Ejemplo n.º 1
0
    def predict(self, predict_data_rows: Iterable[str]) -> List[ModelPredictionResults]:
        predict_input_reader = self._create_data_reader(estimator_action=EstimatorAction.Predict)
        input_iterator = predict_input_reader.process_and_iterate_input_from_data_lines(predict_data_rows)
        all_model_prediction_results = []
        for input_row in input_iterator:
            # perform the actual prediction and get raw results.
            input_for_predict = input_row[0][:4]  # we want only the relevant input vectors (w.o. the targets).
            prediction_results = self.keras_model_predict_function(input_for_predict)

            # make `input_row` and `prediction_results` easy to read (by accessing named fields).
            prediction_results = KerasPredictionModelOutput(
                *common.squeeze_single_batch_dimension_for_np_arrays(prediction_results))
            input_row = _KerasModelInputTensorsFormer(
                estimator_action=EstimatorAction.Predict).from_model_input_form(input_row)
            input_row = ReaderInputTensors(*common.squeeze_single_batch_dimension_for_np_arrays(input_row))

            # calculate the attention weight for each context
            attention_per_context = self._get_attention_weight_per_context(
                path_source_strings=input_row.path_source_token_strings,
                path_strings=input_row.path_strings,
                path_target_strings=input_row.path_target_token_strings,
                attention_weights=prediction_results.attention_weights
            )

            # store the calculated prediction results in the wanted format.
            model_prediction_results = ModelPredictionResults(
                original_name=common.binary_to_string(input_row.target_string.item()),
                topk_predicted_words=common.binary_to_string_list(prediction_results.topk_predicted_words),
                topk_predicted_words_scores=prediction_results.topk_predicted_words_scores,
                attention_per_context=attention_per_context,
                code_vector=prediction_results.code_vectors)
            all_model_prediction_results.append(model_prediction_results)

        return all_model_prediction_results
Ejemplo n.º 2
0
    def predict(self, predict_data_lines: Iterable[str]) -> List[ModelPredictionResults]:
        if self.predict_reader is None:
            self.predict_reader = PathContextReader(vocabs=self.vocabs,
                                                    model_input_tensors_former=_TFEvaluateModelInputTensorsFormer(),
                                                    config=self.config, estimator_action=EstimatorAction.Predict)
            self.predict_placeholder = tf.compat.v1.placeholder(tf.string)
            reader_output = self.predict_reader.process_input_row(self.predict_placeholder)

            self.predict_top_words_op, self.predict_top_values_op, self.predict_original_names_op, \
            self.attention_weights_op, self.predict_source_string, self.predict_path_string, \
            self.predict_path_target_string, self.predict_code_vectors = \
                self._build_tf_test_graph(reader_output, normalize_scores=True)

            self._initialize_session_variables()
            self.saver = tf.compat.v1.train.Saver()
            self._load_inner_model(sess=self.sess)

        prediction_results: List[ModelPredictionResults] = []
        for line in predict_data_lines:
            batch_top_words, batch_top_scores, batch_original_name, batch_attention_weights, batch_path_source_strings,\
                batch_path_strings, batch_path_target_strings, batch_code_vectors = self.sess.run(
                    [self.predict_top_words_op, self.predict_top_values_op, self.predict_original_names_op,
                     self.attention_weights_op, self.predict_source_string, self.predict_path_string,
                     self.predict_path_target_string, self.predict_code_vectors],
                    feed_dict={self.predict_placeholder: line})
            # shapes:
            #   batch_top_words, top_scores: (batch, top_k)
            #   batch_original_name: (batch, )
            #   batch_attention_weights: (batch, max_context, 1)
            #   batch_path_source_strings, batch_path_strings, batch_path_target_strings: (batch, max_context)
            #   batch_code_vectors: (batch, code_vector_size)

            # remove first axis: (batch=1, ...)
            assert all(tensor.shape[0] == 1 for tensor in (batch_top_words, batch_top_scores, batch_original_name,
                                                           batch_attention_weights, batch_path_source_strings,
                                                           batch_path_strings, batch_path_target_strings,
                                                           batch_code_vectors))
            top_words = np.squeeze(batch_top_words, axis=0)
            top_scores = np.squeeze(batch_top_scores, axis=0)
            original_name = batch_original_name[0]
            attention_weights = np.squeeze(batch_attention_weights, axis=0)
            path_source_strings = np.squeeze(batch_path_source_strings, axis=0)
            path_strings = np.squeeze(batch_path_strings, axis=0)
            path_target_strings = np.squeeze(batch_path_target_strings, axis=0)
            code_vectors = np.squeeze(batch_code_vectors, axis=0)

            top_words = common.binary_to_string_list(top_words)
            original_name = common.binary_to_string(original_name)
            attention_per_context = self._get_attention_weight_per_context(
                path_source_strings, path_strings, path_target_strings, attention_weights)
            prediction_results.append(ModelPredictionResults(
                original_name=original_name,
                topk_predicted_words=top_words,
                topk_predicted_words_scores=top_scores,
                attention_per_context=attention_per_context,
                code_vector=(code_vectors if self.config.EXPORT_CODE_VECTORS else None)
            ))
        return prediction_results