Ejemplo n.º 1
0
def multi_worker_selfplay(hparams,
                          identity,
                          scope=None,
                          target_session='',
                          is_chief=True,
                          ps_tasks=0,
                          num_workers=1,
                          jobid=0,
                          startup_delay_steps=0):
    """This is the multi worker selfplay, mostly used for self play

  distributed training.
  identity is used.
  """
    immutable_model_reload_freq = hparams.immutable_model_reload_freq
    # 1. models and summary writer
    model_creator = diag_model.Model
    extra_args = model_helper.ExtraArgs(
        single_cell_fn=None,
        model_device_fn=tf.train.replica_device_setter(ps_tasks),
        attention_mechanism_fn=None)

    mutable_model = model_helper.create_selfplay_model(model_creator,
                                                       is_mutable=True,
                                                       num_workers=num_workers,
                                                       jobid=jobid,
                                                       hparams=hparams,
                                                       scope=scope,
                                                       extra_args=extra_args)
    immutable_hparams = copy.deepcopy(hparams)
    immutable_hparams.num_gpus = 0
    immutable_model = model_helper.create_selfplay_model(
        model_creator,
        is_mutable=False,
        num_workers=num_workers,
        jobid=jobid,
        hparams=immutable_hparams,
        scope=scope)

    if hparams.self_play_immutable_gpu:
        print('using GPU for immutable')
        immutable_sess = tf.Session(
            graph=immutable_model.graph,
            config=tf.ConfigProto(allow_soft_placement=True))
    else:
        print('not using GPU for immutable')
        immutable_sess = tf.Session(graph=immutable_model.graph,
                                    config=tf.ConfigProto(
                                        allow_soft_placement=True,
                                        device_count={'GPU': 0}))

    immutable_model, immutable_sess = load_self_play_model(
        immutable_model, immutable_sess, 'immutable',
        hparams.self_play_pretrain_dir, hparams.out_dir)
    global_step = immutable_model.model.global_step.eval(
        session=immutable_sess)

    if is_chief:
        ckpt = tf.train.latest_checkpoint(hparams.out_dir)
        if not ckpt:
            print('global_step, saving pretrain model to hparams.out_dir',
                  global_step, hparams.out_dir)
            immutable_model.model.saver.save(  # this is the prevent adam error
                immutable_sess,
                os.path.join(hparams.out_dir, 'dialogue.ckpt'),
                global_step=global_step)
            print('save finished')

    if is_chief:
        summary_writer_path = os.path.join(
            hparams.out_dir, identity + task_SP_DISTRIBUTED + '_log')
        summary_writer = tf.summary.FileWriter(summary_writer_path,
                                               mutable_model.graph)
        print('summary writer established at', summary_writer_path)
    else:
        summary_writer = None
    # 2. supervisor and sessions

    sv = tf.train.Supervisor(
        graph=mutable_model.graph,
        is_chief=is_chief,
        saver=mutable_model.model.saver,
        save_model_secs=0,  # disable automatic save checkpoints
        summary_op=None,
        logdir=hparams.out_dir,
        checkpoint_basename='dialogue.ckpt')

    mutable_config = utils.get_config_proto(
        log_device_placement=hparams.log_device_placement,
        allow_soft_placement=True)
    mutable_config.device_count['GPU'] = hparams.num_gpus

    mutable_sess = sv.prepare_or_wait_for_session(target_session,
                                                  config=mutable_config)

    # 3. additiona preparations
    global_step = mutable_model.model.global_step.eval(session=mutable_sess)
    while global_step < (jobid * (jobid + 1) * startup_delay_steps / 2):
        time.sleep(1)
        global_step = mutable_model.model.global_step.eval(
            session=mutable_sess)

    # save first model
    if is_chief:
        print('saveing the first checkpoint to', hparams.out_dir)
        mutable_model.model.saver.save(mutable_sess,
                                       os.path.join(hparams.out_dir,
                                                    'dialogue.ckpt'),
                                       global_step=global_step)
        last_save_step = global_step

    # Read data
    selfplay_data = dialogue_utils.load_data(hparams.self_play_train_data)
    selfplay_kb = dialogue_utils.load_data(hparams.self_play_train_kb)

    dialogue = SelfplayDialogue(mutable_model,
                                immutable_model,
                                mutable_sess,
                                immutable_sess,
                                hparams.max_dialogue_turns,
                                hparams.train_threadhold,
                                hparams.start_of_turn1,
                                hparams.start_of_turn2,
                                hparams.end_of_dialogue,
                                summary_writer=summary_writer,
                                dialogue_mode=task_SP_DISTRIBUTED,
                                hparams=hparams)

    # 4. main loop
    last_immmutable_model_reload = global_step
    last_save_step = global_step
    batch_size = dialogue.batch_size
    assert batch_size <= len(selfplay_data)

    # this is the start point of the self-play data. force shuffling at the beginning
    i = len(selfplay_data)
    train_stats = [0, 0]
    while global_step < hparams.num_self_play_train_steps:
        # a. reload immutable model, muttable will be automated managed by supervisor
        if immutable_model_reload_freq > 0 and global_step - last_immmutable_model_reload > immutable_model_reload_freq:
            immutable_model, immutable_sess = load_self_play_model(
                immutable_model, immutable_sess, 'immutable',
                hparams.self_play_pretrain_dir, hparams.out_dir)
            last_immmutable_model_reload = global_step
        # b. possiblely flip between speakers (or roll out models),
        # based on either a random policy or by step counts
        agent1, agent2, mutable_agent_index = dialogue.flip_agent(
            (mutable_model, mutable_sess, dialogue.mutable_handles),
            (immutable_model, immutable_sess, dialogue.immutable_handles))
        train_stats[mutable_agent_index] += 1
        # read selfplay data
        start_time = time.time()
        if i * batch_size + batch_size > len(selfplay_data):  # reacehd the end
            input_data = zip(selfplay_data, selfplay_kb)
            random.shuffle(input_data)  # random shuffle input data
            i = 0
            selfplay_data, selfplay_kb = zip(*input_data)

        start_ind, end_ind = i * batch_size, i * batch_size + batch_size
        batch_data, batch_kb = selfplay_data[start_ind:end_ind], selfplay_kb[
            start_ind:end_ind]
        train_example, _, _ = dialogue.talk(hparams.max_dialogue_len,
                                            batch_data, batch_kb, agent1,
                                            agent2, batch_size, global_step)
        possible_global_step = dialogue.maybe_train(train_example,
                                                    mutable_agent_index,
                                                    global_step,
                                                    force=True)
        if possible_global_step:
            global_step = possible_global_step
        if is_chief and global_step - last_save_step > hparams.self_play_dist_save_freq:
            mutable_model.model.saver.save(mutable_sess,
                                           os.path.join(
                                               hparams.out_dir,
                                               'dialogue.ckpt'),
                                           global_step=global_step)
            last_save_step = global_step
        end_time = time.time()

        if is_chief:
            utils.add_summary(summary_writer, global_step,
                              task_SP_DISTRIBUTED + '_' + 'time',
                              end_time - start_time)
            utils.add_summary(summary_writer, global_step,
                              task_SP_DISTRIBUTED + '_' + 'train_ratio',
                              train_stats[0] * 1.0 / (train_stats[1] + 0.1))
        i += 1

    if is_chief:
        summary_writer.close()

    mutable_sess.close()
    immutable_sess.close()
Ejemplo n.º 2
0
def self_play_eval_fn(hparams,
                      identity,
                      num_workers=1,
                      jobid=0,
                      scope=None,
                      target_session=''):
    """This is the single worker self play.

  Mostly used for self play
  evaluation. identity is used here to distinguish between workers.
  """
    model_creator = diag_model.Model

    mutable_model = model_helper.create_selfplay_model(
        model_creator,
        True,  # mutable is True
        num_workers,
        jobid,
        hparams=hparams,
        scope=scope)
    immutable_model = model_helper.create_selfplay_model(
        model_creator,
        False,  # mutable is False
        num_workers,
        jobid,
        hparams=hparams,
        scope=scope)

    mutable_sess = tf.Session(graph=mutable_model.graph,
                              config=tf.ConfigProto(
                                  allow_soft_placement=True,
                                  device_count={'GPU': hparams.num_gpus}))
    immutable_sess = tf.Session(graph=immutable_model.graph,
                                config=tf.ConfigProto(
                                    allow_soft_placement=True,
                                    device_count={'GPU': hparams.num_gpus}))

    # number of steps per external eval
    steps_per_external_eval = 10
    # force conducting a self play at the beginning
    last_external_eval_step = -1 * steps_per_external_eval
    print('hparams.self_play_pretrain_dir=', hparams.self_play_pretrain_dir)
    print('steps_per_external_eval=', steps_per_external_eval)

    writer_path = os.path.join(hparams.out_dir,
                               identity + hparams.task_type + '_log')
    summary_writer = tf.summary.FileWriter(writer_path, mutable_sess.graph)
    print('summary_writer estabilished at', writer_path)

    # waiting for checkpoints and loop forever
    latest_ckpt = None
    while True:
        latest_ckpt = tf.contrib.training.wait_for_new_checkpoint(
            hparams.out_dir, latest_ckpt)
        print('got checkpoint', latest_ckpt)
        # get the global_step variable first
        with mutable_model.graph.as_default():
            # first initialize to avoid encountering missing component for adam optimizer
            _, global_step = model_helper.create_or_load_model(
                mutable_model.model, hparams.out_dir, mutable_sess,
                hparams.task_type)
        # valid evaluation step
        if (not hparams.eval_forever) or (global_step - last_external_eval_step
                                          >= steps_per_external_eval):
            # if eval_forever is disabled, we will do one selfplay evalation
            # otherwise, we will wait until certain number of timesteps are elapsed.
            last_external_eval_step = global_step
            print('do single worker evaluation')
            single_worker_selfplay(mutable_model, immutable_model,
                                   mutable_sess, immutable_sess,
                                   hparams.self_play_eval_data,
                                   hparams.self_play_eval_kb, global_step,
                                   hparams, summary_writer)
        else:
            print('Wait until steps_per_external_eval is reached.',
                  global_step, last_external_eval_step,
                  steps_per_external_eval)
        if not hparams.eval_forever:
            break  # if eval_foever is disabled, we only evaluate once

    mutable_sess.close()
    immutable_sess.close()