Ejemplo n.º 1
0
        time.strftime('%Y-%m-%d %H-%M-%S', time.localtime(time.time())))
else:
    pass
    print("\n测试模式...")
    # timestamp = input("请输入要restore的模型生成时间戳,例如2018-12-12 19-58-25:")
    timestamp = "2018-12-19 17-39-12"
    # timestamp = "2018-12-19 17-03-59"
    print("\n当前加载的模型是: ", timestamp, '\n')
    args.is_training = False

args.model_path = os.path.join('.', "model", timestamp + "/")
# args.model_path = os.path.join('.', "model", 'test' + "/")
if not os.path.exists(args.model_path):
    os.makedirs(args.model_path)

if args.is_training:

    model = Graph(args, cn_words_embedding, en_words_embedding,
                  cn_word2id_dict, en_word2id_dict, en_id2word_dict)
    model.build_graph()
    model.train(cn_train_data, en_train_data)

else:

    args.model_path = tf.train.latest_checkpoint(args.model_path)
    model = Graph(args, cn_words_embedding, en_words_embedding,
                  cn_word2id_dict, en_word2id_dict, en_id2word_dict)
    model.build_graph()
    print("=============================")
    model.test(cn_dev_data, en_dev_data)
Ejemplo n.º 2
0
    # Config default value
    cfg = config.cfg

    # Training files name
    cfg.queue.filename = [
        os.path.join(os.path.dirname(os.path.basename(__file__)), "examples", "train{}.tfrecords").format(index)
        for index in range(args.train_first_file,
                           args.train_first_file +
                           args.train_set_size //
                           cfg.queue.nb_examples_per_file)]

    print(cfg.queue.filename)

    # Whether we create a validation set
    cfg.queue.is_val_set = args.val_set

    # Whether to train with adversarial cost
    cfg.gan.train_adversarial = args.train_adversarial

    # Size of a batch
    cfg.train.batch_size = args.batch_size

    # Build model and train or fill images
    b = Graph(cfg)
    b.build()
    if args.train:
        b.train()
    else:
        # TODO: add a queue for validation set (change args parameter in consequences)
        b.fill_image(20)