Ejemplo n.º 1
0
  def _init_body(self, scope):
    with tf.variable_scope(scope):

      word_level_inputs = tf.reshape(self.inputs_embedded, [
        self.document_size * self.sentence_size,
        self.word_size,
        self.embedding_size
      ])
      word_level_lengths = tf.reshape(
        self.word_lengths, [self.document_size * self.sentence_size])

      with tf.variable_scope('word') as scope:
        word_encoder_output, _ = bidirectional_rnn(
          self.fw_word_cell, self.bw_word_cell,
          word_level_inputs, word_level_lengths,
          scope=scope)

        with tf.variable_scope('attention') as scope:
          word_level_output = task_specific_attention(
            word_encoder_output,
            self.word_output_size,
            scope=scope)

        with tf.variable_scope('dropout'):
          word_level_output = layers.dropout(
            word_level_output, keep_prob=self.dropout_keep_proba,
            is_training=self.is_training,
          )

      # sentence_level

      sentence_inputs = tf.reshape(
        word_level_output, [self.document_size, self.sentence_size, self.word_output_size])

      with tf.variable_scope('sentence') as scope:
        sentence_encoder_output, _ = bidirectional_rnn(
          self.fw_sentence_cell, self.bw_sentence_cell, sentence_inputs, self.sentence_lengths, scope=scope)

        with tf.variable_scope('attention') as scope:
          sentence_level_output = task_specific_attention(
            sentence_encoder_output, self.sentence_output_size, scope=scope)

        with tf.variable_scope('dropout'):
          sentence_level_output = layers.dropout(
            sentence_level_output, keep_prob=self.dropout_keep_proba,
            is_training=self.is_training,
          )

      with tf.variable_scope('classifier'):
        self.logits = layers.fully_connected(
          sentence_level_output, self.classes, activation_fn=None)

        self.prediction = tf.argmax(self.logits, axis=-1)
  def _init_body(self, scope):
    with tf.variable_scope(scope):

      word_level_inputs = tf.reshape(self.inputs_embedded, [
        self.document_size * self.sentence_size,
        self.word_size,
        self.embedding_size
      ])
      word_level_lengths = tf.reshape(
        self.word_lengths, [self.document_size * self.sentence_size])

      with tf.variable_scope('word') as scope:
        word_encoder_output, _ = bidirectional_rnn(
          self.word_cell, self.word_cell,
          word_level_inputs, word_level_lengths,
          scope=scope)

        with tf.variable_scope('attention') as scope:
          word_level_output = task_specific_attention(
            word_encoder_output,
            self.word_output_size,
            scope=scope)

        with tf.variable_scope('dropout'):
          word_level_output = layers.dropout(
            word_level_output, keep_prob=self.dropout_keep_proba,
            is_training=self.is_training,
          )

      # sentence_level

      sentence_inputs = tf.reshape(
        word_level_output, [self.document_size, self.sentence_size, self.word_output_size])

      with tf.variable_scope('sentence') as scope:
        sentence_encoder_output, _ = bidirectional_rnn(
          self.sentence_cell, self.sentence_cell, sentence_inputs, self.sentence_lengths, scope=scope)

        with tf.variable_scope('attention') as scope:
          sentence_level_output = task_specific_attention(
            sentence_encoder_output, self.sentence_output_size, scope=scope)

        with tf.variable_scope('dropout'):
          sentence_level_output = layers.dropout(
            sentence_level_output, keep_prob=self.dropout_keep_proba,
            is_training=self.is_training,
          )

      with tf.variable_scope('classifier'):
        self.logits = layers.fully_connected(
          sentence_level_output, self.classes, activation_fn=None)

        self.prediction = tf.argmax(self.logits, axis=-1)
Ejemplo n.º 3
0
    def word_level_output(self):
        with tf.name_scope("word_level"):
            word_level_inputs = tf.reshape(self.inputs_embedded, [
                self.document_size * self.sentence_size, self.word_size,
                self.embedding_size
            ])
            word_level_lengths = tf.reshape(
                self.word_lengths, [self.document_size * self.sentence_size])

            with tf.variable_scope('word') as scope:
                word_encoder_output, _ = bidirectional_rnn(self.word_cell,
                                                           self.word_cell,
                                                           word_level_inputs,
                                                           word_level_lengths,
                                                           scope=scope)

                with tf.variable_scope('attention') as scope:
                    word_level_output = task_specific_attention(
                        word_encoder_output,
                        self.word_output_size,
                        scope=scope)

                with tf.variable_scope('dropout'):
                    word_level_output = layers.dropout(
                        word_level_output,
                        keep_prob=self.dropout_keep_proba,
                        is_training=self.is_training,
                    )

        return word_level_output
Ejemplo n.º 4
0
    def sentence_level_output(self):
        with tf.name_scope("sentence_level"):
            sentence_inputs = tf.reshape(self.word_level_output, [
                self.document_size, self.sentence_size, self.word_output_size
            ])

            with tf.variable_scope('sentence') as scope:
                sentence_encoder_output, _ = bidirectional_rnn(
                    self.sentence_cell,
                    self.sentence_cell,
                    sentence_inputs,
                    self.sentence_lengths,
                    scope=scope)

                with tf.variable_scope('attention') as scope:
                    sentence_level_output = task_specific_attention(
                        sentence_encoder_output,
                        self.sentence_output_size,
                        scope=scope)

                with tf.variable_scope('dropout'):
                    sentence_level_output = layers.dropout(
                        sentence_level_output,
                        keep_prob=self.dropout_keep_proba,
                        is_training=self.is_training,
                    )
            return sentence_level_output
Ejemplo n.º 5
0
 def _init_bidirectional_encoder(self):
     from model_components import bidirectional_rnn
     with tf.variable_scope("encoder") as scope:
         self.encoder_outputs, self.encoder_state = bidirectional_rnn(
             cell_fw=self.encoder_cell,
             cell_bw=self.encoder_cell,
             inputs_embedded=self.encoder_inputs_embedded,
             input_lengths=self.encoder_inputs_length,
             time_major=True,
         )
Ejemplo n.º 6
0
def HAN_model(input_x,input_ys, word_lengths, sentence_lengths, is_training, dropout_keep_prob, embedding_numpy):

    word_embeddings = tf.get_variable(
            name="word_embedding",
            dtype=tf.float32,
            shape=embedding_numpy.shape,
            initializer=tf.constant_initializer(embedding_numpy),
            trainable=False)
    input_x = tf.nn.embedding_lookup(word_embeddings, input_x)
    # shape: [n_batch,n_sent,n_word,embed_size]

    # ============================================= word_level AN ===============================================#
    word_level_inputs = tf.reshape(input_x, [-1, parameters.max_sentence_length, parameters.embedding_size]) #reshape to 3D

    #shape of word_lengths: 2D [n_batch, n_sent]
    word_level_lengths = tf.reshape(word_lengths, [-1])  # reshape to 1D

    with tf.variable_scope("word") as scope:
        word_fw_cell = BNLSTMCell(100, is_training)
        word_bw_cell = BNLSTMCell(100, is_training)
        word_encoder_output, _ = bidirectional_rnn(
            word_fw_cell, word_bw_cell,
            word_level_inputs, 
            word_level_lengths,
            scope=scope)

        with tf.variable_scope('attention') as scope:
              word_level_output = task_specific_attention(
                word_encoder_output,
                parameters.word_output_size,
                scope=scope)

        with tf.name_scope("dropout"):
            word_level_output = tf.nn.dropout(word_level_output, dropout_keep_prob)

      # shape of word_level_output: 2D [n_batch*n_sent, word_output_size]
# ============================================= sent_level HAN ===============================================#
    sentence_level_inputs = tf.reshape(word_level_output,
        [-1, parameters.max_document_length, parameters.word_output_size]) # reshape to 3D
    # sentence_lengths:n_batch
    with tf.variable_scope('sentence') as scope:
        sentence_fw_cell = BNLSTMCell(100, is_training)
        sentence_bw_cell = BNLSTMCell(100, is_training)
        sentence_encoder_output, _ = bidirectional_rnn(
          sentence_fw_cell, sentence_bw_cell,
          sentence_level_inputs, 
          sentence_lengths, 
          scope=scope) 

        with tf.variable_scope('attention') as scope:
          sentence_level_output = task_specific_attention(
            sentence_encoder_output, 
            parameters.sentence_output_size, 
            scope=scope) 

        patient_vector = sentence_level_output
        with tf.name_scope("dropout"):
            sentence_level_output = tf.nn.dropout(sentence_level_output, dropout_keep_prob)   # shape: n_batch * sentence_output_size


    total_loss = 0
    scores_soft_max_list = []
    for (M,input_y) in enumerate(input_ys):
        with tf.name_scope("task"+str(M)):

            W = tf.Variable(tf.truncated_normal([parameters.sentence_output_size, parameters.num_classes], stddev=0.1), name="W")
            b = tf.Variable(tf.constant(0.1, shape=[parameters.num_classes]), name="b")

            scores = tf.nn.xw_plus_b(sentence_level_output, W, b)
            # scores has shape: [n_batch, num_classes]
            scores_soft_max = tf.nn.softmax(scores)
            scores_soft_max_list.append(scores_soft_max)  # scores_soft_max_list shape:[multi_size, n_batch, num_classes]
            # predictions = tf.argmax(scores, axis=1, name="predictions")
            # predictions has shape: [None, ]. A shape of [x, ] means a vector of size x
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=scores, labels=input_y)
            # losses has shape: [None, ]
            # include target replication
            # total_loss += losses
            loss_avg = tf.reduce_mean(losses)
            total_loss += loss_avg
    # avg_loss = tf.reduce_mean(total_loss)
    # optimize function
    optimizer = tf.train.AdamOptimizer(learning_rate=parameters.learning_rate)
    optimize = optimizer.minimize(total_loss)
    scores_soft_max_list = tf.stack(scores_soft_max_list, axis=0)
    # correct_predictions = tf.equal(predictions, tf.argmax(input_y, 1))
    # accuracy = tf.reduce_sum(tf.cast(correct_predictions, "float"), name="accuracy")

    return optimize, scores_soft_max_list, patient_vector
Ejemplo n.º 7
0
    def __init__(self, sequence_length, num_classes, embedding_size,
                 filter_sizes, num_filters, num_hidden):

        # PLACEHOLDERS
        self.input_x = tf.placeholder(tf.float32,
                                      [None, sequence_length, embedding_size],
                                      name="input_x")  # X - The Data
        self.input_y = tf.placeholder(tf.float32, [None, num_classes],
                                      name="input_y")  # Y - The Lables
        self.dropout_keep_prob = tf.placeholder(
            tf.float32, name="dropout_keep_prob")  # Dropout
        self.h_drop_input = tf.nn.dropout(self.input_x, 0.8)
        self.training = tf.placeholder(tf.bool)
        print(self.h_drop_input)

        def length(sequence):
            used = tf.sign(tf.reduce_max(tf.abs(sequence), 2))
            length = tf.reduce_sum(used, 1)
            length = tf.cast(length, tf.int32)
            return length

        def batchnorm(Ylogits, is_test, offset, convolutional=True):
            #Y2l = tf.nn.conv2d(Y1, W2, strides=[1, stride, stride, 1], padding='SAME')
            #Y2bn, update_ema2 = batchnorm(Y2l, tst, iter, B2, convolutional=True)
            #Y2r = tf.nn.relu(Y2bn)
            exp_moving_avg = tf.train.ExponentialMovingAverage(
                0.999, 10000
            )  # adding the iteration prevents from averaging across non-existing iterations
            bnepsilon = 1e-5
            if convolutional:
                mean, variance = tf.nn.moments(Ylogits, [0, 1])
            else:
                mean, variance = tf.nn.moments(Ylogits, [0])
            update_moving_averages = exp_moving_avg.apply([mean, variance])
            m = tf.cond(is_test, lambda: exp_moving_avg.average(mean),
                        lambda: mean)
            v = tf.cond(is_test, lambda: exp_moving_avg.average(variance),
                        lambda: variance)
            Ybn = tf.nn.batch_normalization(Ylogits, m, v, offset, None,
                                            bnepsilon)
            return Ybn, update_moving_averages

        #l2_loss = tf.constant(0.0) # Keeping track of l2 regularization loss
        #1. EMBEDDING LAYER ################################################################
#        with tf.device('/cpu:0'), tf.name_scope("embedding"):
#            self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),name="W")
#            self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
#            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)

#2. CONVOLUTION LAYER + MAXPOOLING LAYER (per filter) ###############################
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # CONVOLUTION LAYER
                filter_shape = [filter_size, embedding_size, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1),
                                name="W")
                print(W)
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]),
                                name="b")
                conv = tf.nn.conv1d(self.h_drop_input,
                                    W,
                                    stride=1,
                                    padding="SAME",
                                    name="conv")
                print(conv)
                conv, _ = batchnorm(conv, self.training, b)
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                #h = batch_norm_layer(h,train_phase=self.training,scope_bn='bn')
                # MAXPOOLING
                #                pooled = tf.nn.max_pool(h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='SAME', name="pool")
                #                print(pooled)
                pooled_outputs.append(h)
        # COMBINING POOLED FEATURES
        h = tf.concat(pooled_outputs, 2)
        print(h)
        filter_shape = [3, 120, 128]
        W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1),
                        name="W2")
        b = tf.Variable(tf.constant(0.1, shape=[128]), name="b2")
        conv2 = tf.nn.conv1d(h, W, stride=1, padding="SAME", name="conv2")
        conv2, _ = batchnorm(conv2, self.training, b)
        y = tf.nn.relu(tf.nn.bias_add(conv2, b), name="relu")
        #y = batch_norm_layer(y,train_phase=self.training,scope_bn='bn')
        #3. DROPOUT LAYER ###################################################################
        with tf.name_scope("dropout_hid"):
            #self.h_drop = tf.layers.batch_normalization(self.h_pool)
            self.h_drop = tf.nn.dropout(y, self.dropout_keep_prob)
            print(self.h_drop)
        #4. LSTM LAYER ######################################################################

#        cell_fw = BNLSTMCell(num_hidden, self.training) #LSTMCell(hidden_size)
#        cell_bw = BNLSTMCell(num_hidden, self.training)
        cell_fw = BasicLSTMCell_LayerNorm(num_hidden)
        cell_bw = BasicLSTMCell_LayerNorm(num_hidden)
        val_, state = bidirectional_rnn(cell_fw,
                                        cell_bw,
                                        self.h_drop,
                                        input_lengths=length(self.input_x))
        #_, final_hidden = state
        val = tf.concat(val_, 2)
        print(val)
        self.semantic = tf.nn.dropout(val, self.dropout_keep_prob)
        #embed()
        #Attention layer
        with tf.variable_scope("self_attention"):
            self.val = task_specific_attention(self.semantic, num_hidden * 2)
            print(self.val)
#        with tf.name_scope('self_attention'):
#            val=Self_Attention(val,val,val,2,num_hidden/2)
#            print(val)
#        with tf.name_scope('Attention_layer'):
#            attention_output, alphas = attention(val, num_hidden, return_alphas=True)
#            tf.summary.histogram('alphas', alphas)

        denses = tf.layers.dense(inputs=tf.reshape(self.val,
                                                   shape=[-1, num_hidden * 2]),
                                 units=num_hidden,
                                 activation=tf.nn.relu,
                                 trainable=True)
        denses = tf.nn.dropout(denses, self.dropout_keep_prob)
        print(denses)
        #        val2 = tf.transpose(val, [1, 0, 2])
        #        last = tf.gather(val2, int(val2.get_shape()[0]) - 1)
        #        print(last)
        out_weight = tf.Variable(tf.random_normal([num_hidden, num_classes]))
        out_bias = tf.Variable(tf.random_normal([num_classes]))

        with tf.name_scope("output"):
            #lstm_final_output = val[-1]
            #embed()
            self.scores = tf.nn.xw_plus_b(denses,
                                          out_weight,
                                          out_bias,
                                          name="scores")
            self.predictions = tf.nn.softmax(self.scores, name="predictions")

        with tf.name_scope("loss"):
            self.losses = tf.nn.softmax_cross_entropy_with_logits(
                logits=self.scores, labels=self.input_y)
            self.loss = tf.reduce_mean(self.losses, name="loss")

        with tf.name_scope("accuracy"):
            self.correct_pred = tf.equal(tf.argmax(self.predictions, 1),
                                         tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(self.correct_pred, "float"),
                                           name="accuracy")

        print("(!) LOADED CNN-LSTM! :)")
        #embed()
        total_parameters = np.sum([
            np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()
        ])
        print("Total number of trainable parameters: %d" % total_parameters)
Ejemplo n.º 8
0
    def _init_body(self, scope):
        with tf.variable_scope(scope):
            # word layer
            word_level_inputs = tf.reshape(self.inputs_embedded, [
                self.document_size * self.sentence_size, self.word_size,
                self.embedding_size
            ])
            word_level_lengths = tf.reshape(
                self.word_lengths,
                [self.document_size * self.sentence_size
                 ])  # 2D(self.word_lengths) to 1D(word_level_lengths)

            with tf.variable_scope('word') as scope:
                # word_encoder_output[i] = [fw_outputs[i], bw_outputs[i]]
                # shape(word_encoder_output) : [self.document_size * self.sentence_size,
                #                 self.word_size,
                #                 rnnCell.output_size() * 2]
                word_encoder_output, _ = bidirectional_rnn(
                    self.word_cell, self.word_cell, word_level_inputs,
                    word_level_lengths, scope)

                with tf.variable_scope('attention') as scope:
                    word_level_output, penalization = word_attention(
                        word_encoder_output,
                        aspect_size=self.aspect_size,
                        scope=scope)
                    self.penalization = penalization

                with tf.variable_scope('dropout'):
                    word_level_output = layers.dropout(
                        word_level_output,
                        keep_prob=self.dropout_keep_proba,
                        is_training=self.is_training,
                    )

            # sentence layer
            sentence_level_inputs = tf.reshape(
                word_level_output,
                shape=[
                    self.document_size, self.sentence_size * self.aspect_size,
                    self.word_cell.output_size * 2
                ])

            with tf.variable_scope('sentence') as scope:
                # sentence_encoder_output[i] = [fw_outputs[i], bw_outputs[i]]
                # shape(sentence_encoder_output) : [self.document_size, self.sentence_size, self.aspect_size, sentence_cell.output_size() * 2]
                sentence_encoder_output, _ = bidirectional_rnn(
                    self.sentence_cell,
                    self.sentence_cell,
                    sentence_level_inputs,
                    scope=scope
                )  # shape(self.sentence_lengths) : self.document_size

                sentence_encoder_output = tf.reshape(
                    sentence_encoder_output,
                    shape=[
                        self.document_size, self.sentence_size,
                        self.aspect_size, self.sentence_cell.output_size * 2
                    ])

                with tf.variable_scope('attention') as scope:
                    # shape(sentence_level_output) : [self.document_size, aspect_size, sentence_cell.output_size() * 2]
                    sentence_level_output = sentence_attention(
                        sentence_encoder_output, scope=scope)

                with tf.variable_scope('dropout'):
                    sentence_level_output = layers.dropout(
                        sentence_level_output,
                        keep_prob=self.dropout_keep_proba,
                        is_training=self.is_training,
                    )

            # if self.aspect_size > 1:
            with tf.variable_scope('aspect') as scope:
                aspect_encoder_output, _ = bidirectional_rnn(
                    self.aspect_cell,
                    self.aspect_cell,
                    sentence_level_output,
                    scope=scope)

                with tf.variable_scope('attention') as scope:
                    # shape(aspect_level_output) : [self.document_size, aspect_cell.output_size() * 2]
                    aspect_level_output = aspect_attention(
                        aspect_encoder_output, scope=scope)

                with tf.variable_scope('dropout'):
                    aspect_level_output = layers.dropout(
                        aspect_level_output,
                        keep_prob=self.dropout_keep_proba,
                        is_training=self.is_training,
                    )
                output_for_classifier = aspect_level_output
            # else:
            #     output_for_classifier = sentence_level_output

            with tf.variable_scope('classifier'):
                self.logits = layers.fully_connected(output_for_classifier,
                                                     self.classes,
                                                     activation_fn=None)

                self.prediction = tf.argmax(self.logits, axis=-1)