,
                            train=True)
    valid_dataset = KITTI2D(val_path,
                            labels_path,
                            fraction=fraction,
                            train=False)

    # Create dataloaders
    train_dataloader = DataLoader(train_dataset,
                                  batch_size=batch_size,
                                  shuffle=True)
    valid_dataloader = DataLoader(valid_dataset,
                                  batch_size=batch_size,
                                  shuffle=False)

    # Create optimizers
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad,
                                        model.parameters()),
                                 lr=learning_rate,
                                 weight_decay=weight_decay)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 10)

    # Create log csv files
    train_log_file = open(os.path.join(output_path, "train_results.csv"),
                          "w",
                          newline="")
    valid_log_file = open(os.path.join(output_path, "valid_results.csv"),
                          "w",
                          newline="")
    train_csv = csv.writer(train_log_file)
    valid_csv = csv.writer(valid_log_file)

    print("Starting to train yolov3 model...")

    # Train model here
    train_model(model,
                device,
                optimizer,
                lr_scheduler,
                train_dataloader,
                valid_dataloader,
                train_csv,
                valid_csv,
                weights_path,
                max_epochs=epochs,
                tensor_type=torch.cuda.FloatTensor,
                update_gradient_samples=1,
                freeze_darknet=freeze_struct[0],
                freeze_epoch=freeze_struct[1])

    # Close the log files
    train_log_file.close()
    valid_log_file.close()

    print("Training completed")