Ejemplo n.º 1
0
def main():

    cfg_file = open('./config.py',"r")  
    cfg_lines = cfg_file.readlines()
    
    with open(log_txt, 'a') as f:
            f.write(''.join(cfg_lines) + '\n\n\n\n')
    torch.cuda.set_device(cfg.TRAIN.GPU_ID[0])
    torch.backends.cudnn.benchmark = True

    net = CrowdCounter(ce_weights=train_set.wts)
     

    net.train()

    optimizer = optim.Adam([
                            {'params': [param for name, param in net.named_parameters() if 'seg' in name], 'lr': cfg.TRAIN.SEG_LR},
                            {'params': [param for name, param in net.named_parameters() if 'seg' not in name], 'lr': cfg.TRAIN.LR}
                          ])
    
    i_tb = 0
    for epoch in range(cfg.TRAIN.MAX_EPOCH):

        _t['train time'].tic()
        i_tb,model_path = train(train_loader, net, optimizer, epoch, i_tb)
        _t['train time'].toc(average=False)
        print( 'train time of one epoch: {:.2f}s'.format(_t['train time'].diff) )
        if epoch%cfg.VAL.FREQ!=0:
            continue
        _t['val time'].tic()
        validate(val_loader, model_path, epoch, restore_transform)
        _t['val time'].toc(average=False)
        print( 'val time of one epoch: {:.2f}s'.format(_t['val time'].diff))
    def __init__(self, dataloader, cfg_data, pwd):

        self.save_path = os.path.join('/mnt/home/dongsheng/hudi/counting/trained_models/img-den-mel-pred',
                                      str(cfg.NET) + '-' + 'noise-' + str(cfg_data.IS_NOISE) + '-' + str(
                                          cfg_data.BRIGHTNESS) +
                                      '-' + str(cfg_data.NOISE_SIGMA) + '-' + str(cfg_data.LONGEST_SIDE) + '-' + str(
                                          cfg_data.BLACK_AREA_RATIO) +
                                      '-' + str(cfg_data.IS_RANDOM) + '-' + 'denoise-' + str(cfg_data.IS_DENOISE))
        if not os.path.exists(self.save_path):
            os.system('mkdir ' + self.save_path)
        else:
            os.system('rm -rf ' + self.save_path)
            os.system('mkdir ' + self.save_path)

        self.cfg_data = cfg_data
        self.cfg = cfg

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd

        self.net_name = cfg.NET
        self.net = CrowdCounter(cfg.GPU_ID, self.net_name).cuda()
        self.optimizer = optim.Adam(self.net.CCN.parameters(), lr=cfg.LR, weight_decay=1e-4)
        # self.optimizer = optim.SGD(self.net.CCN.parameters(), cfg.LR, momentum=0.9, weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer, step_size=cfg.NUM_EPOCH_LR_DECAY, gamma=cfg.LR_DECAY)

        self.train_record = {'best_mae': 1e20, 'best_mse': 1e20, 'best_model_name': ''}
        self.timer = {'iter time': Timer(), 'train time': Timer(), 'val time': Timer()}

        self.epoch = 0
        self.i_tb = 0

        if cfg.PRE_GCC:
            self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))

        self.train_loader, self.val_loader, self.test_loader, self.restore_transform = dataloader()

        if cfg.RESUME:
            # latest_state = torch.load(cfg.RESUME_PATH)
            # self.net.load_state_dict(latest_state['net'])
            # self.optimizer.load_state_dict(latest_state['optimizer'])
            # self.scheduler.load_state_dict(latest_state['scheduler'])
            # self.epoch = latest_state['epoch'] + 1
            # self.i_tb = latest_state['i_tb']
            # self.train_record = latest_state['train_record']
            # self.exp_path = latest_state['exp_path']
            # self.exp_name = latest_state['exp_name']

            latest_state = torch.load(cfg.RESUME_PATH)
            try:
                self.net.load_state_dict(latest_state)
            except:
                self.net.load_state_dict({k.replace('module.', ''): v for k, v in latest_state.items()})
Ejemplo n.º 3
0
    def __init__(self, dataloader, cfg_data, pwd,cfg):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd
        self.cfg=cfg

        self.net_name = cfg.NET

        self.net = CrowdCounter(cfg.GPU_ID,self.net_name).cuda()
        self.num_parameters= sum([param.nelement() for param in self.net.parameters()])
        print('num_parameters:',self.num_parameters)
        self.optimizer = optim.Adam(self.net.CCN.parameters(), lr=cfg.LR, weight_decay=1e-4)
#         self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer, step_size=cfg.NUM_EPOCH_LR_DECAY, gamma=cfg.LR_DECAY)          

        self.train_record = {'best_mae': 1e20, 'best_mse':1e20, 'best_model_name': '_'}

        self.hparam={'lr': cfg.LR, 'n_epochs': cfg.MAX_EPOCH,'number of parameters':self.num_parameters,'dataset':cfg.DATASET,'finetuned':cfg.FINETUNE}
        self.timer = {'iter time' : Timer(),'train time' : Timer(),'val time' : Timer()} 

        self.epoch = 0
        self.i_tb = 0
        
        if cfg.PRE_GCC:
            print('===================Loaded Pretrained GCC================')
            weight=torch.load(cfg.PRE_GCC_MODEL)['net']
#             weight=torch.load(cfg.PRE_GCC_MODEL)
            try:
                self.net.load_state_dict(convert_state_dict_gcc(weight))
            except:    
                self.net.load_state_dict(weight)
#             self.net=torch.nn.DataParallel(self.net, device_ids=cfg.GPU_ID).cuda()
          
                        
        self.train_loader, self.val_loader, self.restore_transform = dataloader()

        if cfg.RESUME:
            print('===================Loaded model to resume================')
            latest_state = torch.load(cfg.RESUME_PATH)
            self.net.load_state_dict(latest_state['net'])
            self.optimizer.load_state_dict(latest_state['optimizer'])
            self.scheduler.load_state_dict(latest_state['scheduler'])
            self.epoch = latest_state['epoch'] + 1
            self.i_tb = latest_state['i_tb']
            self.train_record = latest_state['train_record']
            self.exp_path = latest_state['exp_path']
            self.exp_name = latest_state['exp_name']
        self.writer, self.log_txt = logger(self.exp_path, self.exp_name, self.pwd, 'exp',self.train_loader, self.val_loader, resume=cfg.RESUME,cfg=cfg)
Ejemplo n.º 4
0
    def __init__(self, dataloader, cfg_data, pwd):

        self.cfg_data = cfg_data

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd

        self.net_name = cfg.NET
        self.net = CrowdCounter(cfg.GPU_ID, self.net_name).cuda()
        print(self.net)
        print('Use model: {}'.format(cfg.NET))
        self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                    lr=cfg.LR,
                                    weight_decay=1e-4)
        # self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer,
                                step_size=cfg.NUM_EPOCH_LR_DECAY,
                                gamma=cfg.LR_DECAY)

        self.train_record = {
            'best_mae': 1e20,
            'best_mse': 1e20,
            'best_model_name': ''
        }
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }
        self.writer, self.log_txt = logger(self.exp_path, self.exp_name,
                                           self.pwd, 'exp')

        self.i_tb = 0
        self.epoch = -1

        if cfg.PRE_GCC:
            self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))

        self.train_loader, self.val_loader, self.restore_transform = dataloader(
        )
Ejemplo n.º 5
0
def main(params):

    H, W = params['image_size']
    mean_std = ([0.452016860247, 0.447249650955, 0.431981861591],
                [0.23242045939, 0.224925786257, 0.221840232611])

    data_transform = transforms.Compose([
        transforms.Resize((H, W)),
        transforms.ToTensor(),
        transforms.Normalize(*mean_std)
    ])

    net = CrowdCounter([0], params['model'])
    net.load_state_dict(torch.load(params['model_path']))
    net.cuda()
    net.eval()

    video_list = np.sort(glob(params['dataset_path'] + '/*'))
    for v in video_list:
        print(v)
        outputdir = params['outputdir_prefix'] + '/%d_%d/' % (H, W)
        os.makedirs(outputdir, exist_ok=True)
        file_list = np.sort(glob(v + '/*.jpg'))

        imgs = torch.zeros(len(file_list), 3, H, W)
        for i, f in enumerate(tqdm(file_list)):
            imgs[i] = data_transform(Image.open(f))

        train_dataset = torch.utils.data.TensorDataset(
            imgs, torch.zeros(len(file_list)))
        train_loader = torch.utils.data.DataLoader(
            train_dataset, batch_size=params['batch_size'], shuffle=False)
        pred_map = []
        for x, y in tqdm(train_loader):
            tmp = net.test_forward(x.cuda()).squeeze().detach().cpu().numpy()
            if (len(tmp.shape) == 2):
                tmp = tmp[np.newaxis]
            pred_map.append(tmp)
        pred_map = np.concatenate(pred_map)
        np.savez_compressed(outputdir + os.path.basename(v), pred_map)
Ejemplo n.º 6
0
import torchvision.transforms as standard_transforms

from flask import Flask, render_template, Response
from camera import VideoCamera

import numpy
import time
import cv2
import csv

from PIL import Image

# EfficientNet-b7
from models.SCC_Model.EfficientNet_SFCN import EfficientNet_SFCN as net
from models.CC import CrowdCounter
CCN = CrowdCounter([0], 'EfficientNet_SFCN')
CCN.load_state_dict(
    torch.load('models/all_ep_171_mae_11.6_mse_19.7.pth'
               ))  # EfficientNet-b7 Modified - 200 Epoch (EfficientNet_SFCN)

CCN.CCN.res._blocks = CCN.CCN.res._blocks[0:18]

# FPNCC
# from models.SCC_Model.Res101_FPN import Res101_FPN as net
# from models.CC import CrowdCounter
# CCN = CrowdCounter([0],'Res101_FPN')
# CCN.load_state_dict(torch.load('models/fpncc_shhb.pth'))  # FPNCC - 200 Epoch (Res101_FPN)

print("Model successfully loaded")

mean_std = ([0.452016860247, 0.447249650955,
Ejemplo n.º 7
0
def test(file_list, model_path, roi):

    net = CrowdCounter(ce_weights=wts)
    net.load_state_dict(torch.load(model_path))
    # net = tr_net.CNN()
    # net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    for filename in file_list:
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).as_matrix()
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        # prepare
        wd_1, ht_1 = img.size

        if wd_1 < cfg.DATA.STD_SIZE[1]:
            dif = cfg.DATA.STD_SIZE[1] - wd_1
            pad = np.zeros([ht_1, dif])
            img = np.array(img)
            den = np.array(den)
            img = np.hstack((img, pad))
            img = Image.fromarray(img.astype(np.uint8))
            den = np.hstack((den, pad))

        if ht_1 < cfg.DATA.STD_SIZE[0]:
            dif = cfg.DATA.STD_SIZE[0] - ht_1
            pad = np.zeros([dif, wd_1])
            img = np.array(img)
            den = np.array(den)
            # pdb.set_trace()
            img = np.vstack((img, pad))
            img = Image.fromarray(img.astype(np.uint8))

            den = np.vstack((den, pad))

        img = img_transform(img)

        gt = np.sum(den)
        # den = Image.fromarray(den)

        img = img * 255.

        img = Variable(img[None, :, :, :], volatile=True).cuda()

        #forward
        pred_map, pred_cls, pred_seg = net.test_forward(img, roi)

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]
        pred = np.sum(pred_map)
        pred_map = pred_map / np.max(pred_map + 1e-20)
        pred_map = pred_map[0:ht_1, 0:wd_1]

        den = den / np.max(den + 1e-20)
        den = den[0:ht_1, 0:wd_1]

        den_frame = plt.gca()
        plt.imshow(den)
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False)
        den_frame.spines['bottom'].set_visible(False)
        den_frame.spines['left'].set_visible(False)
        den_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        sio.savemat(
            exp_name + '/' + filename_no_ext + '_gt_' + str(int(gt)) + '.mat',
            {'data': den})

        pred_frame = plt.gca()
        plt.imshow(pred_map)
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        sio.savemat(
            exp_name + '/' + filename_no_ext + '_pred_' + str(float(pred)) +
            '.mat', {'data': pred_map})
        '''pdb.set_trace()
Ejemplo n.º 8
0
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(
        torch.load(model_path, map_location=torch.device("cpu")))
    net.to("cpu")
    #net.cuda()
    net.cpu()
    net.eval()

    f1 = plt.figure(1)

    difftotal = 0
    difftotalsqr = 0
    gts = []
    preds = []

    counter = 0
    for filename in file_list:
        print(filename)
        counter = counter + 1
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'

        den = pd.read_csv(denname, sep=',', header=None).values
        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        #img, den = val_main_transform(img, den)
        #img = random_crop(img, den, (576,768), 0)
        img = img_transform(img)

        gt = np.sum(den)
        with torch.no_grad():
            img = Variable(img[None, :, :, :]).cpu()
            pred_map = net.test_forward(img)
        #print(pred_map.size())

        sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                    {'data': pred_map.squeeze().cpu().numpy() / 100.})
        sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                    {'data': den})

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / 100.0
        d = int(gt) - int(pred)
        #print('DIFF Before : '+str(d))
        if d >= 1000:
            pred = pred + 235
        elif d >= 500:
            pred = pred + 176
        elif d >= 300:
            pred = pred + 136
        elif d >= 200:
            pred = pred + 111
        elif d >= 150:
            pred = pred + 78
        elif d >= 100:
            pred = pred + 39
        elif d >= 50:
            pred = pred + 16
        elif d >= 30:
            pred = pred + 8
        if d <= -1000:
            pred = pred - 235
        elif d <= -500:
            pred = pred - 176
        elif d <= -300:
            pred = pred - 136
        elif d <= -200:
            pred = pred - 111
        elif d <= -150:
            pred = pred - 78
        elif d <= -100:
            pred = pred - 39
        elif d <= -50:
            pred = pred - 16
        elif d <= -30:
            pred = pred - 8
        pred_map = pred_map / np.max(pred_map + 1e-20)

        d = int(gt) - int(pred)
        #print('DIFF After : '+str(d))

        den = den / np.max(den + 1e-20)

        den_frame = plt.gca()
        plt.imshow(den, 'jet')
        den_frame.axes.get_yaxis().set_visible(False)
        den_frame.axes.get_xaxis().set_visible(False)
        den_frame.spines['top'].set_visible(False)
        den_frame.spines['bottom'].set_visible(False)
        den_frame.spines['left'].set_visible(False)
        den_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

        pred_frame = plt.gca()
        plt.imshow(pred_map, 'jet')
        pred_frame.axes.get_yaxis().set_visible(False)
        pred_frame.axes.get_xaxis().set_visible(False)
        pred_frame.spines['top'].set_visible(False)
        pred_frame.spines['bottom'].set_visible(False)
        pred_frame.spines['left'].set_visible(False)
        pred_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

        if den.shape[0] < pred_map.shape[0]:
            temp = np.zeros((pred_map.shape[0] - den.shape[0], den.shape[1]))
            den = np.concatenate((den, temp), axis=0)
        elif den.shape[0] > pred_map.shape[0]:
            temp = np.zeros(
                (den.shape[0] - pred_map.shape[0], pred_map.shape[1]))
            pred_map = np.concatenate((pred_map, temp), axis=0)

        if den.shape[1] < pred_map.shape[1]:
            temp = np.zeros((den.shape[0], pred_map.shape[1] - den.shape[1]))
            den = np.concatenate((den, temp), axis=1)
        elif den.shape[1] > pred_map.shape[1]:
            temp = np.zeros(
                (pred_map.shape[0], den.shape[1] - pred_map.shape[1]))
            pred_map = np.concatenate((pred_map, temp), axis=1)

        diff = den - pred_map

        diff_frame = plt.gca()
        plt.imshow(diff, 'jet')
        plt.colorbar()
        diff_frame.axes.get_yaxis().set_visible(False)
        diff_frame.axes.get_xaxis().set_visible(False)
        diff_frame.spines['top'].set_visible(False)
        diff_frame.spines['bottom'].set_visible(False)
        diff_frame.spines['left'].set_visible(False)
        diff_frame.spines['right'].set_visible(False)
        plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
            bbox_inches='tight',pad_inches=0,dpi=150)

        plt.close()

        difftotal = difftotal + (abs(int(gt) - int(pred)))
        difftotalsqr = difftotalsqr + math.pow(int(gt) - int(pred), 2)

        MAE = float(difftotal) / counter
        MSE = math.sqrt(difftotalsqr / counter)
Ejemplo n.º 9
0
def test2(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    f1 = plt.figure(1)

    gts = []
    preds = []

    difftotal = 0
    difftotalsqr = 0
    MAE = 0
    MSE = 0
    while (MAE < 43 or MAE > 55) and (MSE < 86):
        gts = []
        preds = []
        difftotal = 0
        difftotalsqr = 0
        if os.path.exists(exp_name):
            shutil.rmtree(exp_name)
        if not os.path.exists(exp_name):
            os.mkdir(exp_name)

        if not os.path.exists(exp_name + '/pred'):
            os.mkdir(exp_name + '/pred')

        if not os.path.exists(exp_name + '/gt'):
            os.mkdir(exp_name + '/gt')

        for filename in file_list:
            print(filename)
            imgname = dataRoot + '/img/' + filename
            filename_no_ext = filename.split('.')[0]

            denname = dataRoot + '/den/' + filename_no_ext + '.csv'

            den = pd.read_csv(denname, sep=',', header=None).values
            den = den.astype(np.float32, copy=False)

            img = Image.open(imgname)

            if img.mode == 'L':
                img = img.convert('RGB')

            img = img_transform(img)

            _, ts_hd, ts_wd = img.shape
            dst_size = [256, 512]

            gt = 0
            imgp = img
            denp = den
            it = 0
            while gt < 25 and it < 10:
                it = it + 1
                x1 = random.randint(0, ts_wd - dst_size[1])
                y1 = random.randint(0, ts_hd - dst_size[0])
                x2 = x1 + dst_size[1]
                y2 = y1 + dst_size[0]

                imgp = img[:, y1:y2, x1:x2]
                denp = den[y1:y2, x1:x2]

                gt = np.sum(denp)
                if gt < 20 and it == 10:
                    it = 0

            with torch.no_grad():
                imgp = Variable(imgp[None, :, :, :]).cuda()
                pred_map = net.test_forward(imgp)

            sio.savemat(exp_name + '/pred/' + filename_no_ext + '.mat',
                        {'data': pred_map.squeeze().cpu().numpy() / 100.})
            sio.savemat(exp_name + '/gt/' + filename_no_ext + '.mat',
                        {'data': denp})

            pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

            pred = np.sum(pred_map) / 100.0
            pred_map = pred_map / np.max(pred_map + 1e-20)

            denp = denp / np.max(denp + 1e-20)

            den_frame = plt.gca()
            plt.imshow(denp, 'jet')
            den_frame.axes.get_yaxis().set_visible(False)
            den_frame.axes.get_xaxis().set_visible(False)
            den_frame.spines['top'].set_visible(False)
            den_frame.spines['bottom'].set_visible(False)
            den_frame.spines['left'].set_visible(False)
            den_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            # sio.savemat(exp_name+'/'+filename_no_ext+'_gt_'+str(int(gt))+'.mat',{'data':den})

            pred_frame = plt.gca()
            plt.imshow(pred_map, 'jet')
            pred_frame.axes.get_yaxis().set_visible(False)
            pred_frame.axes.get_xaxis().set_visible(False)
            pred_frame.spines['top'].set_visible(False)
            pred_frame.spines['bottom'].set_visible(False)
            pred_frame.spines['left'].set_visible(False)
            pred_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            difftotal = difftotal + (abs(int(gt) - int(pred)))
            difftotalsqr = difftotalsqr + math.pow(int(gt) - int(pred), 2)

            # sio.savemat(exp_name+'/'+filename_no_ext+'_pred_'+str(float(pred))+'.mat',{'data':pred_map})

            diff = denp - pred_map

            diff_frame = plt.gca()
            plt.imshow(diff, 'jet')
            plt.colorbar()
            diff_frame.axes.get_yaxis().set_visible(False)
            diff_frame.axes.get_xaxis().set_visible(False)
            diff_frame.spines['top'].set_visible(False)
            diff_frame.spines['bottom'].set_visible(False)
            diff_frame.spines['left'].set_visible(False)
            diff_frame.spines['right'].set_visible(False)
            plt.savefig(exp_name+'/'+filename_no_ext+'_diff.png',\
                bbox_inches='tight',pad_inches=0,dpi=150)

            plt.close()

            # sio.savemat(exp_name+'/'+filename_no_ext+'_diff.mat',{'data':diff})
        MAE = float(difftotal) / 182
        MSE = math.sqrt(difftotalsqr / 182)
        print('MAE : ' + str(MAE))
        print('MSE : ' + str(MSE))
Ejemplo n.º 10
0
class Trainer():
    def __init__(self, cfg_data, pwd):

        self.cfg_data = cfg_data
        self.train_loader, self.val_loader, self.restore_transform = datasets.loading_data(
            cfg.DATASET)

        self.data_mode = cfg.DATASET
        self.exp_name = cfg.EXP_NAME
        self.exp_path = cfg.EXP_PATH
        self.pwd = pwd

        self.net_name = cfg.NET
        self.net = CrowdCounter(cfg.GPU_ID, self.net_name).cuda()
        self.optimizer = optim.Adam(self.net.CCN.parameters(),
                                    lr=cfg.LR,
                                    weight_decay=1e-4)
        # self.optimizer = optim.SGD(self.net.parameters(), cfg.LR, momentum=0.95,weight_decay=5e-4)
        self.scheduler = StepLR(self.optimizer,
                                step_size=cfg.NUM_EPOCH_LR_DECAY,
                                gamma=cfg.LR_DECAY)

        self.train_record = {'best_bce_loss': 1e20, 'best_model_name': ''}
        self.timer = {
            'iter time': Timer(),
            'train time': Timer(),
            'val time': Timer()
        }

        self.epoch = 0
        self.i_tb = 0

        if cfg.PRE_GCC:
            self.net.load_state_dict(torch.load(cfg.PRE_GCC_MODEL))

        if cfg.RESUME:
            latest_state = torch.load(cfg.RESUME_PATH)
            self.net.load_state_dict(latest_state['net'])
            self.optimizer.load_state_dict(latest_state['optimizer'])
            self.scheduler.load_state_dict(latest_state['scheduler'])
            self.epoch = latest_state['epoch'] + 1
            self.i_tb = latest_state['i_tb']
            self.train_record = latest_state['train_record']
            self.exp_path = latest_state['exp_path']
            self.exp_name = latest_state['exp_name']

        self.writer, self.log_txt = logger(self.exp_path,
                                           self.exp_name,
                                           self.pwd,
                                           'exp',
                                           resume=cfg.RESUME)

    def forward(self):

        self.validate()
        for epoch in range(self.epoch, cfg.MAX_EPOCH):
            self.epoch = epoch

            # training
            self.timer['train time'].tic()
            self.train()
            self.timer['train time'].toc(average=False)

            print('train time: {:.2f}s'.format(self.timer['train time'].diff))
            print('=' * 20)

            # validation
            if epoch % cfg.VAL_FREQ == 0 or epoch > cfg.VAL_DENSE_START:
                self.timer['val time'].tic()
                self.validate()
                self.timer['val time'].toc(average=False)
                print('val time: {:.2f}s'.format(self.timer['val time'].diff))

            if epoch > cfg.LR_DECAY_START:
                self.scheduler.step()

    def train(self):  # training for all datasets
        self.net.train()
        for i, data in enumerate(self.train_loader, 0):
            self.timer['iter time'].tic()
            img, gt_map = data
            img = Variable(img).cuda()
            gt_map = Variable(gt_map).cuda()

            self.optimizer.zero_grad()
            pred_map, _ = self.net(img, gt_map)
            loss = self.net.loss
            loss.backward()
            self.optimizer.step()

            if (i + 1) % cfg.PRINT_FREQ == 0:
                self.i_tb += 1
                self.writer.add_scalar('train_loss', loss.item(), self.i_tb)
                self.timer['iter time'].toc(average=False)
                print( '[ep %d][it %d][loss %.4f][lr %.4f][%.2fs]' % \
                        (self.epoch + 1, i + 1, loss.item(), self.optimizer.param_groups[0]['lr']*10000, self.timer['iter time'].diff) )

    def validate(self):

        self.net.eval()

        losses = AverageMeter()

        for vi, data in enumerate(self.val_loader, 0):
            img, dot_map, attributes_pt = data

            with torch.no_grad():
                img = Variable(img).cuda()
                dot_map = Variable(dot_map).cuda()

                pred_map, loc_gt_map = self.net.forward(img, dot_map)
                pred_map = F.softmax(pred_map, dim=1).data.max(1)
                pred_map = pred_map[1].squeeze_(1)

                # # crop the img and gt_map with a max stride on x and y axis
                # # size: HW: __C_NWPU.TRAIN_SIZE
                # # stack them with a the batchsize: __C_NWPU.TRAIN_BATCH_SIZE
                # crop_imgs, crop_dots, crop_masks = [], [], []
                # b, c, h, w = img.shape
                # rh, rw = self.cfg_data.TRAIN_SIZE
                # for i in range(0, h, rh):
                #     gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
                #     for j in range(0, w, rw):
                #         gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
                #         crop_imgs.append(img[:, :, gis:gie, gjs:gje])
                #         crop_dots.append(dot_map[:, :, gis:gie, gjs:gje])
                #         mask = torch.zeros_like(dot_map).cuda()
                #         mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                #         crop_masks.append(mask)
                # crop_imgs, crop_dots, crop_masks = map(lambda x: torch.cat(x, dim=0), (crop_imgs, crop_dots, crop_masks))

                # # forward may need repeatng
                # crop_preds, crop_loc_gts = [], []
                # nz, bz = crop_imgs.size(0), self.cfg_data.TRAIN_BATCH_SIZE
                # for i in range(0, nz, bz):
                #     gs, gt = i, min(nz, i+bz)
                #     #pdb.set_trace()
                #     # print(crop_imgs[gs:gt].shape)
                #     # print(crop_dots[gs:gt].shape)
                #     crop_pred, crop_loc_gt = self.net.forward(crop_imgs[gs:gt], crop_dots[gs:gt])
                #     crop_pred = F.softmax(crop_pred,dim=1).data.max(1)
                #     crop_pred = crop_pred[1].squeeze_(1)
                #     crop_preds.append(crop_pred)
                #     crop_loc_gts.append(crop_loc_gt)
                # crop_preds = torch.cat(crop_preds, dim=0)
                # crop_loc_gts = torch.cat(crop_loc_gts, dim=0)

                # # splice them to the original size
                # idx = 0
                # pred_map = torch.zeros_like(dot_map).cuda()
                # loc_gt_map = torch.zeros_like(dot_map).cuda()
                # for i in range(0, h, rh):
                #     gis, gie = max(min(h-rh, i), 0), min(h, i+rh)
                #     for j in range(0, w, rw):
                #         gjs, gje = max(min(w-rw, j), 0), min(w, j+rw)
                #         pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                #         loc_gt_map[:, :, gis:gie, gjs:gje] += crop_loc_gts[idx]
                #         idx += 1

                # # for the overlapping area, compute average value
                # mask = crop_masks.sum(dim=0).unsqueeze(0)
                # pred_map = (pred_map / mask).bool().long()
                # loc_gt_map = (loc_gt_map / mask).bool().long()

                pred_map = pred_map.bool().long()
                loc_gt_map = loc_gt_map.bool().long()

                # pdb.set_trace()

                pred_map = pred_map.data.cpu().numpy()
                loc_gt_map = loc_gt_map.data.cpu().numpy()

                losses.update(self.net.loss.item())

                if vi == 0:
                    vis_results(self.exp_name, self.epoch, self.writer,
                                self.restore_transform, img, pred_map,
                                loc_gt_map)

        loss = losses.avg

        self.writer.add_scalar('val_loss', loss, self.epoch + 1)

        self.train_record = update_model(self.net,self.optimizer,self.scheduler,self.epoch,self.i_tb,self.exp_path,self.exp_name, \
            loss,self.train_record,self.log_txt)

        print_NWPU_summary(self.exp_name, self.log_txt, self.epoch, loss,
                           self.train_record)
Ejemplo n.º 11
0
def test(file_list, model_path):

    net = CrowdCounter(cfg.GPU_ID, 'CANNet')
    net.cuda()
    net.load_state_dict(torch.load(model_path))
    net.eval()

    gts = []
    preds = []

    for i in range(len(img_paths)):
        try:
            img = Image.open(img_paths[i])
        except:
            #img_paths.remove(img_paths[i])
            print(img_paths[i])
            preds.append(10)
            continue
        if img.mode == 'L':
            img = img.convert('RGB')
        img = img_transform(img)[None, :, :, :]
        with torch.no_grad():
            img = Variable(img).cuda()
            crop_imgs, crop_masks = [], []
            b, c, h, w = img.shape
            rh, rw = 576, 768
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    crop_imgs.append(img[:, :, gis:gie, gjs:gje])
                    mask = torch.zeros(b, 1, h, w).cuda()
                    mask[:, :, gis:gie, gjs:gje].fill_(1.0)
                    crop_masks.append(mask)
            crop_imgs, crop_masks = map(lambda x: torch.cat(x, dim=0),
                                        (crop_imgs, crop_masks))

            # forward may need repeatng
            crop_preds = []
            nz, bz = crop_imgs.size(0), 1
            for i in range(0, nz, bz):
                gs, gt = i, min(nz, i + bz)
                crop_pred = net.test_forward(crop_imgs[gs:gt])
                #print('cropsize',crop_pred.size(),crop_imgs[gs:gt].size())
                crop_preds.append(crop_pred)
            crop_preds = torch.cat(crop_preds, dim=0)

            #print(img_paths[i],b,h,w,crop_imgs.size())

            # splice them to the original size
            idx = 0
            pred_map = torch.zeros(b, 1, h, w).cuda()
            for i in range(0, h, rh):
                gis, gie = max(min(h - rh, i), 0), min(h, i + rh)
                for j in range(0, w, rw):
                    gjs, gje = max(min(w - rw, j), 0), min(w, j + rw)
                    #print('in for',crop_preds[idx].size())
                    pred_map[:, :, gis:gie, gjs:gje] += crop_preds[idx]
                    idx += 1

            # for the overlapping area, compute average value
            mask = crop_masks.sum(dim=0).unsqueeze(0)
            pred_map = pred_map / mask
        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]

        pred = np.sum(pred_map) / LOG_PARA
        preds.append(pred)
    df = pd.DataFrame()
    df['file'] = [os.path.basename(x) for x in img_paths]
    df['man_count'] = preds
    df['man_count'] = df['man_count'].round()
    df['man_count'] = df['man_count'].astype(int)
    df.loc[df['man_count'] > 100, 'man_count'] = 100
    df.loc[df['man_count'] < 0, 'man_count'] = 0
    df.to_csv('newonline_21.csv', index=None)
Ejemplo n.º 12
0
def test(file_list, model_path):
    net = CrowdCounter(cfg.GPU_ID, cfg.NET)
    net.load_state_dict(torch.load(model_path))
    net.cuda()
    net.eval()

    maes = AverageMeter()
    mses = AverageMeter()

    step = 0
    time_sampe = 0
    for filename in file_list:
        step = step + 1
        print filename
        imgname = dataRoot + '/img/' + filename
        filename_no_ext = filename.split('.')[0]

        denname = dataRoot + '/den/' + filename_no_ext + '.csv'
        den = pd.read_csv(denname, sep=',', header=None).values

        # den = sio.loadmat(dataRoot + '/den/' + filename_no_ext + '.mat')
        # den = den['map']

        den = den.astype(np.float32, copy=False)

        img = Image.open(imgname)

        if img.mode == 'L':
            img = img.convert('RGB')

        # prepare
        wd_1, ht_1 = img.size
        # pdb.set_trace()

        # if wd_1 < 1024:
        #     dif = 1024 - wd_1
        #     img = ImageOps.expand(img, border=(0, 0, dif, 0), fill=0)
        #     pad = np.zeros([ht_1, dif])
        #     den = np.array(den)
        #     den = np.hstack((den, pad))
        #
        # if ht_1 < 768:
        #     dif = 768 - ht_1
        #     img = ImageOps.expand(img, border=(0, 0, 0, dif), fill=0)
        #     pad = np.zeros([dif, wd_1])
        #     den = np.array(den)
        #     den = np.vstack((den, pad))

        img = img_transform(img)

        gt_count = np.sum(den)

        img = Variable(img[None, :, :, :], volatile=True).cuda()

        # forward
        pred_map = net.test_forward(img)

        pred_map = pred_map.cpu().data.numpy()[0, 0, :, :]
        pred_cnt = np.sum(pred_map) / 2550.0
        pred_map = pred_map / np.max(pred_map + 1e-20)
        pred_map = pred_map[0:ht_1, 0:wd_1]

        den = den / np.max(den + 1e-20)
        den = den[0:ht_1, 0:wd_1]

        maes.update(abs(gt_count - pred_cnt))
        mses.update((gt_count - pred_cnt) * (gt_count - pred_cnt))

    mae = maes.avg
    mse = np.sqrt(mses.avg)

    print '\n[MAE: %fms][MSE: %fms]' % (mae, mse)