Ejemplo n.º 1
0
    def test_lstm(self):
        df_train, df_dev, df_test, metadata = get_fake_dataset(
            with_text_col=True)

        glove_file_path = 'glove/glove.6B.50d.txt'  # need be changed to where you store the pre-trained GloVe file.

        text_config = Mapping()
        text_config.mode = 'glove'
        text_config.max_words = 20
        text_config.maxlen = 5
        text_config.embedding_dim = 50
        text_config.embeddings_index = open_glove(
            glove_file_path)  # need to change

        encoder = Encoder(metadata, text_config=text_config)
        y_train, X_train_struc, X_train_text = encoder.fit_transform(df_train)
        y_dev, X_dev_struc, X_dev_text = encoder.transform(df_dev)
        y_test, X_test_struc, X_test_text = encoder.transform(df_test)

        text_config.embedding_matrix = encoder.embedding_matrix

        model_config = get_fake_modelconfig('./outputs_test')
        model_config.output_dir = os.path.join(model_config.output_dir, 'lstm')
        if not os.path.exists(model_config.output_dir):
            os.makedirs(model_config.output_dir)

        model = Model(text_config, model_config)
        hist = model.train(y_train, X_train_struc, X_train_text, y_train,
                           X_train_struc, X_train_text)

        # print(hist.history)
        # y_dev, X_dev_struc, X_dev_text)

        val_acc_true = 1.0
        self.assertTrue(np.isclose(val_acc_true, hist.history['val_acc'][-1]))
Ejemplo n.º 2
0
    def test_tfidf(self):
        df_train, df_dev, df_test, metadata = get_fake_dataset(
            with_text_col=True)

        text_config = Mapping()
        text_config.mode = 'tfidf'
        text_config.max_words = 20

        encoder = Encoder(metadata, text_config)
        y_train, X_train_struc, X_train_text = encoder.fit_transform(df_train)
        y_dev, X_dev_struc, X_dev_text = encoder.transform(df_dev)
        y_test, X_test_struc, X_test_text = encoder.transform(df_test)

        model_config = get_fake_modelconfig('./outputs_test')
        model_config.output_dir = os.path.join(model_config.output_dir,
                                               'tfidf_text_only')
        if not os.path.exists(model_config.output_dir):
            os.makedirs(model_config.output_dir)

        model = Model(text_config, model_config)
        hist = model.train(y_train, X_train_struc, X_train_text, y_train,
                           X_train_struc, X_train_text)

        val_acc_true = 1.0
        self.assertTrue(np.isclose(val_acc_true, hist.history['val_acc'][-1]))
Ejemplo n.º 3
0
 def test_db_stride1_forward(self):
     cfg.merge_from_file('../../experiments/base_db.yml')
     cfg.MODEL.DB.STRIDE = 1
     model = Model(cfg, is_training=False)
     x = torch.ones([1, 3, 512, 512])
     x = model(x)
     self.assertEqual(x[0].shape, torch.Size([1, 1, 512, 512]))
Ejemplo n.º 4
0
 def test_pse_stride4_forward(self):
     cfg.merge_from_file('../../experiments/base_pse.yml')
     cfg.MODEL.PSE.STRIDE = 4
     model = Model(cfg, is_training=False)
     x = torch.ones([1, 3, 512, 512])
     x = model(x)
     self.assertEqual(x[0].shape, torch.Size([1, 6, 128, 128]))
Ejemplo n.º 5
0
    def test_strucdata_only(self):
        df_train, df_dev, df_test, metadata = get_fake_dataset(
            with_text_col=False)
        encoder = Encoder(metadata, text_config=None)
        y_train, X_train_struc, X_train_text = encoder.fit_transform(df_train)
        y_dev, X_dev_struc, X_dev_text = encoder.transform(df_dev)
        y_test, X_test_struc, X_test_text = encoder.transform(df_test)

        print(X_train_text, X_dev_text, X_test_text)

        model_config = get_fake_modelconfig('./outputs_test')
        model_config.output_dir = os.path.join(model_config.output_dir,
                                               'dense_mlp')
        if not os.path.exists(model_config.output_dir):
            os.makedirs(model_config.output_dir)

        model = Model(text_config=None, model_config=model_config)
        hist = model.train(y_train, X_train_struc, X_train_text, y_train,
                           X_train_struc, X_train_text)

        val_acc_true = 1.0
        self.assertTrue(np.isclose(val_acc_true, hist.history['val_acc'][-1]))
Ejemplo n.º 6
0
    def get(self):
        country = request.args.get('country')
        sector = request.args.get('sector')
        subject = request.args.getlist('subject')

        if (country is None and sector is None
                and subject is None) or not subject:
            return 1

        quality = classify_subject(country, sector, str(subject[0]),
                                   Model.get_instance(),
                                   LemmasPt.get_instance())

        return int(quality[0])
Ejemplo n.º 7
0
    def __init__(self, cfg):
        self.storage = {}
        self.device = cfg.SOLVER.DEVICE
        self.max_iter = cfg.SOLVER.MAX_ITERS
        self.log_dir = cfg.SOLVER.TENSORBOARD_WRITER.LOG_DIR
        self.base_lr = cfg.SOLVER.LR.BASE_LR
        optimizer_name = cfg.SOLVER.OPTIMIZER
        self.weight_decay = cfg.SOLVER.WEIGHT_DECAY
        self.weights = cfg.SOLVER.WEIGHTS
        self.image_period = cfg.SOLVER.TENSORBOARD_WRITER.IMAGE_PERIOD
        self.scalar_period = cfg.SOLVER.TENSORBOARD_WRITER.SCALAR_PERIOD
        self.save_period = cfg.SOLVER.CHECKPOINT_PERIOD
        self.save_model_dir = cfg.SOLVER.SAVE_DIR
        self.model_name = cfg.SOLVER.CHECKPOINT_NAME

        data_loader = build_train_data_loader(cfg)
        self._data_loader_iter = iter(data_loader)
        self.model = Model(cfg, True).train().to(self.device)
        self.optimizer = self.build_optimizer(optimizer_name, self.model)
        self.lr_scheduler = build_LRscheduler(self.optimizer, cfg)
        self.iter = 0
        self.writer = None
        self.tic = 0
        self.toc = 0
Ejemplo n.º 8
0

from modeling import Model
from cross_validation import CrossValidationDQNN

if __name__ == '__main__':
    from config import config

    model = Model(config=config)
    model.add_csv_data('data/csv/test.csv')
    model.train_model()
    model.init_onehot()
    cross_validation = CrossValidationDQNN(config=config)
    estimate = cross_validation.run()
Ejemplo n.º 9
0
 def __init__(self, config):
     self.config = config
     self.model = Model(config)
     self.model_dqnn = ModelDQNN()
     self.model_dqnn.init_dqnn(None, (1))
Ejemplo n.º 10
0
class CrossValidationDQNN:
    def __init__(self, config):
        self.config = config
        self.model = Model(config)
        self.model_dqnn = ModelDQNN()
        self.model_dqnn.init_dqnn(None, (1))

    def train(self, intervals):
        finish = False
        prepare = Preparer(intervals, **self.config)
        while not finish:
            # get events
            rows, flag = prepare.get_data_from_db()
            batch_states = []
            batch_newstates = []
            batch_actions = []
            for row in rows:
                # get info about event
                time_event = None
                tag_id = None
                user_id = None
                time_delta = None
                # init features
                state = self.model.get_features(user_id, tag_id, time_event)
                next_state = self.model.get_features(user_id, tag_id,
                                                     time_event + time_delta)
                action = 1
                batch_states.append(state)
                batch_newstates.append(next_state)
                batch_actions.append(action)
            if len(batch_states) > 0:
                self.model_dqnn.train(batch_states, batch_newstates,
                                      batch_actions)
            if not flag:
                finish = prepare.next_iteration()

    def predict(self, intervals):
        finish = False
        prepare = Preparer(intervals, **self.config)
        while not finish:
            # get events
            rows, flag = prepare.get_data_from_db()
            for row in rows:
                # get info about event
                time_event = None
                tag_id = None
                user_id = None
                time_delta = None

                # init features

                state = self.model.get_features(user_id, tag_id, time_event)

                predict = self.model_dqnn.predict(state)

    def run(self):
        self.init_interval()
        for train_interval, test_interval in zip(self.train_interaval,
                                                 self.test_interval):
            self.train(train_interval)
            estimate = self.predict(test_interval)

    def init_interval(self):
        train_dates, test_dates = get_cv_data(db, parts_count=3)
        self.train_interaval = train_dates
        self.test_interval = test_dates

    def prepare(self):
        pass
Ejemplo n.º 11
0
import yaml

from data_utils import DataLoader
from training_utils import Trainer, TrainerConfig
import training_utils
from modeling import Model

if __name__ == '__main__':

    with open("config/config.yaml", "r") as f:
        config = yaml.safe_load(f)
    model = Model(config)

    args = getattr(training_utils, "baseline")

    dl = DataLoader(args)
    tr_dataset, val_dataset = dl.setup()
    tr_dataset = dl.train_dataloader(tr_dataset)
    val_dataset = dl.val_dataloader(val_dataset)

    trainer = Trainer(model, args)
    trainer.fit(tr_dataset, val_dataset)
Ejemplo n.º 12
0
crawler = Crawler()

# 데이터 수집
weather_data = crawler.weather_fetch()
yesterday_data = crawler.yesterday_fetch()
print(weather_data)
print(yesterday_data)

# 날씨 이벤트 처리
weather_events = Events(weather_data)
weather_events.process_events()
weather_info = (weather_events.temp_max)

# 모델링
now_model = Model(weather_info)
yes_model = Model(yesterday_data)
today_visitor = now_model.modeling()
yesterday_visitor = yes_model.modeling()

# Mood decision
mood = Mood()
template = mood.decision(today_visitor, yesterday_visitor)
print(template)

# 기사생성
article = Article(template, weather_events, today_visitor, yesterday_data, yesterday_visitor)
print(article.generate())
f = open("better_than_yesterday.txt", "w", encoding = "UTF-8")
f.write(article.generate())
f.close()
Ejemplo n.º 13
0
class Trainer(object):
    def __init__(self, cfg):
        self.storage = {}
        self.device = cfg.SOLVER.DEVICE
        self.max_iter = cfg.SOLVER.MAX_ITERS
        self.log_dir = cfg.SOLVER.TENSORBOARD_WRITER.LOG_DIR
        self.base_lr = cfg.SOLVER.LR.BASE_LR
        optimizer_name = cfg.SOLVER.OPTIMIZER
        self.weight_decay = cfg.SOLVER.WEIGHT_DECAY
        self.weights = cfg.SOLVER.WEIGHTS
        self.image_period = cfg.SOLVER.TENSORBOARD_WRITER.IMAGE_PERIOD
        self.scalar_period = cfg.SOLVER.TENSORBOARD_WRITER.SCALAR_PERIOD
        self.save_period = cfg.SOLVER.CHECKPOINT_PERIOD
        self.save_model_dir = cfg.SOLVER.SAVE_DIR
        self.model_name = cfg.SOLVER.CHECKPOINT_NAME

        data_loader = build_train_data_loader(cfg)
        self._data_loader_iter = iter(data_loader)
        self.model = Model(cfg, True).train().to(self.device)
        self.optimizer = self.build_optimizer(optimizer_name, self.model)
        self.lr_scheduler = build_LRscheduler(self.optimizer, cfg)
        self.iter = 0
        self.writer = None
        self.tic = 0
        self.toc = 0

    def build_optimizer(self, name: str,
                        model: torch.nn.Module) -> torch.optim.Optimizer:
        """No bias decay:
        Bag of Tricks for Image Classification with Convolutional Neural Networks
        (https://arxiv.org/pdf/1812.01187.pdf)"""
        weight_p, bias_p = [], []
        for p_name, p in model.named_parameters():
            if 'bias' in p_name:
                bias_p += [p]
            else:
                weight_p += [p]
        parameters = [{
            'params': weight_p,
            'weight_decay': self.weight_decay
        }, {
            'params': bias_p,
            'weight_decay': 0
        }]

        if name == 'Adam':
            return torch.optim.Adam(model.parameters(), lr=self.base_lr)
        if name == 'SGD':
            return torch.optim.SGD(model.parameters(), lr=self.base_lr)
        if name == 'SWA':
            """Stochastic Weight Averaging: 
            Averaging Weights Leads to Wider Optima and Better Generalization
            (https://arxiv.org/pdf/1803.05407.pdf)"""
            base_opt = torch.optim.SGD(parameters, lr=self.base_lr)
            return SWA(base_opt, swa_start=10, swa_freq=5, swa_lr=self.base_lr)

    def before_train(self):
        if self.weights != '':
            checkpoint = torch.load(self.weights)
            self.model.load_state_dict(checkpoint)
        if not os.path.exists(self.save_model_dir):
            os.makedirs(self.save_model_dir)
        self.writer = SummaryWriter(self.log_dir)
        self.model.train()

    def after_train(self):
        model_name = self.model_name + '_' + str(self.iter) + '.pth'
        torch.save(self.model.state_dict(),
                   os.path.join(self.save_model_dir, model_name))

    def before_step(self):
        self.tic = time.time()

    def after_step(self):
        # 统计时间
        self.toc = time.time()
        iter_time = self.toc - self.tic
        self.storage['iter_time'] = iter_time
        # 写tensorboard
        for key in self.storage:
            if isinstance(self.storage[key], dict):
                sub_dict = self.storage[key]
                for sub_key in sub_dict:
                    value = sub_dict[sub_key]
                    self._write_tensorboard(key + '/' + sub_key, value)
            else:
                value = self.storage[key]
                self._write_tensorboard(key, value)

        # 保存模型
        if self.iter % self.save_period == 0:
            model_name = self.model_name + '_' + str(self.iter) + '.pth'
            torch.save(self.model.state_dict(),
                       os.path.join(self.save_model_dir, model_name))

    def _write_tensorboard(self, key: str, value: Union[torch.Tensor, int,
                                                        float]):
        if isinstance(value, torch.Tensor) and len(value.shape) == 4:
            if self.iter % self.image_period == 0:
                self.writer.add_images(key, value, self.iter)
        elif self.iter % self.scalar_period == 0:
            self.writer.add_scalar(key, value, self.iter)

    def train(self, start_iter=0):
        try:
            self.before_train()
            for self.iter in range(start_iter, self.max_iter):
                self.before_step()
                self.run_step()
                self.after_step()
            self.after_train()
        finally:
            self.after_train()

    def run_step(self):
        data = next(self._data_loader_iter)
        total_loss, losses, metries = self.model(data)

        self.storage['total_loss'] = total_loss
        self.storage['losses'] = losses
        self.storage['image'] = data['image']
        self.storage['training_mask'] = data['training_mask']
        self.storage['metries'] = metries
        grads = {}

        self.storage['grads'] = grads

        self.optimizer.zero_grad()
        total_loss.backward()
        self.optimizer.step()
        self.storage['lr'] = self.lr_scheduler.get_lr()[0]
        self.lr_scheduler.step()

        for name, parm in self.model.named_parameters():
            if parm.grad is not None:
                grads[name] = torch.mean(torch.abs(parm.grad))
Ejemplo n.º 14
0
Archivo: demo.py Proyecto: snazari/DQN
import datetime

from modeling import Model

if __name__ == '__main__':

    # create untrained Model object based on config.py
    from config import config
    model = Model(config=config)

    # or load previously created (using the same DB) model with its own configuration
    # model = Model(model_file="/home/user/repos/python_deep_reinforcement_sequence/data/LDA/model/1d439b93-fbc9-4ae4-b76d-7d1332259344_model.pickle")

    # create main dictionary from .csv: this complete replaces data in DB.
    # Call add_csv_data ONLY ONCE before the first launch of training!!
    # model.add_csv_data('data/csv/test_seasons.csv')  # this drops DB, but not deletes saved model files, built using it

    # or create it from all .csv files in a given folder, assuming all of them have the proper format
    model.add_csv_data('data/csv/test.csv')  # this drops db, but not deletes saved model files, built using it
    # a, b = model.get_part_of_data(parts=10)
    model.compute_context_features([datetime.timedelta(days=2), datetime.timedelta(hours=1)])
    print(1)
    # train model
    # If the description of a model with appropriate config parameters is found in db, the training phase will be skipped
    # Otherwise, the new model will be trained and saved for further usage, model_id and config parameters will be added to DB
    # Also this function creates word_id index according to occurrences_threshold parameter
    model.train_model()


    # get vector for the given text
Ejemplo n.º 15
0
        "toxic": "This comment is toxic.",
        "severe_toxic": "This comment is severely toxic.",
        "obscene": "This comment is obscene.",
        "threat": "This comment is a threat.",
        "insult": "This comment is an insult.",
        "identity_hate": "This comment is hate speech."
    }
    max_label_len = max(
        [len(word_tokenize(x)) for x in labelSentencesDict.values()])

    print("Train Model")
    model = Model(binaryClassification=args["binaryClassification"],
                  model_str=tokenizer_model[1],
                  doLower=args["doLower"],
                  train_batchSize=args["train_batchSize"],
                  testval_batchSize=args["testval_batchSize"],
                  learningRate=args["learningRate"],
                  doLearningRateScheduler=args["doLearningRateScheduler"],
                  labelSentences=labelSentencesDict,
                  max_label_len=max_label_len,
                  device=device)
    model.run(train_data=train_df[data_column],
              train_target=train_df[args["targets"]],
              val_data=val_df[data_column],
              val_target=val_df[args["targets"]],
              test_data=test_df[data_column],
              test_target=test_df[args["targets"]],
              epochs=args["numEpochs"])

    wandb.log({'finished': True})

    run_infos = wandb_summarizer.download.get_results(wandb_project_name)
Ejemplo n.º 16
0
    texts = [
        "Die Bewertung {} ist {}.".format(cathegoryDict[x.split("_")[0]],
                                          sentimentDict[x.split("_")[1]])
        for x in labels
    ]
    labelSentencesDict = dict(zip(labels, texts))
    max_label_len = max(
        [len(word_tokenize(x)) for x in labelSentencesDict.values()])

    print("Make Predictions")
    model = Model(binaryClassification=model_useBinary,
                  model_str=model_technique,
                  doLower=args["doLower"],
                  train_batchSize=args["train_batchSize"],
                  testval_batchSize=args["testval_batchSize"],
                  learningRate=args["learningRate"],
                  doLearningRateScheduler=args["doLearningRateScheduler"],
                  labelSentences=labelSentencesDict,
                  smartBatching=args["smartBatching"],
                  max_label_len=max_label_len,
                  device=device)

    model.load(os.path.join(args["model_path"], "apple-flambee-545.pt"))

    pred = model.predict(data=predict_df["processed"], device=device)

    pd.concat((predict_df.reset_index(drop=True), pred), axis=1).to_csv(
        os.path.join(args["data_path"], "predict",
                     filename[:-4] + "_predictions_raw.csv"))

    def logits_to_pred(column):
Ejemplo n.º 17
0
Archivo: demo2.py Proyecto: snazari/DQN
import datetime

from modeling import Model

if __name__ == '__main__':
    # create untrained Model object based on config.py
    from config import config
    model = Model(config=config)

    model.create_usarname_tag_onehot_tables(
        usernames=["summer", "autumn", "winter", "newseason"],
        tags=["tag1", "tag2", "newtag"])
    # model._dictionary.test()
    average_user = model._dictionary.get_average_user(
        2, datetime.datetime.fromtimestamp(0))
    pass

# # mem usage
# import os
# import psutil
# process = psutil.Process(os.getpid())
# print(process.memory_info().rss)
# pass
def main():

    parser = argparse.ArgumentParser()

    parser.add_argument('--encoded_data_dir', type=str,
        # default='/data/home/t-chepan/projects/MS-intern-project/raw_data',
        help=('directory to load the encoded data.'))

    # this is optional 
    parser.add_argument('--data_name', type=str,
        # default='KICK',
        help=('which data will be used? (kickstarter Or indiegogo?)'))

    parser.add_argument('--search_space_filepath', type=str,
        # default='path/to/search_space.json',
        help=('where to load the search space file?'))

    parser.add_argument('--output_dir', type=str,
        # default='path/to/save/outputs',
        help=('directory to save the trained model and related model_config.'))

    parser.add_argument('--task_type', type=str,
        default='classification',
        help=('what is the type of this task? (classification or regression?)'))

    parser.add_argument('--num_classes', type=int,
        # default='classification',
        help=('what is the number of classes (classification) or outputs (regression)?'))

    parser.add_argument('--model_type', type=str,
        default='mlp',
        help=('what type of NN model you want to try? (mlp or skip_connections?)'))

    parser.add_argument('--num_trials', type=int,
        default= 1,
        help=('how many trials you want to run the model?'))


    args = parser.parse_args()

    
    if args.data_name is not None and args.encoded_data_dir is not None:
        path_to_data = os.path.join(args.encoded_data_dir, args.data_name)
        path_to_save = os.path.join(args.output_dir, args.data_name)
        if not os.path.exists(path_to_save):
            os.makedirs(path_to_save)

    elif args.data_name is None and args.encoded_data_dir is not None:
        path_to_data = args.encoded_data_dir
        path_to_save = args.output_dir

    else:
        raise argparse.ArgumentTypeError(args.data_name + ' or ' + args.encoded_data_dir + " can't be recognized.")


    ###########################################
    ## load encoded training set and dev set ##
    ###########################################

    y_train_path = os.path.join(path_to_data, 'y_train.npy')
    if os.path.exists(y_train_path):
        y_train = np.load(y_train_path, mmap_mode='r')
    else:
        raise ValueError('y_train is not found!')

    X_train_struc_path = os.path.join(path_to_data, 'X_train_struc.npy')
    if os.path.exists(X_train_struc_path):
        X_train_struc = np.load(X_train_struc_path, mmap_mode='r')
    else:
        X_train_struc = None

    X_train_text_path = os.path.join(path_to_data, 'X_train_text.npy')
    if os.path.exists(X_train_text_path):
        X_train_text = np.load(X_train_text_path, mmap_mode='r')
    else:
        X_train_text = None

    y_dev_path = os.path.join(path_to_data, 'y_dev.npy')
    if os.path.exists(y_dev_path):
        y_dev = np.load(y_dev_path, mmap_mode='r')
    else:
        raise ValueError('y_dev is not found!')

    X_dev_struc_path = os.path.join(path_to_data, 'X_dev_struc.npy')
    if os.path.exists(X_dev_struc_path):
        X_dev_struc = np.load(X_dev_struc_path, mmap_mode='r')
    else:
        X_dev_struc = None

    X_dev_text_path = os.path.join(path_to_data, 'X_dev_text.npy')
    if os.path.exists(X_dev_text_path):
        X_dev_text = np.load(X_dev_text_path, mmap_mode='r')
    else:
        X_dev_text = None

    text_config_path = os.path.join(path_to_data, 'text_config.json')
    if os.path.exists(text_config_path):
        with open(text_config_path, 'r') as f:
            text_config = json.load(f)
        text_config = Mapping(text_config)
    else:
        text_config = None

    if text_config is not None and text_config.mode == 'glove':
        embedding_matrix_path = text_config.embedding_matrix_path
        if os.path.exists(embedding_matrix_path):
            embedding_matrix = np.load(embedding_matrix_path, mmap_mode='r')
            text_config.embedding_matrix = embedding_matrix
        else:
            raise ValueError('embedding_matrix is not found!')
    else:
        embedding_matrix = None


    ###########################################
    ## sample model config from search space ##
    ###########################################

    if args.task_type is not None and args.num_classes is not None:
        print('you are choosing ' + args.model_type + ' as the model type!')
        default_model_config = create_default_modelconfig(args.task_type, args.num_classes, args.model_type, path_to_save)
    else:
        raise ValueError('You are missing task_type or num_classes or both!')

    ## load search space file which is provided by users ##
    with open(args.search_space_filepath, 'r') as f:
        search_space = json.load(f)
    search_space = Mapping(search_space)

    
    #######################################################################
    ## update default model_config based on search_space and train model ##
    #######################################################################
  
    for i in range(args.num_trials):
        model_config = sample_modelconfig(search_space, default_model_config)
        model_name = 'model_{}'.format(i)
        print('*' * 20)
        print('model_config: ' + model_config['output_dir'])

        model_config = Mapping(model_config)

        print('*' * 20)
        print('model_config: ' + model_config.output_dir)

        model_config.output_dir = os.path.join(default_model_config.output_dir, model_name)
        if not os.path.exists(model_config.output_dir):
            os.makedirs(model_config.output_dir)
        model = Model(text_config, model_config)
        hist = model.train(y_train, X_train_struc, X_train_text, y_train, X_train_struc, X_train_text)

        ## save hist.history and model_config ##
        history_path = os.path.join(model_config.output_dir, 'history.json')
        with open(history_path, 'w') as hf:
            json.dump(hist.history, hf)

        model_config_savepath = os.path.join(model_config.output_dir, 'model_config.json')
        with open(model_config_savepath, 'w') as mf:
            json.dump(model_config, mf)
Ejemplo n.º 19
0
    ## create the auxiliary sentences which are needed if binary classification is done.
    texts = [
        "The article is about {}.".format(cathegoryDict[x])
        for x in args["targets"]
    ]
    labelSentencesDict = dict(zip(args["targets"], texts))
    max_label_len = max(
        [len(word_tokenize(x)) for x in labelSentencesDict.values()])

    print("Train Model")
    model = Model(args=tokenizer_model,
                  doLower=args["doLower"],
                  train_batchSize=args["train_batchSize"],
                  testval_batchSize=args["testval_batchSize"],
                  learningRate=args["learningRate"],
                  doLearningRateScheduler=args["doLearningRateScheduler"],
                  labelSentences=labelSentencesDict,
                  smartBatching=args["smartBatching"],
                  max_label_len=max_label_len,
                  device=device,
                  target_columns=args["targets"])

    # train and test the model
    model.run(train_data=train_data,
              train_target=train_target,
              val_data=val_data,
              val_target=val_target,
              test_data=test_data,
              test_target=test_target,
              epochs=args["numEpochs"])