Ejemplo n.º 1
0
def evaluate():
    """Eval CIFAR-10 for a number of steps."""
    with tf.Graph().as_default() as g:
        # Get images and labels for CIFAR-10.
        eval_data = FLAGS.eval_data == 'test'
        images, labels = cifar10.inputs(eval_data=eval_data)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate predictions.
        top_k_op = tf.nn.in_top_k(logits, labels, 1)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            cifar10.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        summary_writer = tf.summary.FileWriter(FLAGS.eval_dir, g)

        while True:
            eval_once(saver, summary_writer, top_k_op, summary_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
Ejemplo n.º 2
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = contrib_framework.get_or_create_global_step()

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        # Parse pruning hyperparameters
        pruning_hparams = pruning.get_pruning_hparams().parse(
            FLAGS.pruning_hparams)

        # Create a pruning object using the pruning hyperparameters
        pruning_obj = pruning.Pruning(pruning_hparams, global_step=global_step)

        # Use the pruning_obj to add ops to the training graph to update the masks
        # The conditional_mask_update_op will update the masks only when the
        # training step is in [begin_pruning_step, end_pruning_step] specified in
        # the pruning spec proto
        mask_update_op = pruning_obj.conditional_mask_update_op()

        # Use the pruning_obj to add summaries to the graph to track the sparsity
        # of each of the layers
        pruning_obj.add_pruning_summaries()

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1

            def before_run(self, run_context):
                self._step += 1
                self._start_time = time.time()
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                duration = time.time() - self._start_time
                loss_value = run_values.results
                if self._step % 10 == 0:
                    num_examples_per_step = 128
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str %
                          (datetime.datetime.now(), self._step, loss_value,
                           examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
                # Update the masks
                mon_sess.run(mask_update_op)