Ejemplo n.º 1
0
def build_training_model(config):
    # set device
    device_opt = caffe2_pb2.DeviceOption()
    if config['gpu_id'] is not None:
        device_opt.device_type = caffe2_pb2.CUDA
        device_opt.cuda_gpu_id = config['gpu_id']

    # build model
    with core.DeviceScope(device_opt):
        training_model = model_helper.ModelHelper(
            name = '{}_training_model'.format(config['name']),
        )
        data, label = add_input(training_model, config, is_test=False)
        softmax = add_model(training_model, data, config)
        softmax_loss = add_softmax_loss(training_model, softmax, label)
        add_training_operators(training_model, config, softmax_loss)
        acc, acc5 = add_accuracy(training_model, softmax, label)

    # init workspace for training net
    workspace.RunNetOnce(training_model.param_init_net)

    # if in finetune mode, we need to load pretrained weights and bias
    if config['finetune']:
        load_init_net(config['network']['init_net'], device_opt)

    workspace.CreateNet(training_model.net)
    return training_model
Ejemplo n.º 2
0
def build_validation_model(config):
    # set device
    device_opt = caffe2_pb2.DeviceOption()
    if config['gpu_id'] is not None:
        device_opt.device_type = caffe2_pb2.CUDA
        device_opt.cuda_gpu_id = config['gpu_id']

    # build model
    with core.DeviceScope(device_opt):
        validation_model = model_helper.ModelHelper(
            name='{}_validation_model'.format(config['name']),
            init_params=False,
        )
        data, label = add_input(validation_model, config, is_test=True)
        pred = add_model_all(validation_model, config, data, is_test=True)
        add_softmax_loss(validation_model, pred, label)
        add_accuracy(validation_model)

    # init workspace for validation net
    workspace.RunNetOnce(validation_model.param_init_net)
    workspace.CreateNet(validation_model.net)
    return validation_model
Ejemplo n.º 3
0
    def create_target_model_ops(model, loss_scale):
        initializer = (PseudoFP16Initializer if args.dtype == 'float16'
                       else Initializer)
        with brew.arg_scope([brew.conv, brew.fc],
                            WeightInitializer=initializer,
                            BiasInitializer=initializer,
                            enable_tensor_core=args.enable_tensor_core,
                            float16_compute=args.float16_compute):
            pred = add_se_model(model, model_config, "data", is_test=False)

        if args.dtype == 'float16':
            pred = model.net.HalfToFloat(pred, pred + '_fp32')

        loss = add_softmax_loss(model, pred, 'label')
        brew.accuracy(model, ['softmax', 'label'], 'accuracy')
        return [loss]