Ejemplo n.º 1
0
def main(args):
    seed = 2020
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    # Make logdir
    if not os.path.exists(args.checkpoints_dir):
        os.makedirs(args.checkpoints_dir)
    
    # Load dataset
    train_dataloader = get_dataloader('train', args.bs, True, args.nw)
    val_dataloader = get_dataloader('val', args.bs, False, args.nw)
    
    # Model
    model = SimpleModel()
    optimizer = torch.optim.SGD(
        model.parameters(), lr=args.lr, momentum=0.9,
        weight_decay=args.wd)

    model.cuda()
    
    train(args, train_dataloader, val_dataloader, 
          model, optimizer)
Ejemplo n.º 2
0
def main(args):
    # Load dataset
    test_dataloader = get_dataloader('test', args.bs, False, args.nw)

    # Model
    model = SimpleModel()
    model.cuda()
    ckpt = torch.load(os.path.join(args.checkpoints_dir, 'last_ckpt.pth'))
    model.load_state_dict(ckpt['model_state'])

    result = test(args, test_dataloader, model)

    # Make csv file
    df = pd.DataFrame({'id': test_dataloader.dataset.ids, 'category': result})
    df.to_csv('out.csv', index=False)