def build_model(args): # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'LeNet' and args.dataset == 'traffic': net_glob = LeNet(args=args).to(args.device) else: exit('Error: unrecognized model') return net_glob
def get_model(args): if args.model == 'cnn' and args.dataset in ['cifar10', 'cifar100']: net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp' and args.dataset == 'mnist': net_glob = MLP(dim_in=784, dim_hidden=256, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(net_glob) return net_glob
def __init__(self, args): if args.dataset == 'cifar': self.net = CNNCifar(args=args).to(args.device) else: self.net = CNNMnist(args=args).to(args.device) self.net.train() self.loss_func = nn.CrossEntropyLoss() self.optimizer = torch.optim.SGD(self.net.parameters(), lr=args.lr) self.args = args self.w_glob = [] # key exchange self.x = self.gx = 0 self.keys = defaultdict(int)
def build_model(): # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) # elif args.model == 'mlp': # len_in = 1 # for x in img_size: # len_in *= x # net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') return net_glob
def get_model(args): if args.model == 'cnn' and args.dataset in ['cifar10', 'cifar100']: net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'mobile' and args.dataset in ['cifar10', 'cifar100']: net_glob = MobileNetCifar(num_classes=args.num_classes).to(args.device) elif args.model == 'resnet18' and args.dataset in ['cifar10', 'cifar100']: net_glob = ResNet18(num_classes=args.num_classes).to(args.device) elif args.model == 'resnet50' and args.dataset in ['cifar10', 'cifar100']: net_glob = ResNet50(num_classes=args.num_classes).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp' and args.dataset == 'mnist': net_glob = MLP(dim_in=784, dim_hidden=256, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') return net_glob
def modelBuild(): """ Build the basic training network and return the related args. """ # build model args = args_parser() args.device = torch.device('cuda:{}'.format( args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') # load dataset and split users if args.dataset == 'mnist': trans_mnist = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) dataset_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist) dataset_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist) # sample users if args.iid: # allocate the dataset index to users dict_users = mnist_iid(dataset_train, args.num_users) else: dict_users = mnist_noniid(dataset_train, args.num_users) elif args.dataset == 'cifar': trans_cifar = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar) dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') print("The para of iid is " + str(args.iid)) img_size = dataset_train[0][0].shape if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print("********************************") print(net_glob) print("********************************") return net_glob, args, dataset_train, dataset_test, dict_users
transform=transform) test_set = datasets.CIFAR10('./data/cifar', train=False, download=False, transform=transform) else: exit('Error: unrecognized dataset...') # split dataset {user_id: [list of data index]} dict_users_train, ratio = noniid_train(train_set, args.num_users) dict_users_test = noniid_test(test_set, args.num_users, ratio) print('Data finished...') # load global model net_glob = CNNCifar( args=args).to(args.device) if args.dataset == 'cifar' else CNNMnist( args=args).to(args.device) net_glob.train() # parameters w_glob = net_glob.state_dict() loss_train = [] # meta-learning for global initial parameters for epoch in range(args.meta_epochs): loss_locals = [] w_locals = [] m = max(int(args.frac * args.num_users), 1) idxs_users = np.random.choice(range(args.num_users), m, replace=False) for idx in idxs_users:
dp.gen_local_imbalance(10, 5000, 0.8) imbalanced_way = "local" elif args.global_balance: dp.gen_global_imbalance( 5, 2000, [500, 500, 1000, 1000, 1500, 1500, 3000, 1000, 0, 0]) imbalanced_way = "global" # without self-balanced db = DataBalance.DataBalance(dp) db.assign_clients(False) # load dataset and split users img_size = dp[0][0].shape # build original model net_glob = None if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(net_glob) net_glob.train() # copy weights w_glob = net_glob.state_dict()
transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset_train = datasets.CIFAR10('./data/cifar', train=True, transform=transform, target_transform=None, download=True) img_size = dataset_train[0][0].shape else: exit('Error: unrecognized dataset') # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(net_glob) # training optimizer = optim.SGD(net_glob.parameters(), lr=args.lr,
])) # testing dataset_test = datasets.FashionMNIST('../data/fmnist/', train=False, download=True, transform=transforms.Compose([ transforms.Resize((32, 32)), transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False) else: exit('Error: unrecognized dataset') # build model if args.model == 'lenet' and (args.dataset == 'cifar' or args.dataset == 'fmnist'): net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'vgg' and args.dataset == 'cifar': net_glob = vgg16().to(args.device) else: exit('Error: unrecognized model') print(net_glob) img = dataset_train[0][0].unsqueeze(0).to(args.device) writer.add_graph(net_glob, img) # training creterion = nn.CrossEntropyLoss() train_loader = DataLoader(dataset_train, batch_size=64, shuffle=True) # optimizer = optim.Adam(net_glob.parameters()) optimizer = optim.SGD(net_glob.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) # scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=40, gamma=0.1) # # # scheduler.step()
train_set = datasets.MNIST(root='./data/mnist', train=True, download=False, transform=transform) test_set = datasets.MNIST(root='./data/mnist', train=False, download=False, transform=transform) elif args.dataset == 'cifar': transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) train_set = datasets.CIFAR10('./data/cifar', train=True, download=False, transform=transform) test_set = datasets.CIFAR10('./data/cifar', train=False, download=False, transform=transform) else: exit('Error: unrecognized dataset...') dict_users_train, ratio = noniid_train2(train_set, args.num_users) dict_users_test = noniid_test(test_set, args.num_users, ratio) print('Data finished...') # load global model net_glob = CNNCifar(args=args).to(args.device) if args.dataset == 'cifar' else CNNMnist(args=args).to(args.device) net_glob.train() # parameters w_glob = net_glob.state_dict() # test each of clients test_acc = [0 for i in range(args.num_users)] test_loss = [0 for i in range(args.num_users)] for idx in range(args.num_users): # every time start with the same global parameters net_glob.load_state_dict(w_glob) client = Client(args=args, dataset=train_set, idxs=dict_users_train[idx], bs=args.train_bs) w_client = client.local_train(net=copy.deepcopy(net_glob).to(args.device)) client = Client(args=args, dataset=test_set, idxs=dict_users_test[idx], bs=args.test_bs)
def main(): # parse args args = args_parser() args.device = torch.device('cuda:{}'.format( args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') # load dataset and split users if args.dataset == 'mnist': trans_mnist = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) dataset_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist) dataset_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist) print("type of test dataset", type(dataset_test)) # sample users if args.iid: dict_users = mnist_iid(dataset_train, args.num_users) else: dict_users, dict_labels_counter = mnist_noniid( dataset_train, args.num_users) dict_users_2, dict_labels_counter_2 = dict_users, dict_labels_counter #dict_users, dict_labels_counter = mnist_noniid_unequal(dataset_train, args.num_users) elif args.dataset == 'cifar': trans_cifar = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar) dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) net_glob_2 = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) net_glob_2 = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') #print(net_glob) #net_glob.train() acc_test, loss_test = test_img(net_glob, dataset_test, args) print("val test finished") print("{:.2f}".format(acc_test)) temp = net_glob #net_glob_2 = net_glob temp_2 = net_glob_2 # copy weights w_glob = net_glob.state_dict() # training loss_train = [] cv_loss, cv_acc = [], [] val_loss_pre, counter = 0, 0 net_best = None best_loss = None val_acc_list, net_list = [], [] Loss_local_each_global_total = [] test_ds, valid_ds = torch.utils.data.random_split(dataset_test, (9500, 500)) loss_workers_total = np.zeros(shape=(args.num_users, args.epochs)) label_workers = { i: np.array([], dtype='int64') for i in range(args.num_users) } workers_percent = [] workers_count = 0 acc_test_global, loss_test_global = test_img(x, valid_ds, args) selected_users_index = [] for idx in range(args.num_users): # print("train started") local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx]) w, loss = local.train(net=copy.deepcopy(net_glob).to(args.device)) # print(w) # print("train completed") # temp = FedAvg(w) temp.load_state_dict(w) temp.eval() acc_test_local, loss_test_local = test_img(temp, valid_ds, args) loss_workers_total[idx, iter] = acc_test_local if workers_count >= (args.num_users / 2): break elif acc_test_local >= (0.7 * acc_test_global): selected_users_index.append(idx) for iter in range(args.epochs): print("round started") Loss_local_each_global = [] loss_workers = np.zeros((args.num_users, args.epochs)) w_locals, loss_locals = [], [] m = max(int(args.frac * args.num_users), 1) #idxs_users = np.random.choice(range(args.num_users), m, replace=False) #if iter % 5 == 0: # Minoo x = net_glob x.eval() Loss_local_each_global_total.append(acc_test_global) for idx in selected_users_index: #print("train started") local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx]) w, loss = local.train(net=copy.deepcopy(net_glob).to(args.device)) #print(w) #print("train completed") #temp = FedAvg(w) temp.load_state_dict(w) temp.eval() acc_test_local, loss_test_local = test_img(temp, valid_ds, args) loss_workers_total[idx, iter] = acc_test_local if workers_count >= (args.num_users / 2): break elif acc_test_local >= (0.7 * acc_test_global): w_locals.append(copy.deepcopy(w)) loss_locals.append(copy.deepcopy(loss)) print("Update Received") workers_count += 1 # update global weights w_glob = FedAvg(w_locals) # copy weight to net_glob net_glob.load_state_dict(w_glob) print("round completed") loss_avg = sum(loss_locals) / len(loss_locals) print('Round {:3d}, Average loss {:.3f}'.format(iter, loss_avg)) loss_train.append(loss_avg) workers_percent.append(workers_count) # plot loss curve plt.figure() plt.plot(range(len(workers_percent)), workers_percent) plt.ylabel('train_loss') plt.savefig( './save/Newfed_WorkersPercent_0916_{}_{}_{}_C{}_iid{}.png'.format( args.dataset, args.model, args.epochs, args.frac, args.iid)) # print(loss_workers_total) # plot loss curve # plt.figure() # plt.plot(range(len(loss_train)), loss_train) # plt.ylabel('train_loss') # plt.savefig('./save/Newfed_0916_{}_{}_{}_C{}_iid{}.png'.format(args.dataset, args.model, args.epochs, args.frac, args.iid)) # plt.figure() for i in range(args.num_users): plot = plt.plot(range(len(loss_workers_total[i, :])), loss_workers_total[i, :], label="Worker {}".format(i)) plot5 = plt.plot(range(len(Loss_local_each_global_total)), Loss_local_each_global_total, color='000000', label="Global") plt.legend(loc='best') plt.ylabel('Small Test Set Accuracy of workers') plt.xlabel('Number of Rounds') plt.savefig( './save/NewFed_2workers_Acc_0916_{}_{}_{}_C{}_iid{}.png'.format( args.dataset, args.model, args.epochs, args.frac, args.iid)) # plt.figure() # bins = np.linspace(0, 9, 3) # a = dict_labels_counter[:, 0].ravel() # print(type(a)) # b = dict_labels_counter[:, 1].ravel() # x_labels = ['0', '1', '2', '3','4','5','6','7','8','9'] # # Set plot parameters # fig, ax = plt.subplots() # width = 0.1 # width of bar # x = np.arange(10) # ax.bar(x, dict_labels_counter[:, 0], width, color='#000080', label='Worker 1') # ax.bar(x + width, dict_labels_counter[:, 1], width, color='#73C2FB', label='Worker 2') # ax.bar(x + 2*width, dict_labels_counter[:, 2], width, color='#ff0000', label='Worker 3') # ax.bar(x + 3*width, dict_labels_counter[:, 3], width, color='#32CD32', label='Worker 4') # ax.set_ylabel('Number of Labels') # ax.set_xticks(x + width + width / 2) # ax.set_xticklabels(x_labels) # ax.set_xlabel('Labels') # ax.legend() # plt.grid(True, 'major', 'y', ls='--', lw=.5, c='k', alpha=.3) # fig.tight_layout() # plt.savefig( # './save/Newfed_2workersLabels_0916_{}_{}_{}_C{}_iid{}.png'.format(args.dataset, args.model, args.epochs, args.frac, # args.iid)) # testing print("testing started") net_glob.eval() print("train test started") acc_train_final, loss_train_final = test_img(net_glob, dataset_train, args) print("train test finished") acc_test_final, loss_test_final = test_img(net_glob, dataset_test, args) print("val test finished") #print("Training accuracy: {:.2f}".format(acc_train)) #print("Testing accuracy: {:.2f}".format(acc_test)) print("{:.2f}".format(acc_test_final)) #print("{:.2f".format(Loss_local_each_worker)) # training w_glob_2 = net_glob_2.state_dict() loss_train_2 = [] cv_loss_2, cv_acc_2 = [], [] val_loss_pre_2, counter_2 = 0, 0 net_best_2 = None best_loss_2 = None val_acc_list_2, net_list_2 = [], [] Loss_local_each_global_total_2 = [] loss_workers_total_2 = np.zeros(shape=(args.num_users, args.epochs)) label_workers_2 = { i: np.array([], dtype='int64') for i in range(args.num_users) } for iter in range(args.epochs): print("round started") Loss_local_each_global_2 = [] loss_workers_2 = np.zeros((args.num_users, args.epochs)) w_locals_2, loss_locals_2 = [], [] m_2 = max(int(args.frac * args.num_users), 1) idxs_users_2 = np.random.choice(range(args.num_users), m_2, replace=False) # Minoo x_2 = net_glob_2 x_2.eval() acc_test_global_2, loss_test_global_2 = test_img(x_2, valid_ds, args) Loss_local_each_global_total_2.append(acc_test_global_2) for idx in idxs_users_2: #print("train started") local_2 = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users_2[idx]) w_2, loss_2 = local_2.train( net=copy.deepcopy(net_glob_2).to(args.device)) #print(w) #print("train completed") w_locals_2.append(copy.deepcopy(w_2)) loss_locals_2.append(copy.deepcopy(loss_2)) #temp = FedAvg(w) temp_2.load_state_dict(w_2) temp_2.eval() acc_test_local_2, loss_test_local_2 = test_img( temp_2, valid_ds, args) loss_workers_total_2[idx, iter] = acc_test_local_2 # update global weights w_glob_2 = FedAvg(w_locals_2) # copy weight to net_glob net_glob_2.load_state_dict(w_glob_2) print("round completed") loss_avg_2 = sum(loss_locals_2) / len(loss_locals_2) print('Round {:3d}, Average loss {:.3f}'.format(iter, loss_avg_2)) loss_train_2.append(loss_avg_2) print("round completed") # plot loss curve plt.figure() plt.plot(range(len(loss_train_2)), loss_train_2, color='#000000', label="Main FL") plt.plot(range(len(loss_train)), loss_train, color='#ff0000', label="Centralized Algorithm") plt.ylabel('train_loss') plt.savefig('./save/main_fed_0916_{}_{}_{}_C{}_iid{}.png'.format( args.dataset, args.model, args.epochs, args.frac, args.iid)) # print(loss_workers_total) plt.figure() for i in range(args.num_users): plot = plt.plot(range(len(loss_workers_total_2[i, :])), loss_workers_total_2[i, :], label="Worker {}".format(i)) plot5 = plt.plot(range(len(Loss_local_each_global_total_2)), Loss_local_each_global_total_2, color='000000', label="Global") plt.legend(loc='best') plt.ylabel('Small Test Set Accuracy of workers') plt.xlabel('Number of Rounds') plt.savefig('./save/mainfed_Acc_0916_{}_{}_{}_C{}_iid{}.png'.format( args.dataset, args.model, args.epochs, args.frac, args.iid)) # plt.figure() # bins = np.linspace(0, 9, 3) # a = dict_labels_counter_2[:, 0].ravel() # print(type(a)) # b = dict_labels_counter_2[:, 1].ravel() # x_labels = ['0', '1', '2', '3','4','5','6','7','8','9'] # # Set plot parameters # fig, ax = plt.subplots() # width = 0.1 # width of bar # x = np.arange(10) # ax.bar(x, dict_labels_counter_2[:, 0], width, color='#000080', label='Worker 1') # ax.bar(x + width, dict_labels_counter_2[:, 1], width, color='#73C2FB', label='Worker 2') # ax.bar(x + 2*width, dict_labels_counter_2[:, 2], width, color='#ff0000', label='Worker 3') # ax.bar(x + 3*width, dict_labels_counter_2[:, 3], width, color='#32CD32', label='Worker 4') # ax.set_ylabel('Number of Labels') # ax.set_xticks(x + width + width / 2) # ax.set_xticklabels(x_labels) # ax.set_xlabel('Labels') # ax.legend() # plt.grid(True, 'major', 'y', ls='--', lw=.5, c='k', alpha=.3) # fig.tight_layout() # plt.savefig( # './save/main_fed_2workersLabels_0916_{}_{}_{}_C{}_iid{}.png'.format(args.dataset, args.model, args.epochs, args.frac, # args.iid)) # testing print("testing started") net_glob.eval() print("train test started") acc_train_final, loss_train_final = test_img(net_glob, dataset_train, args) print("train test finished") acc_test_final, loss_test_final = test_img(net_glob, dataset_test, args) print("val test finished") #print("Training accuracy: {:.2f}".format(acc_train)) #print("Testing accuracy: {:.2f}".format(acc_test)) print("{:.2f}".format(acc_test_final)) #print("{:.2f".format(Loss_local_each_worker)) return loss_test_final, loss_train_final
for k, v in dict_users.items(): writer.add_histogram(f'user_{k}/data_distribution', np.array(dataset_train.targets)[v], bins=np.arange(11)) writer.add_histogram(f'all_user/data_distribution', np.array(dataset_train.targets)[v], bins=np.arange(11), global_step=k) test_loader = DataLoader(dataset_test, batch_size=1000, shuffle=False) img_size = dataset_train[0][0].shape # build model if args.model == 'lenet' and (args.dataset == 'cifar' or args.dataset == 'fmnist'): net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'vgg' and args.dataset == 'cifar': net_glob = vgg16().to(args.device) else: exit('Error: unrecognized model') print(net_glob) net_glob.train() # copy weights w_init = copy.deepcopy(net_glob.state_dict()) local_acc_final = [] total_acc_final = [] local_acc = np.zeros([args.num_users, args.epochs]) total_acc = np.zeros([args.num_users, args.epochs])
train=False, transform=cifar_transform(is_training=False), download=True) #dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar) #dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') #net_glob = ResNet18() net_best = 0 net_glob = VGG('VGG16')
def main(): # parse args args = args_parser() args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') # load dataset and split users if args.dataset == 'mnist': trans_mnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) dataset_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist) dataset_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist) # sample users if args.iid: dict_users = mnist_iid(dataset_train, args.num_users) else: dict_users, dict_labels_counter = mnist_noniid(dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users, dict_labels_counter elif args.dataset == 'cifar': trans_cifar = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar) dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: dict_users, dict_labels_counter = cifar_noniid(dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users, dict_labels_counter elif args.dataset == 'fmnist': trans_fmnist = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) dataset_train = datasets.FashionMNIST('../data/fmnist', train=True, download=True, transform=trans_fmnist) dataset_test = datasets.FashionMNIST('../data/fmnist', train=False, download=True, transform=trans_fmnist) if args.iid: dict_users = mnist_iid(dataset_train, args.num_users) else: dict_users, dict_labels_counter = mnist_noniid(dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users, dict_labels_counter else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape acc_full_distributed = [] acc_full_main = [] loss_full_ditributed = [] loss_full_main = [] SD_acc_full_distributed = [] SD_acc_full_main = [] SD_loss_full_ditributed = [] SD_loss_full_main = [] workers_percent_full_distributed = [] workers_percent_full_main = [] variable_start = 0.1 variable_end = 1.0 while_counter = 0.1 counter_array = [] Accuracy_Fraction = [] Workers_Fraction = [] accuracy_fraction_each_round_newFL = 0 workers_fraction_each_round_newFL = 0 accuracy_fraction_each_round_mainFL = 0 workers_fraction_each_round_mainFL = 0 data_main = {} data_DCFL = {} data_Global_main = {"C": [], "Round":[], "Average Loss Train": [], "Average Loss Test": [], "Accuracy Test": [], "Workers Number": [], "Large Test Loss":[], "Large Test Accuracy":[]} data_Global_DCFL = {"C": [], "Round":[], "Average Loss Train": [], "Average Loss Test": [], "Accuracy Test": [], "Workers Number": [], "Large Test Loss":[], "Large Test Accuracy":[]} Final_LargeDataSetTest_DCFL = {"C":[], "Test Accuracy":[], "Test Loss":[], "Train Loss":[], "Train Accuracy":[], "Total Rounds":[]} Final_LargeDataSetTest_MainFL = {"C":[], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy":[]} # build model args.frac = variable_start test_ds, valid_ds_before = torch.utils.data.random_split(dataset_test, (9500, 500)) valid_ds = create_shared_dataset(valid_ds_before, 200) #while variable_start <= variable_end: for c_counter in range(1, 11, 3): if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'cnn' and args.dataset == 'fmnist': net_glob = CNNFashion_Mnist(args=args).to(args.device) net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') counter_array.append((c_counter/10)) args.frac = (c_counter/10) ######saving index of workers dict_workers_index = defaultdict(list) #############Main FL w_glob_mainFL = net_glob_mainFL.state_dict() loss_train_mainFL = [] # cv_loss_2, cv_acc_2 = [], [] # val_loss_pre_2, counter_2 = 0, 0 # net_best_2 = None # best_loss_2 = None # val_acc_list_2, net_list_2 = [], [] Loss_local_each_global_total_mainFL = [] Accuracy_local_each_global_total_mainFL = [] loss_workers_total_mainFL = np.zeros(shape=(args.num_users, args.epochs)) label_workers_mainFL = {i: np.array([], dtype='int64') for i in range(args.num_users)} validation_test_mainFed = [] acc_test, loss_test = test_img(net_glob_mainFL, dataset_test, args) workers_participation_main_fd = np.zeros((args.num_users, args.epochs)) workers_percent_main = [] # for iter in range(args.epochs): net_glob_mainFL.eval() acc_test_final_mainFL, loss_test_final_mainFL = test_img(net_glob_mainFL, dataset_test, args) while_counter_mainFL = loss_test_final_mainFL iter_mainFL = 0 workers_mainFL = [] for i in range(args.num_users): workers_mainFL.append(i) temp_netglob_mainFL = net_glob_mainFL while iter_mainFL < (args.epochs/2): data_main['round_{}'.format(iter_mainFL)] = [] # data_Global_main['round_{}'.format(iter)] = [] # print("round started") Loss_local_each_global_mainFL = [] loss_workers_mainFL = np.zeros((args.num_users, args.epochs)) w_locals_mainFL, loss_locals_mainFL = [], [] m_mainFL = max(int(args.frac * args.num_users), 1) idxs_users_mainFL = np.random.choice(range(args.num_users), m_mainFL, replace=False) list_of_random_workers = random.sample(workers_mainFL, m_mainFL) for i in range(len(list_of_random_workers)): dict_workers_index[iter_mainFL].append(list_of_random_workers[i]) x_mainFL = net_glob_mainFL x_mainFL.eval() acc_test_global_mainFL, loss_test_global_mainFL = test_img(x_mainFL, valid_ds, args) Loss_local_each_global_total_mainFL.append(loss_test_global_mainFL) Accuracy_local_each_global_total_mainFL.append(acc_test_global_mainFL) SD_acc_full_main.append(acc_test_global_mainFL) SD_loss_full_main.append(loss_test_global_mainFL) workers_count_mainFL = 0 temp_accuracy = np.zeros(1) temp_loss_test = np.zeros(1) temp_loss_train = np.zeros(1) for idx in list_of_random_workers: # print("train started") local_mainFL = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users_mainFL[idx]) w_mainFL, loss_mainFL = local_mainFL.train(net=copy.deepcopy(net_glob_mainFL).to(args.device)) # print(w) # print("train completed") w_locals_mainFL.append(copy.deepcopy(w_mainFL)) loss_locals_mainFL.append(copy.deepcopy(loss_mainFL)) # temp = FedAvg(w) temp_netglob_mainFL.load_state_dict(w_mainFL) temp_netglob_mainFL.eval() print(pnorm_2(temp_netglob_mainFL, 2)) acc_test_local_mainFL, loss_test_local_mainFL = test_img(temp_netglob_mainFL, valid_ds, args) temp_accuracy[0] = acc_test_local_mainFL temp_loss_test[0] = loss_test_local_mainFL temp_loss_train[0] = loss_mainFL loss_workers_total_mainFL[idx, iter_mainFL] = acc_test_local_mainFL workers_participation_main_fd[idx][iter_mainFL] = 1 workers_count_mainFL += 1 data_main['round_{}'.format(iter_mainFL)].append({ 'C': args.frac, 'User ID': idx, # 'Local Update': copy.deepcopy(w_mainFL), 'Loss Train': temp_loss_train[0], 'Loss Test': temp_loss_test[0], 'Accuracy': temp_accuracy[0] }) # update global weights w_glob_mainFL = FedAvg(w_locals_mainFL) # copy weight to net_glob net_glob_mainFL.load_state_dict(w_glob_mainFL) # print("round completed") loss_avg_mainFL = sum(loss_locals_mainFL) / len(loss_locals_mainFL) # print('Round {:3d}, Average loss {:.3f}'.format(iter, loss_avg_mainFL)) loss_train_mainFL.append(loss_avg_mainFL) # print("round completed") acc_test_round_mainfed, loss_test_round_mainfed = test_img(net_glob_mainFL, dataset_test, args) validation_test_mainFed.append(acc_test_round_mainfed) workers_percent_main.append(workers_count_mainFL / args.num_users) # plot workers percent of participating print(iter_mainFL, " round main fl finished") acc_test_final_mainFL, loss_test_final_mainFL = test_img(net_glob_mainFL, dataset_test, args) while_counter_mainFL = loss_test_final_mainFL data_Global_main["Round"].append(iter_mainFL) data_Global_main["C"].append(args.frac) data_Global_main["Average Loss Train"].append(float(loss_avg_mainFL)) data_Global_main["Average Loss Test"].append(float(loss_test_global_mainFL)) data_Global_main["Accuracy Test"].append(float(acc_test_global_mainFL)) data_Global_main["Workers Number"].append(float(workers_count_mainFL)) data_Global_main["Large Test Loss"].append(float(loss_test_final_mainFL)) data_Global_main["Large Test Accuracy"].append(float(acc_test_final_mainFL)) iter_mainFL = iter_mainFL + 1 workers_percent_final_mainFL = np.zeros(args.num_users) workers_name_mainFL = np.empty(args.num_users) for i in range(len(workers_participation_main_fd[:, 1])): workers_percent_final_mainFL[i] = sum(workers_participation_main_fd[i, :]) / args.epochs workers_name_mainFL[i] = i net_glob_mainFL.eval() # print("train test started") acc_train_final_main, loss_train_final_main = test_img(net_glob_mainFL, dataset_train, args) # print("train test finished") acc_test_final_main, loss_test_final_main = test_img(net_glob_mainFL, dataset_test, args) Final_LargeDataSetTest_MainFL["C"].append(args.frac) Final_LargeDataSetTest_MainFL["Test Loss"].append(float(loss_test_final_main)) Final_LargeDataSetTest_MainFL["Test Accuracy"].append(float(acc_test_final_main)) Final_LargeDataSetTest_MainFL["Train Loss"].append(float(loss_train_final_main)) Final_LargeDataSetTest_MainFL["Train Accuracy"].append(float(acc_train_final_main)) # copy weights w_glob = net_glob.state_dict() temp_after = copy.deepcopy(net_glob) temp_before = copy.deepcopy(net_glob) # training loss_train = [] # cv_loss, cv_acc = [], [] # val_loss_pre, counter = 0, 0 # net_best = None # best_loss = None # val_acc_list, net_list = [], [] Loss_local_each_global_total = [] # valid_ds = create_shared_dataset(dataset_test, 500) loss_workers_total = np.zeros(shape=(args.num_users, args.epochs)) label_workers = {i: np.array([], dtype='int64') for i in range(args.num_users)} workers_percent_dist = [] validation_test_newFed = [] workers_participation = np.zeros((args.num_users, args.epochs)) workers = [] for i in range(args.num_users): workers.append(i) counter_threshold_decrease = np.zeros(args.epochs) Global_Accuracy_Tracker = np.zeros(args.epochs) Global_Loss_Tracker = np.zeros(args.epochs) threshold = 0.5 alpha = 0.5 ##decrease parameter beta = 0.1 ##delta accuracy controller gamma = 0.5 ##threshold decrease parameter Goal_Loss = float(loss_test_final_main) #for iter in range(args.epochs): net_glob.eval() acc_test_final, loss_test_final = test_img(net_glob, dataset_test, args) while_counter = float(loss_test_final) iter = 0 total_rounds_dcfl = 0 while (while_counter + 0.01) > Goal_Loss and iter <= args.epochs: data_DCFL['round_{}'.format(iter)] = [] Loss_local_each_global = [] loss_workers = np.zeros((args.num_users, args.epochs)) w_locals, loss_locals = [], [] m = max(int(args.frac * args.num_users), 1) idxs_users = np.random.choice(range(args.num_users), m, replace=False) counter_threshold = 0 print(iter, " in dist FL started") #if iter % 5 == 0: x = copy.deepcopy(net_glob) x.eval() acc_test_global, loss_test_global = test_img(x, valid_ds, args) Loss_local_each_global_total.append(acc_test_global) Global_Accuracy_Tracker[iter] = acc_test_global Global_Loss_Tracker[iter] = loss_test_global if iter > 0 & (Global_Loss_Tracker[iter-1] - Global_Loss_Tracker[iter] <= beta): threshold = threshold - gamma if threshold == 0.0: threshold = 1.0 print("threshold decreased to", threshold) workers_count = 0 SD_acc_full_distributed.append(acc_test_global) SD_loss_full_ditributed.append(loss_test_global) temp_w_locals = [] temp_workers_loss = np.empty(args.num_users) temp_workers_accuracy = np.empty(args.num_users) temp_workers_loss_test = np.empty(args.num_users) temp_workers_loss_differenc = np.empty(args.num_users) temp_workers_accuracy_differenc = np.empty(args.num_users) flag = np.zeros(args.num_users) list_of_random_workers_newfl = [] if iter < (args.epochs/2): for key, value in dict_workers_index.items(): # print(value) if key == iter: list_of_random_workers_newfl = dict_workers_index[key] else: list_of_random_workers_newfl = random.sample(workers, m) for idx in list_of_random_workers_newfl: #print("train started") # before starting train temp_before = copy.deepcopy(net_glob) # temp_before.load_state_dict(w) temp_before.eval() acc_test_local_before, loss_test_local_before = test_img(temp_before, valid_ds, args) local = LocalUpdate(args=args, dataset=dataset_train, idxs=dict_users[idx]) w, loss = local.train(net=copy.deepcopy(net_glob).to(args.device)) #print(w) #print("train completed") #print("type of idx is ", type(temp_w_locals)) temp_w_locals.append(copy.deepcopy(w)) temp_workers_loss[idx] = copy.deepcopy(loss) temp_after = copy.deepcopy(net_glob) temp_after.load_state_dict(w) temp_after.eval() acc_test_local_after, loss_test_local_after = test_img(temp_after, valid_ds, args) loss_workers_total[idx, iter] = loss_test_local_after temp_workers_accuracy[idx] = acc_test_local_after temp_workers_loss_test[idx] = loss_test_local_after temp_workers_loss_differenc[idx] = loss_test_local_before - loss_test_local_after temp_workers_accuracy_differenc[idx] = acc_test_local_after - acc_test_local_before print("train finished") while len(w_locals) < 1: #print("recieving started") index = 0 for idx in list_of_random_workers_newfl: #print("acc is ", temp_workers_accuracy[idx]) # print(temp_workers_loss_differenc) if workers_count >= m: break elif temp_workers_loss_differenc[idx] >= (threshold) \ and temp_workers_loss_differenc[idx] > 0 \ and flag[idx]==0: print("Update Received") w_locals.append(copy.deepcopy(temp_w_locals[index])) #print(temp_w_locals[index]) loss_locals.append(temp_workers_loss[idx]) flag[idx] = 1 workers_count += 1 workers_participation[idx][iter] = 1 data_DCFL['round_{}'.format(iter)].append({ 'C': args.frac, 'User ID': idx, 'Loss Train': loss_workers_total[idx, iter], 'Loss Test': temp_workers_loss[idx], 'Accuracy': temp_workers_accuracy[idx] }) index += 1 if len(w_locals) < 1: threshold = threshold / 2 if threshold == -np.inf: threshold = 1 print("threshold increased to ", threshold) # update global weights w_glob = FedAvg(w_locals) # copy weight to net_glob net_glob.load_state_dict(w_glob) #print("round completed") loss_avg = sum(loss_locals) / len(loss_locals) loss_train.append(loss_avg) workers_percent_dist.append(workers_count/args.num_users) counter_threshold_decrease[iter] = counter_threshold print(iter, " round dist fl finished") acc_test_final, loss_test_final = test_img(net_glob, dataset_test, args) while_counter = loss_test_final data_Global_DCFL["Round"].append(iter) data_Global_DCFL["C"].append(args.frac) data_Global_DCFL["Average Loss Train"].append(loss_avg) data_Global_DCFL["Accuracy Test"].append(Global_Accuracy_Tracker[iter]) data_Global_DCFL["Average Loss Test"].append(Global_Loss_Tracker[iter]) data_Global_DCFL["Workers Number"].append(workers_count) data_Global_DCFL["Large Test Loss"].append(float(loss_test_final)) data_Global_DCFL["Large Test Accuracy"].append(float(acc_test_final)) total_rounds_dcfl = iter iter = iter + 1 #plot workers percent of participating workers_percent_final = np.zeros(args.num_users) workers_name = np.empty(args.num_users) #print(workers_participation) for i in range(len(workers_participation[:, 1])): workers_percent_final[i] = sum(workers_participation[i, :])/args.epochs workers_name[i] = i workers_fraction_each_round_newFL = sum(workers_percent_final)/len(workers_percent_final) # testing #print("testing started") net_glob.eval() #print("train test started") acc_train_final, loss_train_final = test_img(net_glob, dataset_train, args) #print("train test finished") acc_test_final, loss_test_final = test_img(net_glob, dataset_test, args) acc_full_distributed.append(acc_test_final) loss_full_ditributed.append(loss_test_final) Final_LargeDataSetTest_DCFL["C"].append(args.frac) Final_LargeDataSetTest_DCFL["Test Loss"].append(float(loss_test_final)) Final_LargeDataSetTest_DCFL["Test Accuracy"].append(float(acc_test_final)) Final_LargeDataSetTest_DCFL["Train Loss"].append(float(loss_train_final)) Final_LargeDataSetTest_DCFL["Train Accuracy"].append(float(acc_train_final)) Final_LargeDataSetTest_DCFL["Total Rounds"].append(int(total_rounds_dcfl)) variable_start = variable_start + while_counter print("C is ", c_counter/10) with open('CIFAR_100users_data_main_1229-2020.json', 'w') as outfile: json.dump(data_main, outfile) with open('CIFAR_100users_data_DCFL_1229-2020.json', 'w') as outfile: json.dump(data_DCFL, outfile) with open('CIFAR_100users_data_DCFL_Global_1229-2020.json', 'w') as outfile: json.dump(data_Global_DCFL, outfile) with open('CIFAR_100users_data_main_Global_1229-2020.json', 'w') as outfile: json.dump(data_Global_main, outfile) with open('Final-CIFAR_100users_data_main_Global_1229-2020.json', 'w') as outfile: json.dump(Final_LargeDataSetTest_MainFL, outfile) with open('Final-CIFAR_100users_data_DCFL_Global_1229-2020.json', 'w') as outfile: json.dump(Final_LargeDataSetTest_DCFL, outfile) return 1
dataset_test = datasets.CIFAR10('./data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users, args.seed) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_local = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_local = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_local = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') #Let's train the model few epochs first n_epochs = 3 batch_size_train = 64
sys.exit(0) if args.manual_seed: init_random_seed(args.manual_seed) # load dataset and split users dataset_train, dict_users, dataset_test, test_dict_users, p_k, img_size, users_classes = data_split(args) ########################## centralized learning ############################# if args.centralized and (not os.path.exists(filename_nn)): print('centralized learning...') # build model for centralized learning if (args.model == 'cnn' ) and args.dataset == 'mnist': net_glob = CNN(args=args).to(args.device) elif (args.model == 'cnn') and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) elif args.model == 'softmax': len_in = 1 for x in img_size: len_in *= x net_glob = SoftmaxClassifier(dim_in=len_in, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model')
# For DH protocol shared_p, shared_g, cnt_comm = 6362166871434581, 13, 0 # simulate sending message url = 'http://10.28.156.99:6789' # t-out-of-n poly poly = [random.randint(3, shared_p) for _ in range(args.num_users - 1)] print('DemoFL' if _Mode == 0 else 'FedAvg') args.device = torch.device('cuda:{}'.format( args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') ##### init global model if args.dataset == 'cifar': args.num_channels = 3 args.iid = True net_global = CNNCifar(args=args).to(args.device) else: args.num_channels = 1 args.iid = False net_global = CNNMnist(args=args).to(args.device) net_global.train() data_train, data_test, dict_users = load_data(args.dataset, args.iid, args.num_users) ##### copy w structure, create zero base w_glob = net_global.state_dict() w_zero = copy.deepcopy(w_glob) for i in w_zero: w_zero[i] *= 0.
dataset_test = datasets.CIFAR10('./data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users, args.seed) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_local = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_local = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_local = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') if args.new: print('======created a new model========:\n', net_local) else: checkpoint = torch.load(args.base_file)
def main(): manualSeed = 1 np.random.seed(manualSeed) random.seed(manualSeed) torch.manual_seed(manualSeed) # if you are suing GPU torch.cuda.manual_seed(manualSeed) torch.cuda.manual_seed_all(manualSeed) torch.backends.cudnn.enabled = False torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True # parse args args = args_parser() args.device = torch.device('cuda:{}'.format( args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') # load dataset and split users if args.dataset == 'mnist': trans_mnist = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) dataset_train = datasets.MNIST('../data/mnist/', train=True, download=True, transform=trans_mnist) dataset_test = datasets.MNIST('../data/mnist/', train=False, download=True, transform=trans_mnist) # sample users if args.iid: dict_users_DCFL = mnist_iid(dataset_train, args.num_users) else: dict_users_DCFL, dict_labels_counter = mnist_noniid( dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users_DCFL, dict_labels_counter elif args.dataset == 'cifar': trans_cifar = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) dataset_train = datasets.CIFAR10('../data/cifar', train=True, download=True, transform=trans_cifar) dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users_DCFL = cifar_iid(dataset_train, args.num_users) dict_users_mainFL = dict_users_DCFL dict_labels_counter_mainFL = dict() dict_labels_counter = dict() else: dict_users_DCFL, dict_labels_counter = cifar_noniid( dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users_DCFL, dict_labels_counter elif args.dataset == 'fmnist': trans_fmnist = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307, ), (0.3081, )) ]) dataset_train = datasets.FashionMNIST('../data/fmnist', train=True, download=True, transform=trans_fmnist) dataset_test = datasets.FashionMNIST('../data/fmnist', train=False, download=True, transform=trans_fmnist) if args.iid: print("iid") dict_users_DCFL = mnist_iid(dataset_train, args.num_users) else: print("non iid") dict_users_DCFL, dict_labels_counter = mnist_noniid( dataset_train, args.num_users) dict_users_mainFL, dict_labels_counter_mainFL = dict_users_DCFL, dict_labels_counter else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # Small shared dataset test_ds, valid_ds_before = torch.utils.data.random_split( dataset_test, (9500, 500)) small_shared_dataset = create_shared_dataset(valid_ds_before, 200) optimal_delay = 1.0 # Start process for each fraction of c for c_counter in range(3, 3 + 1, 2): if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) # net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) # net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'cnn' and args.dataset == 'fmnist': net_glob = CNNFashion_Mnist(args=args).to(args.device) # net_glob_mainFL = copy.deepcopy(net_glob) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') # Saving data data_Global_main = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_MainFL = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } data_Global_DCFL = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_DCFL = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } data_Global_G1 = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_G1 = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } data_Global_G2 = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_G2 = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } data_Global_Muhammed = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_Muhammed = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } data_Global_Cho = { "C": [], "Round": [], "Average Loss Train": [], "SDS Loss": [], "SDS Accuracy": [], "Workers Number": [], "Large Test Loss": [], "Large Test Accuracy": [], "Communication Cost": [] } Final_LargeDataSetTest_Cho = { "C": [], "Test Accuracy": [], "Test Loss": [], "Train Loss": [], "Train Accuracy": [], "Total Rounds": [], "Communication Cost": [] } net_glob.train() net_glob_mainFL = copy.deepcopy(net_glob) net_glob_G1 = copy.deepcopy(net_glob) net_glob_G2 = copy.deepcopy(net_glob) cost = np.random.rand(args.num_users) R_G1 = 5 args.frac = (c_counter / 10) # Main FL loss_main, dict_workers_index, Final_LargeDataSetTest_MainFL_temp, data_Global_main_temp = mainFl( net_glob_mainFL, dict_users_mainFL, dict_labels_counter_mainFL, args, cost, dataset_train, dataset_test, small_shared_dataset) Final_LargeDataSetTest_MainFL = merge( Final_LargeDataSetTest_MainFL, Final_LargeDataSetTest_MainFL_temp) data_Global_main = merge(data_Global_main, data_Global_main_temp) # with open(os.path.join(OUT_DIR, f"dict_users_mainFL-C-{args.frac}-{args.dataset}.pkl"), 'wb') as file: # pickle.dump(dict_users_mainFL, file) # with open(os.path.join(OUT_DIR, f"dict_users_mainFL-C-{args.frac}-{args.dataset}.pkl"), 'rb') as file: # dict_users_mainFL = pickle.load(file) # with open(os.path.join(OUT_DIR, f"workers_index-C-{args.frac}-{args.dataset}.pkl"), 'wb') as file: # pickle.dump(dict_workers_index, file) # with open(os.path.join(OUT_DIR, f"cost-C-{args.frac}-{args.dataset}.pkl"), 'wb') as file: # pickle.dump(cost, file) # with open(os.path.join(OUT_DIR, f"cost-C-{args.frac}-{args.dataset}.pkl"), 'rb') as file: # cost = pickle.load(file) # print(cost) # with open(os.path.join(OUT_DIR, f"GoalLoss-C-{args.frac}-{args.dataset}.pkl"), 'wb') as file: # pickle.dump(loss_main, file) date = datetime.now() _dir = os.path.join(OUT_DIR, str(date.date())) if not os.path.exists(_dir): os.makedirs(_dir) save_time = time.strftime("%Y%m%d-%H%M%S") Final_LargeDataSetTest_MainFL = pd.DataFrame.from_dict( Final_LargeDataSetTest_MainFL) data_Global_main = pd.DataFrame.from_dict(data_Global_main) Final_LargeDataSetTest_MainFL.to_csv( os.path.join( _dir, f"{save_time}-{args.dataset}-Final_LargeDataSetTest_MainFL.csv" )) data_Global_main.to_csv( os.path.join(_dir, f"{save_time}-{args.dataset}-data_Global_main.csv")) # Proposed G1 Final_LargeDataSetTest_G1_temp, data_Global_G1_temp = Proposed_G1( net_glob_G1, dict_workers_index, dict_users_DCFL, dict_labels_counter_mainFL, args, cost, dataset_train, dataset_test, small_shared_dataset, loss_main, R_G1, optimal_delay) Final_LargeDataSetTest_G1 = merge(Final_LargeDataSetTest_G1, Final_LargeDataSetTest_G1_temp) data_Global_G1 = merge(data_Global_G1, data_Global_G1_temp) Final_LargeDataSetTest_G1 = pd.DataFrame.from_dict( Final_LargeDataSetTest_G1) data_Global_G1 = pd.DataFrame.from_dict(data_Global_G1) Final_LargeDataSetTest_G1.to_csv( os.path.join( _dir, f"{save_time}-{args.dataset}-Final_LargeDataSetTest_G1.csv")) data_Global_G1.to_csv( os.path.join(_dir, f"{save_time}-{args.dataset}-data_Global_G1.csv")) print("G1 alg is done")
dataset_test = datasets.CIFAR10('../data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': global_net = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': global_net = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x global_net = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(global_net) global_net.train()
dataset_test = datasets.CIFAR10('./data/cifar', train=False, download=True, transform=trans_cifar) if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) #utils/sampling.py else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=200, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(net_glob) #FedAvg 代码的核心;每个迭代轮次本地更新 --> 复制参与本轮更新的 users 的所有权重 w_locals --> 通过定义的 FedAvg 函数求模型参数的平均 --> 分发到每个用户进行更新 # 在server端,初始化模型参数w_glob,并将原始的模型参数广播给所有的clients net_glob.train()
exit('Error: unrecognized dataset') a = np.arange(len(dataset_test)) np.random.shuffle(a) dataset_valid = DatasetSplit(dataset=dataset_test, idxs=a[:1000]) dataset_test = DatasetSplit(dataset=dataset_test, idxs=a[1000:]) if args.iid == 'noniid_ssl' and args.dataset == 'cifar': dict_users, dict_users_labeled, pseudo_label = noniid_ssl( dataset_train_weak, args.num_users, args.label_rate) else: dict_users, dict_users_labeled, pseudo_label = sample( dataset_train_weak, args.num_users, args.label_rate, args.iid) if args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) net_glob_helper_1 = CNNCifar(args=args).to(args.device) net_glob_helper_2 = CNNCifar(args=args).to(args.device) net_glob_valid = CNNCifar(args=args).to(args.device) elif args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) net_glob_helper_1 = CNNMnist(args=args).to(args.device) net_glob_helper_2 = CNNMnist(args=args).to(args.device) net_glob_valid = CNNMnist(args=args).to(args.device) elif args.dataset == 'svhn': net_glob = CNNCifar(args=args).to(args.device) net_glob_helper_1 = CNNCifar(args=args).to(args.device) net_glob_helper_2 = CNNCifar(args=args).to(args.device) net_glob_valid = CNNCifar(args=args).to(args.device)
test_sum += test_count_dict[items] print("TEST SUM", test_sum) ###ANALYZING END ### if args.iid: dict_users = cifar_iid(dataset_train, args.num_users) else: exit('Error: only consider IID setting in CIFAR10') else: exit('Error: unrecognized dataset') img_size = dataset_train[0][0].shape # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) net_glob1 = CNNMnist(args=args).to(args.device) net_glob5 = CNNMnist(args=args).to(args.device) net_glob10 = CNNMnist(args=args).to(args.device) net_glob15 = CNNMnist(args=args).to(args.device) net_glob20 = CNNMnist(args=args).to(args.device) net_glob25 = CNNMnist(args=args).to(args.device) net_glob30 = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device)
transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])) img_size = dataset_train[0][0].shape elif args.dataset == 'cifar': transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) dataset_train = datasets.CIFAR10('./data/cifar', train=True, transform=transform, target_transform=None, download=True) img_size = dataset_train[0][0].shape else: exit('Error: unrecognized dataset') # build model if args.model == 'cnn' and args.dataset == 'cifar': net_glob = CNNCifar(args=args).to(args.device) elif args.model == 'cnn' and args.dataset == 'mnist': net_glob = CNNMnist(args=args).to(args.device) elif args.model == 'mlp': len_in = 1 for x in img_size: len_in *= x net_glob = MLP(dim_in=len_in, dim_hidden=64, dim_out=args.num_classes).to(args.device) else: exit('Error: unrecognized model') print(net_glob) # training optimizer = optim.SGD(net_glob.parameters(), lr=args.lr, momentum=args.momentum) train_loader = DataLoader(dataset_train, batch_size=64, shuffle=True)