Ejemplo n.º 1
0
std = [0.229]

device = torch.device('cuda')
model_path = 'checkpoints/019.pt'

test_set = TinyMind(mode='test',
                    root='data/',
                    fpath="test2.txt",
                    trans=T.Compose([Norm(mean, std),
                                     to_tensor()]))
test_loader = DataLoader(dataset=test_set,
                         batch_size=256,
                         shuffle=False,
                         num_workers=0)

net = resnet50().to(device)
state = torch.load(model_path)
net.load_state_dict(state['state_dict'])

classes = [
    '且', '世', '东', '九', '亭', '今', '从', '令', '作', '使', '侯', '元', '光', '利', '印',
    '去', '受', '右', '司', '合', '名', '周', '命', '和', '唯', '堂', '士', '多', '夜', '奉',
    '女', '好', '始', '字', '孝', '守', '宗', '官', '定', '宜', '室', '家', '寒', '左', '常',
    '建', '徐', '御', '必', '思', '意', '我', '敬', '新', '易', '春', '更', '朝', '李', '来',
    '林', '正', '武', '氏', '永', '流', '海', '深', '清', '游', '父', '物', '玉', '用', '申',
    '白', '皇', '益', '福', '秋', '立', '章', '老', '臣', '良', '莫', '虎', '衣', '西', '起',
    '足', '身', '通', '遂', '重', '陵', '雨', '高', '黄', '鼎'
]
results_csv = csv.writer(
    open('./data/result.csv', 'w', encoding='utf-8', newline=''))
results_csv.writerow(['filename', 'label'])
Ejemplo n.º 2
0
def network(args):
    if args.net == 'alexnet':
        from models.AlexNet import alexnet
        net = alexnet(num_class=args.num_class)
    elif args.net == 'fractalnet34':
        from models.FratalNet import fractalnet34
        net = fractalnet34(num_class=args.num_class,
                           initialize=args.initialize)
    elif args.net == 'googlenet':
        from models.GoogLeNet import googlenet
        net = googlenet(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'inception_v3':
        from models.InceptionV3 import inception_v3
        net = inception_v3(num_class=args.num_class,
                           initialize=args.initialize)
    elif args.net == 'mobilenet_v1':
        from models.MobileNetV1 import mobilenet_v1
        net = mobilenet_v1(num_class=args.num_class,
                           initialize=args.initialize)
    elif args.net == 'preactresnet18':
        from models.PreActResNet import peractresnet18
        net = peractresnet18(num_class=args.num_class,
                             initialize=args.initialize)
    elif args.net == 'preactresnet34':
        from models.PreActResNet import peractresnet34
        net = peractresnet34(num_class=args.num_class,
                             initialize=args.initialize)
    elif args.net == 'preactresnet50':
        from models.PreActResNet import peractresnet50
        net = peractresnet50(num_class=args.num_class,
                             initialize=args.initialize)
    elif args.net == 'preactresnet101':
        from models.PreActResNet import peractresnet101
        net = peractresnet101(num_class=args.num_class,
                              initialize=args.initialize)
    elif args.net == 'preactresnet152':
        from models.PreActResNet import peractresnet152
        net = peractresnet152(num_class=args.num_class,
                              initialize=args.initialize)
    elif args.net == 'resnet18':
        from models.ResNet import resnet18
        net = resnet18(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'resnet34':
        from models.ResNet import resnet34
        net = resnet34(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'resnet50':
        from models.ResNet import resnet50
        net = resnet50(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'resnet101':
        from models.ResNet import resnet101
        net = resnet101(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'resnet152':
        from models.ResNet import resnet152
        net = resnet152(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'se_resnet50':
        from models.SEResNet import se_resnet50
        net = se_resnet50(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'se_resnet101':
        from models.SEResNet import se_resnet101
        net = se_resnet101(num_class=args.num_class,
                           initialize=args.initialize)
    elif args.net == 'se_resnet152':
        from models.SEResNet import se_resnet152
        net = se_resnet152(num_class=args.num_class,
                           initialize=args.initialize)
    elif args.net == 'shufflenet_05x_g1':
        from models.ShuffleNet import shufflenet_05x_g1
        net = shufflenet_05x_g1(num_class=args.num_class,
                                initialize=args.initialize)
    elif args.net == 'shufflenet_05x_g2':
        from models.ShuffleNet import shufflenet_05x_g2
        net = shufflenet_05x_g2(num_class=args.num_class,
                                initialize=args.initialize)
    elif args.net == 'shufflenet_05x_g3':
        from models.ShuffleNet import shufflenet_05x_g3
        net = shufflenet_05x_g3(num_class=args.num_class,
                                initialize=args.initialize)
    elif args.net == 'shufflenet_05x_g4':
        from models.ShuffleNet import shufflenet_05x_g4
        net = shufflenet_05x_g4(num_class=args.num_class,
                                initialize=args.initialize)
    elif args.net == 'shufflenet_025x_g1':
        from models.ShuffleNet import shufflenet_025x_g1
        net = shufflenet_025x_g1(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'shufflenet_025x_g2':
        from models.ShuffleNet import shufflenet_025x_g2
        net = shufflenet_025x_g2(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'shufflenet_025x_g3':
        from models.ShuffleNet import shufflenet_025x_g3
        net = shufflenet_025x_g3(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'shufflenet_025x_g4':
        from models.ShuffleNet import shufflenet_025x_g4
        net = shufflenet_025x_g4(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'shufflenet_1x_g1':
        from models.ShuffleNet import shufflenet_1x_g1
        net = shufflenet_1x_g1(num_class=args.num_class,
                               initialize=args.initialize)
    elif args.net == 'shufflenet_1x_g2':
        from models.ShuffleNet import shufflenet_1x_g2
        net = shufflenet_1x_g2(num_class=args.num_class,
                               initialize=args.initialize)
    elif args.net == 'shufflenet_1x_g3':
        from models.ShuffleNet import shufflenet_1x_g3
        net = shufflenet_1x_g3(num_class=args.num_class,
                               initialize=args.initialize)
    elif args.net == 'shufflenet_1x_g4':
        from models.ShuffleNet import shufflenet_1x_g4
        net = shufflenet_1x_g4(num_class=args.num_class,
                               initialize=args.initialize)
    elif args.net == 'squeezenet':
        from models.SqueezeNet import squeezenet
        net = squeezenet(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'stochastic_depth18':
        from models.StochasticDepth import stochastic_depth18
        net = stochastic_depth18(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'stochastic_depth34':
        from models.StochasticDepth import stochastic_depth34
        net = stochastic_depth34(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'stochastic_depth50':
        from models.StochasticDepth import stochastic_depth50
        net = stochastic_depth50(num_class=args.num_class,
                                 initialize=args.initialize)
    elif args.net == 'stochastic_depth101':
        from models.StochasticDepth import stochastic_depth101
        net = stochastic_depth101(num_class=args.num_class,
                                  initialize=args.initialize)
    elif args.net == 'stochastic_depth152':
        from models.StochasticDepth import stochastic_depth152
        net = stochastic_depth152(num_class=args.num_class,
                                  initialize=args.initialize)
    elif args.net == 'vgg_11':
        from models.VGG import vgg_11
        net = vgg_11(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'vgg_11_lrn':
        from models.VGG import vgg_11_lrn
        net = vgg_11_lrn(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'vgg_13':
        from models.VGG import vgg_13
        net = vgg_13(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'vgg_16_c':
        from models.VGG import vgg_16_c
        net = vgg_16_c(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'vgg_16_d':
        from models.VGG import vgg_16_d
        net = vgg_16_d(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'vgg_19':
        from models.VGG import vgg_19
        net = vgg_19(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'wide_resnet40_4':
        from models.Wide_ResNet import wide_resnet40_4
        net = wide_resnet40_4(num_class=args.num_class,
                              initialize=args.initialize)
    elif args.net == 'wide_resnet16_8':
        from models.Wide_ResNet import wide_resnet16_8
        net = wide_resnet16_8(num_class=args.num_class,
                              initialize=args.initialize)
    elif args.net == 'wide_resnet28_10':
        from models.Wide_ResNet import wide_resnet28_10
        net = wide_resnet28_10(num_class=args.num_class,
                               initialize=args.initialize)
    elif args.net == 'resnet110':
        from models.Wide_ResNet import resnet110
        net = resnet110(num_class=args.num_class, initialize=args.initialize)
    elif args.net == 'xception':
        from models.Xception import xception
        net = xception(num_class=args.num_class, initialize=args.initialize)
    return net
Ejemplo n.º 3
0
    # train teacher model from pretrained resnet
    teacher_model = torch_models.resnet34(pretrained=True)
    teacher_model.fc = nn.Linear(512, 10)
    # freeze earlier layers (first 7 out of 10)
    ct = 0
    for child in teacher_model.children():
        ct += 1
        if ct < 7:
            for param in child.parameters():
                param.requires_grad = False
    teacher_model = teacher_model.to(device)
    teacher_model = nn.DataParallel(teacher_model, device_ids=[0, 1])
    # teacher_model.load_state_dict(checkpoint['teacher_model'])

    student_model = resnet50(in_channels=3, n_classes=10).to(device)
    student_model = nn.DataParallel(student_model, device_ids=[0, 1])
    # student_model.load_state_dict(checkpoint['student_model'])

    with wandb.init(project="MPL-Cifar10"):
        train_mpl(teacher_model,
                  student_model,
                  sup_dl,
                  unsup_dl,
                  batch_size=BATCH_SIZE,
                  dataset=DATASET,
                  num_epochs=N_EPOCHS,
                  learning_rate=LR,
                  weight_u=WEIGHT_U,
                  uda_threshold=UDA_THRESHOLD,
                  n_student_steps=N_STUDENT_STEPS,
Ejemplo n.º 4
0
                                      download=True,
                                      transform=transform)
val_loader = torch.utils.data.DataLoader(valset,
                                         batch_size=10,
                                         shuffle=True,
                                         num_workers=2)

alexnet = AlexNet().cuda()
alexnetexpander = alexnetexpander(sparsity=10).cuda()
alexnetskip = alexnetskip(sparsity=10).cuda()

resnet34 = resnet34().cuda()
resnet34expander = resnet34expander(sparsity=5).cuda()
resnet34skip = resnet34skip(sparsity=5).cuda()

resnet50 = resnet50().cuda()
resnet50expander = resnet50expander(sparsity=10).cuda()
resnet50skip = resnet50skip(sparsity=10).cuda()

vgg16 = vgg16().cuda()
vggexpander16 = vggexpander16(sparsity=10).cuda()
vggskip16 = vggskip16(sparsity=2).cuda()
#model_10 = Netexpander(sparsity=45).cuda()
model = Net().cuda()
modelx = Netexpander(sparsity=10).cuda()
#Wprune = adj_matrix(modelx,10)
#W_binary = adj_matrix(model,10)

#Wprune,eprune,vprune = EVD(modelx)
#raw = low_rank(Wprune,eprune,vprune)