Ejemplo n.º 1
0
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    # input size
    input_size = [args.input_size, args.input_size]

    # load net
    if args.version == 'centernet':
        from models.centernet import CenterNet
        net = CenterNet(device, 
                        input_size=input_size, 
                        num_classes=num_classes, 
                        backbone=args.backbone,
                        use_nms=args.use_nms)

    # load net
    net.load_state_dict(torch.load(args.trained_model, map_location='cuda'))
    net.eval()
    print('Finished loading model!')
    net = net.to(device)
    
    # evaluation
    with torch.no_grad():
        if args.dataset == 'voc':
            voc_test(net, device, input_size)
        elif args.dataset == 'coco-val':
            coco_test(net, device, input_size, test=False)
        elif args.dataset == 'coco-test':
            coco_test(net, device, input_size, test=True)
Ejemplo n.º 2
0
    print('ap50_95 : ', ap50_95)


if __name__ == '__main__':
    global cfg

    cfg = coco_cfg
    if args.cuda:
        print('use cuda')
        torch.backends.cudnn.benchmark = True
        device = torch.device("cuda")
    else:
        device = torch.device("cpu")

    if args.version == 'centernet':
        from models.centernet import CenterNet
        model = CenterNet(device,
                          input_size=cfg['min_dim'],
                          num_classes=args.num_classes)

    else:
        print('Unknown Version !!!')
        exit()

    # load model
    model.load_state_dict(torch.load(args.trained_model, map_location=device))
    model.eval().to(device)
    print('Finished loading model!')

    test(model, device)