def test_trainable_all(self):
        def helper(model):
            model.load_for_transfer_learning(
                dataset=self.dataset,
                trainable_option=constants.TRAINABLE_ALL,
                for_training=False,
                save_weights=False)
            for block in model.train_model.layers[1:]:
                sub_model = model.train_model.get_layer(block.name)
                for layer in sub_model.layers:
                    if 'conv' not in layer.name:
                        continue
                    self.assertEqual(layer.trainable, True)

        helper(YOLOv3(tiny=False))
        helper(YOLOv3(tiny=True))
    def test_trainable_last_conv(self):
        def helper(model):
            model.load_for_transfer_learning(
                dataset=self.dataset,
                trainable_option=constants.TRAINABLE_LAST_CONV,
                for_training=False)
            for block in model.train_model.layers[1:]:
                sub_model = model.train_model.get_layer(block.name)
                conv_layers = sum([
                    True for layer in sub_model.layers if 'conv' in layer.name
                ])
                conv_layer = 0
                for layer in sub_model.layers:
                    if 'conv' not in layer.name:
                        continue
                    conv_layer += 1
                    if 'last_layers' in block.name and conv_layer == conv_layers:
                        self.assertEqual(layer.trainable, True)
                    else:
                        self.assertEqual(layer.trainable, False)

        helper(YOLOv3(tiny=False))
        helper(YOLOv3(tiny=True))
Ejemplo n.º 3
0
def main(_argv):
    model = YOLOv3(tiny=FLAGS.tiny)
    if FLAGS.weights_path:
        model.load_models(Dataset(FLAGS.dataset_name), for_training=False)
        model.inference_model.load_weights(FLAGS.weights_path)
        print(constants.C_OKBLUE, "Weights from", FLAGS.weights_path,
              'loaded successfully', constants.C_ENDC)
    else:
        model.load_original_yolov3()
        print(constants.C_OKBLUE,
              "Successfully loaded weights from the original paper",
              constants.C_ENDC)

    detect(model, FLAGS.dataset_name, FLAGS.img_path, FLAGS.title,
           FLAGS.output_path)
Ejemplo n.º 4
0
def load_model_and_db(batch_size):
    model = YOLOv3(tiny=FLAGS.tiny)
    dataset = Dataset(FLAGS.dataset_name, FLAGS.tiny)
    dataset.load_datasets(model.image_res, model.anchors, model.masks, batch_size)
    # When loading the model, the folders to save the checkpoints, figures and logs are created.
    if FLAGS.trainable == 'none':
        model.load_models(dataset=dataset,
                          for_training=True,
                          plot_model=False)
    else:
        model.load_for_transfer_learning(dataset, trainable_option=FLAGS.trainable)
    optimizer = tf.keras.optimizers.Adam(lr=FLAGS.lr)
    # model.train_model.load_weights(
    #     '/home/brechard/models_results/testing/20191017_180805_COCO/checkpoints/YOLOv3_final.ckpt')
    loss = model.get_loss()
    model.train_model.compile(optimizer=optimizer, loss=loss,
                              run_eagerly=False, metrics=['accuracy'])

    return dataset, model
    def test_transfer_learning(self):
        def helper(original_model, test_model, tiny):
            model_blocks = [l.name for l in original_model.layers[1:]]
            if tiny:
                model_blocks = [
                    'Tiny_DarkNet', 'tiny_layer', 'last_layers_512',
                    'Concatenate_128', 'last_layers_256'
                ]

            for i, block in enumerate(model_blocks):
                sub_original_model = original_model.get_layer(block)
                sub_test_model = test_model.get_layer(block)
                if type(sub_original_model) != tf.keras.Model:
                    continue
                conv_layers = sum([
                    True for layer in sub_original_model.layers
                    if 'conv' in layer.name
                ])
                conv_layer = 0

                for i_in, layer in enumerate(sub_original_model.layers):
                    weights_equal = True
                    if 'input' in layer.name:
                        continue
                    if layer.name.startswith('conv2d'):
                        conv_layer += 1
                        if conv_layer == conv_layers and 'last_layers' in block:
                            # This is one of the last convolutional layer. Therefore the weights should be different
                            # to the original ones
                            weights_equal = False

                    for n_weights, weights in enumerate(layer.weights):
                        original_weights = weights.numpy().flatten()
                        test_weights = sub_test_model.layers[i_in].weights[
                            n_weights].numpy().flatten()
                        if weights_equal:
                            self.assertEqual(
                                sum(original_weights != test_weights), 0)
                        else:
                            self.assertNotEqual(
                                sum(original_weights[:len(test_weights)] !=
                                    test_weights), 0)

        original_tiny_model = YOLOv3(tiny=True)
        original_tiny_model.load_original_yolov3(for_training=False)
        original_full_model = YOLOv3(tiny=False)
        original_full_model.load_original_yolov3(for_training=False)

        tiny_test_model = YOLOv3(tiny=True)
        full_test_model = YOLOv3(tiny=False)
        trainable_options = [
            constants.TRAINABLE_ALL, constants.TRAINABLE_FEATURES,
            constants.TRAINABLE_LAST_CONV, constants.TRAINABLE_LAST_BLOCK
        ]
        for trainable_option in trainable_options:
            tiny_test_model.load_for_transfer_learning(
                dataset=self.dataset,
                trainable_option=trainable_option,
                for_training=False,
                save_weights=False)
            full_test_model.load_for_transfer_learning(
                dataset=self.dataset,
                trainable_option=trainable_option,
                for_training=False,
                save_weights=False)

            helper(original_tiny_model.train_model,
                   tiny_test_model.train_model, True)
            helper(original_full_model.train_model,
                   full_test_model.train_model, False)
Ejemplo n.º 6
0
import os

from constants import PROJECT_PATH
from data.dataset import Dataset
from helpers import natural_keys
from models.detection.predict import detect
from models.detection.yolov3 import YOLOv3

weights = None
checkpoint_dir = '/home/brechard/models/YOLOv3/20191031_163044_COCO/checkpoints/'

dataset_name = checkpoint_dir.split('_')[-1].split('/')[0]
dataset = Dataset(dataset_name)
model = YOLOv3(tiny=True)
model.load_models(dataset=dataset, for_training=False)

# jajas.check_losses(None, "RANDOM INITIALIZATION")
print()
image_path = PROJECT_PATH + 'data/external/datasets/COCO/train/000000000257.jpg'

for checkpoint in sorted(os.listdir(checkpoint_dir), key=natural_keys):
    new_weights = checkpoint.split('.ckpt')[0]
    if new_weights == weights or 'ckpt' not in checkpoint:
        continue
    else:
        weights = new_weights
        print('Use weights', weights)
        title = 'Epoch = ' + weights.split('-')[0].split('_')[-1] + '. Model loss = ' + \
                checkpoint.split('.ckpt')[0].split('-')[-1]
        detect(model,
               dataset_name,