Ejemplo n.º 1
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--bert_config_file",
        default=None,
        type=str,
        required=True,
        help="The config json file corresponding to the pre-trained BERT model. "
        "This specifies the model architecture.")
    parser.add_argument(
        "--vocab_file",
        default=None,
        type=str,
        required=True,
        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model checkpoints will be written."
    )

    ## Other parameters
    parser.add_argument("--train_file",
                        default=None,
                        type=str,
                        help="SQuAD json for training. E.g., train-v1.1.json")
    parser.add_argument(
        "--predict_file",
        default=None,
        type=str,
        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json"
    )
    parser.add_argument(
        "--init_checkpoint",
        default=None,
        type=str,
        help="Initial checkpoint (usually from a pre-trained BERT model).")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help="Whether to lower case the input text. Should be True for uncased "
        "models and False for cased models.")
    parser.add_argument(
        "--max_seq_length",
        default=384,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=8,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--iterations_per_loop",
                        default=1000,
                        type=int,
                        help="How many steps to make in each estimator call.")
    parser.add_argument(
        "--n_best_size",
        default=20,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--accumulate_gradients",
        type=int,
        default=1,
        help=
        "Number of steps to accumulate gradient on (divide the batch_size and accumulate)"
    )
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument(
        '--optimize_on_cpu',
        default=False,
        action='store_true',
        help=
        "Whether to perform optimization and keep the optimizer averages on CPU"
    )
    parser.add_argument(
        '--fp16',
        default=False,
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=128,
        help=
        'Loss scaling, positive power of 2 values can improve fp16 convergence.'
    )

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
        if args.fp16:
            logger.info(
                "16-bits training currently not supported in distributed training"
            )
            args.fp16 = False  # (see https://github.com/pytorch/pytorch/pull/13496)
    logger.info(
        "device: {} n_gpu: {}, distributed training: {}, 16-bits trainiing: {}"
        .format(device, n_gpu, bool(args.local_rank != -1), args.fp16))

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            "Invalid gradient_accumulation_steps parameter: {}, should be >= 1"
            .format(args.gradient_accumulation_steps))

    args.train_batch_size = int(args.train_batch_size /
                                args.gradient_accumulation_steps)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    if args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        raise ValueError(
            "Output directory () already exists and is not empty.")
    os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    if args.do_train:
        train_examples = read_squad_examples(input_file=args.train_file,
                                             is_training=True)
        num_train_steps = int(
            len(train_examples) / args.train_batch_size /
            args.gradient_accumulation_steps * args.num_train_epochs)

    # Prepare model
    model = BertForQuestionAnswering(bert_config)
    if args.init_checkpoint is not None:
        model.bert.load_state_dict(
            torch.load(args.init_checkpoint, map_location='cpu'))
    if args.fp16:
        model.half()
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Prepare optimizer
    if args.fp16:
        param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \
                            for n, param in model.named_parameters()]
    elif args.optimize_on_cpu:
        param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \
                            for n, param in model.named_parameters()]
    else:
        param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'gamma', 'beta']
    optimizer_grouped_parameters = [{
        'params': [p for n, p in param_optimizer if n not in no_decay],
        'weight_decay_rate':
        0.01
    }, {
        'params': [p for n, p in param_optimizer if n in no_decay],
        'weight_decay_rate':
        0.0
    }]
    optimizer = BERTAdam(optimizer_grouped_parameters,
                         lr=args.learning_rate,
                         warmup=args.warmup_proportion,
                         t_total=num_train_steps)

    global_step = 0
    if args.do_train:
        train_features = convert_examples_to_features(
            examples=train_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=True)
        logger.info("***** Running training *****")
        logger.info("  Num orig examples = %d", len(train_examples))
        logger.info("  Num split examples = %d", len(train_features))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Num steps = %d", num_train_steps)

        all_input_ids = torch.tensor([f.input_ids for f in train_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in train_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in train_features],
                                       dtype=torch.long)
        all_start_positions = torch.tensor(
            [f.start_position for f in train_features], dtype=torch.long)
        all_end_positions = torch.tensor(
            [f.end_position for f in train_features], dtype=torch.long)

        train_data = TensorDataset(all_input_ids, all_input_mask,
                                   all_segment_ids, all_start_positions,
                                   all_end_positions)
        if args.local_rank == -1:
            train_sampler = RandomSampler(train_data)
        else:
            train_sampler = DistributedSampler(train_data)
        train_dataloader = DataLoader(train_data,
                                      sampler=train_sampler,
                                      batch_size=args.train_batch_size)

        eval_examples = read_squad_examples(input_file=args.predict_file,
                                            is_training=False)
        eval_features = convert_examples_to_features(
            examples=eval_examples,
            tokenizer=tokenizer,
            max_seq_length=args.max_seq_length,
            doc_stride=args.doc_stride,
            max_query_length=args.max_query_length,
            is_training=False)

        all_input_ids = torch.tensor([f.input_ids for f in eval_features],
                                     dtype=torch.long)
        all_input_mask = torch.tensor([f.input_mask for f in eval_features],
                                      dtype=torch.long)
        all_segment_ids = torch.tensor([f.segment_ids for f in eval_features],
                                       dtype=torch.long)
        all_example_index = torch.arange(all_input_ids.size(0),
                                         dtype=torch.long)

        eval_data = TensorDataset(all_input_ids, all_input_mask,
                                  all_segment_ids, all_example_index)
        if args.local_rank == -1:
            eval_sampler = SequentialSampler(eval_data)
        else:
            eval_sampler = DistributedSampler(eval_data)
        eval_dataloader = DataLoader(eval_data,
                                     sampler=eval_sampler,
                                     batch_size=args.predict_batch_size)

        model.train()
        global_step = 0
        for t_epoch in trange(int(args.num_train_epochs), desc="Epoch"):
            for step, batch in enumerate(
                    tqdm(train_dataloader, desc="Iteration")):
                global_step += 1
                if n_gpu == 1:
                    batch = tuple(
                        t.to(device)
                        for t in batch)  # multi-gpu does scattering it-self
                input_ids, input_mask, segment_ids, start_positions, end_positions = batch
                loss = model(input_ids, segment_ids, input_mask,
                             start_positions, end_positions)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.fp16 and args.loss_scale != 1.0:
                    # rescale loss for fp16 training
                    # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
                    loss = loss * args.loss_scale
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16 or args.optimize_on_cpu:
                        if args.fp16 and args.loss_scale != 1.0:
                            # scale down gradients for fp16 training
                            for param in model.parameters():
                                param.grad.data = param.grad.data / args.loss_scale
                        is_nan = set_optimizer_params_grad(
                            param_optimizer,
                            model.named_parameters(),
                            test_nan=True)
                        if is_nan:
                            logger.info(
                                "FP16 TRAINING: Nan in gradients, reducing loss scaling"
                            )
                            args.loss_scale = args.loss_scale / 2
                            model.zero_grad()
                            continue
                        optimizer.step()
                        copy_optimizer_params_to_model(
                            model.named_parameters(), param_optimizer)
                    else:
                        optimizer.step()
                    model.zero_grad()
                    global_step += 1

                if args.do_predict and global_step % args.save_checkpoints_steps == 0:
                    logger.info("***** Running predictions *****")
                    logger.info("  Num orig examples = %d", len(eval_examples))
                    logger.info("  Num split examples = %d",
                                len(eval_features))
                    logger.info("  Batch size = %d", args.predict_batch_size)

                    model.eval()
                    all_results = []
                    logger.info("Start evaluating")
                    for input_ids, input_mask, segment_ids, example_indices in tqdm(
                            eval_dataloader, desc="Evaluating"):
                        input_ids = input_ids.to(device)
                        input_mask = input_mask.to(device)
                        segment_ids = segment_ids.to(device)
                        with torch.no_grad():
                            batch_start_logits, batch_end_logits = model(
                                input_ids, segment_ids, input_mask)
                        for i, example_index in enumerate(example_indices):
                            start_logits = batch_start_logits[i].detach().cpu(
                            ).tolist()
                            end_logits = batch_end_logits[i].detach().cpu(
                            ).tolist()
                            eval_feature = eval_features[example_index.item()]
                            unique_id = int(eval_feature.unique_id)
                            all_results.append(
                                RawResult(unique_id=unique_id,
                                          start_logits=start_logits,
                                          end_logits=end_logits))
                    output_prediction_file = os.path.join(
                        args.output_dir,
                        "predictions_{}_{}.json".format(t_epoch, global_step))
                    output_nbest_file = os.path.join(
                        args.output_dir, "nbest_predictions_{}_{}.json".format(
                            t_epoch, global_step))
                    write_predictions(eval_examples, eval_features,
                                      all_results, args.n_best_size,
                                      args.max_answer_length,
                                      args.do_lower_case,
                                      output_prediction_file,
                                      output_nbest_file, args.verbose_logging)
                    torch.save(
                        model.state_dict(),
                        os.path.join(args.output_dir,
                                     'model' + global_step + '.pt'))
                    model.train()
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser()
    BERT_DIR = "./model/uncased_L-12_H-768_A-12/"
    ## Required parameters
    parser.add_argument("--bert_config_file", default=BERT_DIR+"bert_config.json", \
                        type=str, help="The config json file corresponding to the pre-trained BERT model. "
                             "This specifies the model architecture.")
    parser.add_argument("--vocab_file", default=BERT_DIR+"vocab.txt", type=str, \
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir", default="out", type=str, \
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--train_file", type=str, \
                        help="SQuAD json for training. E.g., train-v1.1.json", \
                        default="")
    parser.add_argument("--predict_file", type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json", \
                        default="")
    parser.add_argument("--init_checkpoint", type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).", \
                        default=BERT_DIR+"pytorch_model.bin")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help="Whether to lower case the input text. Should be True for uncased "
        "models and False for cased models.")
    parser.add_argument(
        "--max_seq_length",
        default=300,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=32,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=128,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=10.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--iterations_per_loop",
                        default=1000,
                        type=int,
                        help="How many steps to make in each estimator call.")
    parser.add_argument(
        "--n_best_size",
        default=3,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--max_answer_length",
        default=30,
        type=int,
        help=
        "The maximum length of an answer that can be generated. This is needed because the start "
        "and end predictions are not conditioned on one another.")

    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--accumulate_gradients",
        type=int,
        default=1,
        help=
        "Number of steps to accumulate gradient on (divide the batch_size and accumulate)"
    )
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument('--eval_period', type=int, default=2000)

    parser.add_argument('--max_n_answers', type=int, default=5)
    parser.add_argument('--merge_query', type=int, default=-1)
    parser.add_argument('--reduce_layers', type=int, default=-1)
    parser.add_argument('--reduce_layers_to_tune', type=int, default=-1)

    parser.add_argument('--only_comp', action="store_true", default=False)

    parser.add_argument('--train_subqueries_file', type=str, default="")  #500
    parser.add_argument('--predict_subqueries_file', type=str,
                        default="")  #500
    parser.add_argument('--prefix', type=str, default="")  #500

    parser.add_argument('--model', type=str, default="qa")  #500
    parser.add_argument('--pooling', type=str, default="max")
    parser.add_argument('--debug', action="store_true", default=False)
    parser.add_argument('--output_dropout_prob', type=float, default=0)
    parser.add_argument('--wait_step', type=int, default=30)
    parser.add_argument('--with_key', action="store_true", default=False)
    parser.add_argument('--add_noise', action="store_true", default=False)

    args = parser.parse_args()

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.accumulate_gradients < 1:
        raise ValueError(
            "Invalid accumulate_gradients parameter: {}, should be >= 1".
            format(args.accumulate_gradients))

    args.train_batch_size = int(args.train_batch_size /
                                args.accumulate_gradients)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
        if not args.predict_file:
            raise ValueError(
                "If `do_train` is True, then `predict_file` must be specified."
            )

    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    if args.do_train and args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        logger.info("Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir, exist_ok=True)

    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None

    eval_dataloader, eval_examples, eval_features, _ = get_dataloader(
        logger=logger,
        args=args,
        input_file=args.predict_file,
        subqueries_file=args.predict_subqueries_file,
        is_training=False,
        batch_size=args.predict_batch_size,
        num_epochs=1,
        tokenizer=tokenizer)
    if args.do_train:
        train_dataloader, train_examples, _, num_train_steps = get_dataloader(
                logger=logger, args=args, \
                input_file=args.train_file, \
                subqueries_file=args.train_subqueries_file, \
                is_training=True,
                batch_size=args.train_batch_size,
                num_epochs=args.num_train_epochs,
                tokenizer=tokenizer)

    #a = input()
    if args.model == 'qa':
        model = BertForQuestionAnswering(bert_config, 4)
        metric_name = "F1"
    elif args.model == 'classifier':
        if args.reduce_layers != -1:
            bert_config.num_hidden_layers = args.reduce_layers
        model = BertClassifier(bert_config, 2, args.pooling)
        metric_name = "F1"
    elif args.model == "span-predictor":
        if args.reduce_layers != -1:
            bert_config.num_hidden_layers = args.reduce_layers
        if args.with_key:
            Model = BertForQuestionAnsweringWithKeyword
        else:
            Model = BertForQuestionAnswering
        model = Model(bert_config, 2)
        metric_name = "Accuracy"
    else:
        raise NotImplementedError()

    if args.init_checkpoint is not None and args.do_predict and \
                len(args.init_checkpoint.split(','))>1:
        assert args.model == "qa"
        model = [model]
        for i, checkpoint in enumerate(args.init_checkpoint.split(',')):
            if i > 0:
                model.append(BertForQuestionAnswering(bert_config, 4))
            print("Loading from", checkpoint)
            state_dict = torch.load(checkpoint, map_location='cpu')
            filter = lambda x: x[7:] if x.startswith('module.') else x
            state_dict = {filter(k): v for (k, v) in state_dict.items()}
            model[-1].load_state_dict(state_dict)
            model[-1].to(device)

    else:
        if args.init_checkpoint is not None:
            print("Loading from", args.init_checkpoint)
            state_dict = torch.load(args.init_checkpoint, map_location='cpu')
            if args.reduce_layers != -1:
                state_dict = {k:v for k, v in state_dict.items() \
                    if not '.'.join(k.split('.')[:3]) in \
                    ['encoder.layer.{}'.format(i) for i in range(args.reduce_layers, 12)]}
            if args.do_predict:
                filter = lambda x: x[7:] if x.startswith('module.') else x
                state_dict = {filter(k): v for (k, v) in state_dict.items()}
                model.load_state_dict(state_dict)
            else:
                model.bert.load_state_dict(state_dict)
                if args.reduce_layers_to_tune != -1:
                    model.bert.embeddings.required_grad = False
                    n_layers = 12 if args.reduce_layers == -1 else args.reduce_layers
                    for i in range(n_layers - args.reduce_layers_to_tune):
                        model.bert.encoder.layer[i].require_grad = False

        model.to(device)

        if args.local_rank != -1:
            model = torch.nn.parallel.DistributedDataParallel(
                model,
                device_ids=[args.local_rank],
                output_device=args.local_rank)
        elif n_gpu > 1:
            model = torch.nn.DataParallel(model)

    if args.do_train:
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_parameters = [{
            'params':
            [p for n, p in model.named_parameters() if n not in no_decay],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in model.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]

        optimizer = BERTAdam(optimizer_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

        global_step = 0

        best_f1 = 0
        wait_step = 0
        model.train()
        global_step = 0
        stop_training = False

        for epoch in range(int(args.num_train_epochs)):
            for step, batch in tqdm(enumerate(train_dataloader)):
                global_step += 1
                batch = [t.to(device) for t in batch]
                loss = model(batch, global_step)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                loss.backward()
                if global_step % args.gradient_accumulation_steps == 0:
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                if global_step % args.eval_period == 0:
                    model.eval()
                    f1 =  predict(args, model, eval_dataloader, eval_examples, eval_features, \
                                  device, write_prediction=False)
                    logger.info("%s: %.3f on epoch=%d" %
                                (metric_name, f1 * 100.0, epoch))
                    if best_f1 < f1:
                        logger.info("Saving model with best %s: %.3f -> %.3f on epoch=%d" % \
                                (metric_name, best_f1*100.0, f1*100.0, epoch))
                        model_state_dict = {
                            k: v.cpu()
                            for (k, v) in model.state_dict().items()
                        }
                        torch.save(
                            model_state_dict,
                            os.path.join(args.output_dir, "best-model.pt"))
                        model = model.cuda()
                        best_f1 = f1
                        wait_step = 0
                        stop_training = False
                    else:
                        wait_step += 1
                        if best_f1 > 0.1 and wait_step == args.wait_step:
                            stop_training = True
                    model.train()
            if stop_training:
                break

    elif args.do_predict:
        if type(model) == list:
            model = [m.eval() for m in model]
        else:
            model.eval()
        f1 = predict(args, model, eval_dataloader, eval_examples,
                     eval_features, device)
        logger.info("Final %s score: %.3f%%" % (metric_name, f1 * 100.0))
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()
    BERT_DIR = "uncased_L-12_H-768_A-12/"
    ## Required parameters
    parser.add_argument("--bert_config_file", default=BERT_DIR+"bert_config.json", \
                        type=str, help="The config json file corresponding to the pre-trained BERT model. "
                             "This specifies the model architecture.")
    parser.add_argument("--vocab_file", default=BERT_DIR+"vocab.txt", type=str, \
                        help="The vocabulary file that the BERT model was trained on.")
    parser.add_argument("--output_dir", default="out", type=str, \
                        help="The output directory where the model checkpoints will be written.")

    ## Other parameters
    parser.add_argument("--load", default=False, action='store_true')
    parser.add_argument("--train_file", type=str, \
                        help="SQuAD json for training. E.g., train-v1.1.json", \
                        default="/home/sewon/data/squad/train-v1.1.json")
    parser.add_argument("--predict_file", type=str,
                        help="SQuAD json for predictions. E.g., dev-v1.1.json or test-v1.1.json", \
                        default="/home/sewon/data/squad/dev-v1.1.json")
    parser.add_argument("--init_checkpoint", type=str,
                        help="Initial checkpoint (usually from a pre-trained BERT model).", \
                        default=BERT_DIR+"pytorch_model.bin")
    parser.add_argument(
        "--do_lower_case",
        default=True,
        action='store_true',
        help="Whether to lower case the input text. Should be True for uncased "
        "models and False for cased models.")
    parser.add_argument(
        "--max_seq_length",
        default=300,
        type=int,
        help=
        "The maximum total input sequence length after WordPiece tokenization. Sequences "
        "longer than this will be truncated, and sequences shorter than this will be padded."
    )
    parser.add_argument(
        "--doc_stride",
        default=128,
        type=int,
        help=
        "When splitting up a long document into chunks, how much stride to take between chunks."
    )
    parser.add_argument(
        "--max_query_length",
        default=64,
        type=int,
        help=
        "The maximum number of tokens for the question. Questions longer than this will "
        "be truncated to this length.")
    parser.add_argument("--do_train",
                        default=False,
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_predict",
                        default=False,
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--train_batch_size",
                        default=39,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--predict_batch_size",
                        default=300,
                        type=int,
                        help="Total batch size for predictions.")
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_train_epochs",
                        default=1000.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% "
        "of training.")
    parser.add_argument("--save_checkpoints_steps",
                        default=1000,
                        type=int,
                        help="How often to save the model checkpoint.")
    parser.add_argument("--iterations_per_loop",
                        default=1000,
                        type=int,
                        help="How many steps to make in each estimator call.")
    parser.add_argument(
        "--n_best_size",
        default=3,
        type=int,
        help=
        "The total number of n-best predictions to generate in the nbest_predictions.json "
        "output file.")
    parser.add_argument(
        "--verbose_logging",
        default=False,
        action='store_true',
        help=
        "If true, all of the warnings related to data processing will be printed. "
        "A number of warnings are expected for a normal SQuAD evaluation.")
    parser.add_argument("--no_cuda",
                        default=False,
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument(
        "--accumulate_gradients",
        type=int,
        default=1,
        help=
        "Number of steps to accumulate gradient on (divide the batch_size and accumulate)"
    )
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumualte before performing a backward/update pass."
    )
    parser.add_argument('--eval_period', type=int, default=500)
    parser.add_argument('--max_n_answers', type=int, default=20)
    parser.add_argument('--n_paragraphs', type=str, default='40')
    parser.add_argument('--verbose', action="store_true", default=False)
    parser.add_argument('--wait_step', type=int, default=12)

    # Learning method variation
    parser.add_argument('--loss_type', type=str, default="mml")
    parser.add_argument('--tau', type=float, default=12000.0)

    # For evaluation
    parser.add_argument('--prefix', type=str, default="")  #500
    parser.add_argument('--debug', action="store_true", default=False)

    args = parser.parse_args()

    if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
        print("Output directory () already exists and is not empty.")
    if not os.path.exists(args.output_dir):
        os.makedirs(args.output_dir, exist_ok=True)

    logging.basicConfig(
        format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
        datefmt='%m/%d/%Y %H:%M:%S',
        level=logging.INFO,
        handlers=[
            logging.FileHandler(os.path.join(args.output_dir, "log.txt")),
            logging.StreamHandler()
        ])
    logger = logging.getLogger(__name__)
    logger.info(args)

    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        n_gpu = torch.cuda.device_count()
    else:
        device = torch.device("cuda", args.local_rank)
        n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info("device %s n_gpu %d distributed training %r", device, n_gpu,
                bool(args.local_rank != -1))

    if args.accumulate_gradients < 1:
        raise ValueError(
            "Invalid accumulate_gradients parameter: {}, should be >= 1".
            format(args.accumulate_gradients))

    args.train_batch_size = int(args.train_batch_size /
                                args.accumulate_gradients)

    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)
    if n_gpu > 0:
        torch.cuda.manual_seed_all(args.seed)

    if not args.do_train and not args.do_predict:
        raise ValueError(
            "At least one of `do_train` or `do_predict` must be True.")

    if args.do_train:
        if not args.train_file:
            raise ValueError(
                "If `do_train` is True, then `train_file` must be specified.")
        if not args.predict_file:
            raise ValueError(
                "If `do_train` is True, then `predict_file` must be specified."
            )

    if args.do_predict:
        if not args.predict_file:
            raise ValueError(
                "If `do_predict` is True, then `predict_file` must be specified."
            )

    bert_config = BertConfig.from_json_file(args.bert_config_file)

    if args.do_train and args.max_seq_length > bert_config.max_position_embeddings:
        raise ValueError(
            "Cannot use sequence length %d because the BERT model "
            "was only trained up to sequence length %d" %
            (args.max_seq_length, bert_config.max_position_embeddings))

    model = BertForQuestionAnswering(bert_config,
                                     device,
                                     4,
                                     loss_type=args.loss_type,
                                     tau=args.tau)
    metric_name = "EM"

    tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file,
                                           do_lower_case=args.do_lower_case)

    train_examples = None
    num_train_steps = None
    train_split = ',' in args.train_file
    if train_split:
        n_train_files = len(args.train_file.split(','))

    eval_dataloader, eval_examples, eval_features, _ = get_dataloader(
        logger=logger,
        args=args,
        input_file=args.predict_file,
        is_training=False,
        batch_size=args.predict_batch_size,
        num_epochs=1,
        tokenizer=tokenizer)

    if args.do_train:
        train_file = args.train_file
        if train_split:
            train_file = args.train_file.split(',')[0]
        train_dataloader, _, _, num_train_steps = get_dataloader(
                logger=logger, args=args, \
                input_file=train_file, \
                is_training=True,
                batch_size=args.train_batch_size,
                num_epochs=args.num_train_epochs,
                tokenizer=tokenizer)

    if args.init_checkpoint is not None:
        logger.info("Loading from {}".format(args.init_checkpoint))
        state_dict = torch.load(args.init_checkpoint, map_location='cpu')
        if args.do_train and args.init_checkpoint.endswith(
                'pytorch_model.bin'):
            model.bert.load_state_dict(state_dict)
        else:
            filter = lambda x: x[7:] if x.startswith('module.') else x
            state_dict = {filter(k): v for (k, v) in state_dict.items()}
            model.load_state_dict(state_dict)
    model.to(device)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    elif n_gpu > 1:
        model = torch.nn.DataParallel(model)

    if args.do_train:
        no_decay = ['bias', 'gamma', 'beta']
        optimizer_parameters = [{
            'params':
            [p for n, p in model.named_parameters() if n not in no_decay],
            'weight_decay_rate':
            0.01
        }, {
            'params':
            [p for n, p in model.named_parameters() if n in no_decay],
            'weight_decay_rate':
            0.0
        }]

        optimizer = BERTAdam(optimizer_parameters,
                             lr=args.learning_rate,
                             warmup=args.warmup_proportion,
                             t_total=num_train_steps)

        global_step = 0

        best_f1 = (-1, -1)
        wait_step = 0
        model.train()
        global_step = 0
        stop_training = False
        train_losses = []

        for epoch in range(int(args.num_train_epochs)):
            if epoch > 0 and train_split:
                train_file = args.train_file.split(',')[epoch % n_train_files]
                train_dataloader = get_dataloader(
                        logger=logger, args=args, \
                        input_file=train_file, \
                        is_training=True,
                        batch_size=args.train_batch_size,
                        num_epochs=args.num_train_epochs,
                        tokenizer=tokenizer)[0]

            for step, batch in enumerate(train_dataloader):
                global_step += 1
                batch = [t.to(device) for t in batch]
                loss = model(batch, global_step)
                if n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                train_losses.append(loss.detach().cpu())
                loss.backward()
                if global_step % args.gradient_accumulation_steps == 0:
                    optimizer.step()  # We have accumulated enought gradients
                    model.zero_grad()
                if global_step % args.eval_period == 0:
                    model.eval()
                    f1 =  predict(logger, args, model, eval_dataloader, eval_examples, eval_features, \
                                  device, write_prediction=False)
                    logger.info(
                        "Step %d Train loss %.2f EM %.2f F1 %.2f on epoch=%d" %
                        (global_step, np.mean(train_losses), f1[0] * 100,
                         f1[1] * 100, epoch))
                    train_losses = []
                    if best_f1 < f1:
                        logger.info("Saving model with best %s: %.2f (F1 %.2f) -> %.2f (F1 %.2f) on epoch=%d" % \
                                (metric_name, best_f1[0]*100, best_f1[1]*100, f1[0]*100, f1[1]*100, epoch))
                        model_state_dict = {
                            k: v.cpu()
                            for (k, v) in model.state_dict().items()
                        }
                        torch.save(
                            model_state_dict,
                            os.path.join(args.output_dir, "best-model.pt"))
                        model = model.to(device)
                        best_f1 = f1
                        wait_step = 0
                        stop_training = False
                    else:
                        wait_step += 1
                        if wait_step == args.wait_step:
                            stop_training = True
                    model.train()
            if stop_training:
                break

        logger.info("Training finished!")

    elif args.do_predict:
        if type(model) == list:
            model = [m.eval() for m in model]
        else:
            model.eval()
        f1 = predict(logger,
                     args,
                     model,
                     eval_dataloader,
                     eval_examples,
                     eval_features,
                     device,
                     varying_n_paragraphs=len(args.n_paragraphs) > 1)