Ejemplo n.º 1
0
#------------------------------------SETUP-------------------------------------------------------------
#set up the tensorflow backend in order to use gpu 
#only give 85% of gpu over otherwise it crashes
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.85
sess = tf.Session(config=config)
K.tensorflow_backend.set_session(tf.Session(config=config))
K.tensorflow_backend._get_available_gpus()

#source folder of ships
folder = "D:\Pickled_Data_2\\"

# create the MLP and CNN models
mlp_feat = mg.create_mlp(5, regress=False)
cnn = mg.create_cnn(508, 508, 1, filters=(16,32,64), regress=False)
mlp_dist = mg.create_mlp(6, regress=False) 

# create the input to our final set of layers as the *output* of both
# the MLP and CNN
combinedInput = concatenate([mlp_feat.output, cnn.output, mlp_dist.output])
 
# our final FC layer head will have two dense layers, the final one
# being our regression head
x = Dense(4, activation="relu")(combinedInput)

x_0 = Dense(4, activation="relu")(x)
x_100 = Dense(4, activation="relu")(x)
x_200 = Dense(4, activation="relu")(x)
Ejemplo n.º 2
0
#   


config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.85
sess = tf.Session(config=config)
K.tensorflow_backend.set_session(tf.Session(config=config))
K.tensorflow_backend._get_available_gpus()


folder = "D:\PickledData\\"


# create the MLP and CNN models
mlp = mg.create_mlp(3, regress=False)
cnn = mg.create_cnn(512, 512, 1, regress=False)
 
# create the input to our final set of layers as the *output* of both
# the MLP and CNN
combinedInput = concatenate([mlp.output, cnn.output])
 
# our final FC layer head will have two dense layers, the final one
# being our regression head
x = Dense(4, activation="relu")(combinedInput)
comb_output = (Dense(1,activation='linear', kernel_regularizer=regularizers.l1_l2(l1 = 0.001,l2 = 0.001)))(x)
 
# our final model will accept categorical/numerical data on the MLP
# input and images on the CNN input, outputting a single value 
model = Model(inputs=[mlp.input, cnn.input], outputs=comb_output)
adam =  optimizers.Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=0.0, amsgrad=False)
Ejemplo n.º 3
0
#
#        Ran for 70 Epochs:
#        loss: 21.6689 - mean_absolute_error: 323.2171 - val_loss: 5.3846 - val_mean_absolute_error: 80.1602
#

config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.per_process_gpu_memory_fraction = 0.85
sess = tf.Session(config=config)
K.tensorflow_backend.set_session(tf.Session(config=config))
K.tensorflow_backend._get_available_gpus()

folder = "D:\PickledData\\"

# create the MLP and CNN models
mlp = mg.create_mlp(5, regress=True)
# cnn = mg.create_cnn(512, 512, 1, regress=False)

# create the input to our final set of layers as the *output* of both
# the MLP and CNN
# combinedInput = concatenate([mlp.output, cnn.output])

# our final FC layer head will have two dense layers, the final one
# being our regression head
x = Dense(4, activation="relu")(mlp.output)
comb_output = (Dense(1,
                     activation='linear',
                     kernel_regularizer=regularizers.l1_l2(l1=0.001,
                                                           l2=0.001)))(x)

# our final model will accept categorical/numerical data on the MLP