Ejemplo n.º 1
0
def load_model(opt, pretrained_path):
    seed = int(time.time())
    use_cuda = True
    gpus = '0'
    torch.manual_seed(seed)
    if use_cuda:
        os.environ['CUDA_VISIBLE_DEVICES'] = gpus
    torch.cuda.manual_seed(seed)

    # Create model
    model = YOWO(opt)
    model = model.cuda()
    # model = nn.DataParallel(model, device_ids=None)  # in multi-gpu case
    model.seen = 0

    checkpoint = torch.load(pretrained_path)
    epoch = checkpoint['epoch']
    fscore = checkpoint['fscore']
    model.load_state_dict(checkpoint['state_dict'], strict=False)

    return model, epoch, fscore
Ejemplo n.º 2
0
use_cuda = True
kwargs = {'num_workers': 0, 'pin_memory': True} if use_cuda else {}


# Create model
model       = YOWO(opt)
model       = model.cuda()
model       = nn.DataParallel(model, device_ids=None) # in multi-gpu case
print(model)

# Load resume path 
if opt.resume_path:
    print("===================================================================")
    print('loading checkpoint {}'.format(opt.resume_path))
    checkpoint = torch.load(opt.resume_path)
    model.load_state_dict(checkpoint['state_dict'])
    model.eval()
    print("===================================================================")



def get_clip(root, imgpath, train_dur, dataset):
    im_split = imgpath.split('/')
    num_parts = len(im_split)
    class_name = im_split[-3]
    file_name = im_split[-2]
    im_ind = int(im_split[num_parts - 1][0:5])
    if dataset == 'ucf101-24':
        img_name = os.path.join(class_name, file_name, '{:05d}.jpg'.format(im_ind))
    elif dataset == 'jhmdb-21':
        img_name = os.path.join(class_name, file_name, '{:05d}.png'.format(im_ind))
Ejemplo n.º 3
0
if opt.resume_path:
    print(
        "===================================================================")
    print('loading checkpoint {}'.format(opt.resume_path))
    checkpoint = torch.load(opt.resume_path)
    opt.begin_epoch = checkpoint['epoch']
    best_fscore = checkpoint['fscore']
    pretrained_dict = checkpoint['state_dict']
    model_dict = model.state_dict()
    pretrained_dict = {
        k: v
        for k, v in pretrained_dict.items()
        if k in model_dict and k != 'module.cfam.conv_bn_relu1.0.weight'
    }
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)
    # model.load_state_dict(checkpoint['state_dict'])
    #optimizer.load_state_dict(checkpoint['optimizer'])
    model.seen = checkpoint['epoch'] * nsamples
    print("Loaded model fscore: ", checkpoint['fscore'])
    print(
        "===================================================================")

region_loss.seen = model.seen
processed_batches = model.seen // batch_size

init_width = int(net_options['width'])
init_height = int(net_options['height'])
init_epoch = model.seen // nsamples