def main(): parser = argparse.ArgumentParser() parser.add_argument('--train', default='train_wiki', help='train file') parser.add_argument('--val', default='val_wiki', help='val file') parser.add_argument('--test', default='test_wiki', help='test file') parser.add_argument('--adv', default=None, help='adv file') parser.add_argument('--trainN', default=10, type=int, help='N in train') parser.add_argument('--N', default=5, type=int, help='N way') parser.add_argument('--K', default=5, type=int, help='K shot') parser.add_argument('--Q', default=5, type=int, help='Num of query per class') parser.add_argument('--batch_size', default=4, type=int, help='batch size') parser.add_argument('--train_iter', default=30000, type=int, help='num of iters in training') parser.add_argument('--val_iter', default=1000, type=int, help='num of iters in validation') parser.add_argument('--test_iter', default=10000, type=int, help='num of iters in testing') parser.add_argument('--val_step', default=2000, type=int, help='val after training how many iters') parser.add_argument('--model', default='proto', help='model name') parser.add_argument('--encoder', default='cnn', help='encoder: cnn or bert or roberta') parser.add_argument('--max_length', default=128, type=int, help='max length') parser.add_argument('--lr', default=1e-1, type=float, help='learning rate') parser.add_argument('--weight_decay', default=1e-5, type=float, help='weight decay') parser.add_argument('--dropout', default=0.0, type=float, help='dropout rate') parser.add_argument('--na_rate', default=0, type=int, help='NA rate (NA = Q * na_rate)') parser.add_argument('--grad_iter', default=1, type=int, help='accumulate gradient every x iterations') parser.add_argument('--optim', default='sgd', help='sgd / adam / adamw') parser.add_argument('--hidden_size', default=230, type=int, help='hidden size') parser.add_argument('--load_ckpt', default=None, help='load ckpt') parser.add_argument('--save_ckpt', default=None, help='save ckpt') parser.add_argument('--fp16', action='store_true', help='use nvidia apex fp16') parser.add_argument('--only_test', action='store_true', help='only test') # only for bert / roberta parser.add_argument('--pair', action='store_true', help='use pair model') parser.add_argument('--pretrain_ckpt', default=None, help='bert / roberta pre-trained checkpoint') parser.add_argument( '--cat_entity_rep', action='store_true', help='concatenate entity representation as sentence rep') # only for prototypical networks parser.add_argument('--dot', action='store_true', help='use dot instead of L2 distance for proto') opt = parser.parse_args() trainN = opt.trainN N = opt.N K = opt.K Q = opt.Q batch_size = opt.batch_size model_name = opt.model encoder_name = opt.encoder max_length = opt.max_length print("{}-way-{}-shot Few-Shot Relation Classification".format(N, K)) print("model: {}".format(model_name)) print("encoder: {}".format(encoder_name)) print("max_length: {}".format(max_length)) if encoder_name == 'cnn': try: glove_mat = np.load('./pretrain/glove/glove_mat.npy') glove_word2id = json.load( open('./pretrain/glove/glove_word2id.json')) except: raise Exception( "Cannot find glove files. Run glove/download_glove.sh to download glove files." ) sentence_encoder = CNNSentenceEncoder(glove_mat, glove_word2id, max_length) elif encoder_name == 'bert': pretrain_ckpt = opt.pretrain_ckpt or 'bert-base-uncased' if opt.pair: sentence_encoder = BERTPAIRSentenceEncoder(pretrain_ckpt, max_length) else: sentence_encoder = BERTSentenceEncoder( pretrain_ckpt, max_length, cat_entity_rep=opt.cat_entity_rep) elif encoder_name == 'roberta': pretrain_ckpt = opt.pretrain_ckpt or 'roberta-base' if opt.pair: sentence_encoder = RobertaPAIRSentenceEncoder( pretrain_ckpt, max_length) else: sentence_encoder = RobertaSentenceEncoder( pretrain_ckpt, max_length, cat_entity_rep=opt.cat_entity_rep) else: raise NotImplementedError if opt.pair: train_data_loader = get_loader_pair(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size, encoder_name=encoder_name) val_data_loader = get_loader_pair(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size, encoder_name=encoder_name) test_data_loader = get_loader_pair(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size, encoder_name=encoder_name) else: train_data_loader = get_loader(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) val_data_loader = get_loader(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) test_data_loader = get_loader(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.adv: adv_data_loader = get_loader_unsupervised(opt.adv, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.optim == 'sgd': pytorch_optim = optim.SGD elif opt.optim == 'adam': pytorch_optim = optim.Adam elif opt.optim == 'adamw': from transformers import AdamW pytorch_optim = AdamW else: raise NotImplementedError if opt.adv: d = Discriminator(opt.hidden_size) framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader, adv_data_loader, adv=opt.adv, d=d) else: framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader) prefix = '-'.join( [model_name, encoder_name, opt.train, opt.val, str(N), str(K)]) if opt.adv is not None: prefix += '-adv_' + opt.adv if opt.na_rate != 0: prefix += '-na{}'.format(opt.na_rate) if opt.dot: prefix += '-dot' if opt.cat_entity_rep: prefix += '-catentity' if model_name == 'proto': model = Proto(sentence_encoder, dot=opt.dot) elif model_name == 'gnn': model = GNN(sentence_encoder, N, hidden_size=opt.hidden_size) elif model_name == 'snail': model = SNAIL(sentence_encoder, N, K, hidden_size=opt.hidden_size) elif model_name == 'metanet': model = MetaNet(N, K, sentence_encoder.embedding, max_length) elif model_name == 'siamese': model = Siamese(sentence_encoder, hidden_size=opt.hidden_size, dropout=opt.dropout) elif model_name == 'pair': model = Pair(sentence_encoder, hidden_size=opt.hidden_size) else: raise NotImplementedError if not os.path.exists('checkpoint'): os.mkdir('checkpoint') ckpt = 'checkpoint/{}.pth.tar'.format(prefix) if opt.save_ckpt: ckpt = opt.save_ckpt if torch.cuda.is_available(): model.cuda() if not opt.only_test: if encoder_name in ['bert', 'roberta']: bert_optim = True else: bert_optim = False framework.train(model, prefix, batch_size, trainN, N, K, Q, pytorch_optim=pytorch_optim, load_ckpt=opt.load_ckpt, save_ckpt=ckpt, na_rate=opt.na_rate, val_step=opt.val_step, fp16=opt.fp16, pair=opt.pair, train_iter=opt.train_iter, val_iter=opt.val_iter, bert_optim=bert_optim) else: ckpt = opt.load_ckpt acc = framework.eval(model, batch_size, N, K, Q, opt.test_iter, na_rate=opt.na_rate, ckpt=ckpt, pair=opt.pair) print("RESULT: %.2f" % (acc * 100))
if len(sys.argv) > 3: K = int(sys.argv[3]) print("{}-way-{}-shot Few-Shot Relation Classification".format(N, K)) print("Model: {}".format(model_name)) max_length = 40 train_data_loader = JSONFileDataLoader('./data/train.json', './data/glove.6B.50d.json', max_length=max_length) val_data_loader = JSONFileDataLoader('./data/val.json', './data/glove.6B.50d.json', max_length=max_length) test_data_loader = JSONFileDataLoader('./data/test.json', './data/glove.6B.50d.json', max_length=max_length) framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader) sentence_encoder = CNNSentenceEncoder(train_data_loader.word_vec_mat, max_length) if model_name == 'proto': model = Proto(sentence_encoder) framework.train(model, model_name, 4, 20, N, K, 5) elif model_name == 'gnn': model = GNN(sentence_encoder, N) framework.train(model, model_name, 2, N, N, K, 1, learning_rate=1e-3, weight_decay=0, optimizer=optim.Adam) elif model_name == 'snail': print("HINT: SNAIL works only in PyTorch 0.3.1") model = SNAIL(sentence_encoder, N, K) framework.train(model, model_name, 25, N, N, K, 1, learning_rate=1e-2, weight_decay=0, optimizer=optim.SGD) elif model_name == 'metanet': model = MetaNet(N, K, train_data_loader.word_vec_mat, max_length) framework.train(model, model_name, 1, N, N, K, 1, learning_rate=5e-3, weight_decay=0, optimizer=optim.Adam, train_iter=300000) else: raise NotImplementedError
def main(): parser = argparse.ArgumentParser() parser.add_argument('--train', default='train_wiki', help='train file') parser.add_argument('--val', default='val_wiki', help='val file') parser.add_argument('--test', default='test_wiki', help='test file') parser.add_argument('--adv', default=None, help='adv file') parser.add_argument('--trainN', default=10, type=int, help='N in train') parser.add_argument('--N', default=5, type=int, help='N way') parser.add_argument('--K', default=5, type=int, help='K shot') parser.add_argument('--Q', default=5, type=int, help='Num of query per class') parser.add_argument('--batch_size', default=4, type=int, help='batch size') parser.add_argument('--train_iter', default=20000, type=int, help='num of iters in training') parser.add_argument('--val_iter', default=1000, type=int, help='num of iters in validation') parser.add_argument('--test_iter', default=2000, type=int, help='num of iters in testing') parser.add_argument('--val_step', default=2000, type=int, help='val after training how many iters') parser.add_argument('--model', default='proto', help='model name') parser.add_argument('--encoder', default='cnn', help='encoder: cnn or bert') parser.add_argument('--max_length', default=128, type=int, help='max length') parser.add_argument('--lr', default=1e-1, type=float, help='learning rate') parser.add_argument('--weight_decay', default=1e-5, type=float, help='weight decay') parser.add_argument('--dropout', default=0.0, type=float, help='dropout rate') parser.add_argument('--na_rate', default=0, type=int, help='NA rate (NA = Q * na_rate)') parser.add_argument('--grad_iter', default=1, type=int, help='accumulate gradient every x iterations') parser.add_argument('--optim', default='sgd', help='sgd / adam / bert_adam') parser.add_argument('--hidden_size', default=230, type=int, help='hidden size') parser.add_argument('--load_ckpt', default=None, help='load ckpt') parser.add_argument('--save_ckpt', default=None, help='save ckpt') parser.add_argument('--fp16', action='store_true', help='use nvidia apex fp16') parser.add_argument('--only_test', action='store_true', help='only test') parser.add_argument('--pair', action='store_true', help='use pair model') parser.add_argument('--language', type=str, default='eng', help='language') parser.add_argument('--sup_cost', type=int, default=0, help='use sup classifier') opt = parser.parse_args() trainN = opt.trainN N = opt.N K = opt.K Q = opt.Q batch_size = opt.batch_size model_name = opt.model encoder_name = opt.encoder max_length = opt.max_length sup_cost = bool(opt.sup_cost) print(sup_cost) print("{}-way-{}-shot Few-Shot Relation Classification".format(N, K)) print("model: {}".format(model_name)) print("encoder: {}".format(encoder_name)) print("max_length: {}".format(max_length)) embsize = 50 if opt.language == 'chn': embsize = 100 if encoder_name == 'cnn': try: if opt.language == 'chn': glove_mat = np.load('./pretrain/chinese_emb/emb.npy') glove_word2id = json.load( open('./pretrain/chinese_emb/word2id.json')) else: glove_mat = np.load('./pretrain/glove/glove_mat.npy') glove_word2id = json.load( open('./pretrain/glove/glove_word2id.json')) except: raise Exception( "Cannot find glove files. Run glove/download_glove.sh to download glove files." ) sentence_encoder = CNNSentenceEncoder(glove_mat, glove_word2id, max_length, word_embedding_dim=embsize) elif encoder_name == 'bert': if opt.pair: if opt.language == 'chn': sentence_encoder = BERTPAIRSentenceEncoder( 'bert-base-chinese', #'./pretrain/bert-base-uncased', max_length) else: sentence_encoder = BERTPAIRSentenceEncoder( 'bert-base-uncased', max_length) else: if opt.language == 'chn': sentence_encoder = BERTSentenceEncoder( 'bert-base-chinese', #'./pretrain/bert-base-uncased', max_length) else: sentence_encoder = BERTSentenceEncoder('bert-base-uncased', max_length) else: raise NotImplementedError if opt.pair: train_data_loader = get_loader_pair(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) val_data_loader = get_loader_pair(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) test_data_loader = get_loader_pair(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) else: train_data_loader = get_loader(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) val_data_loader = get_loader(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) test_data_loader = get_loader(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.adv: adv_data_loader = get_loader_unsupervised(opt.adv, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.optim == 'sgd': pytorch_optim = optim.SGD elif opt.optim == 'adam': pytorch_optim = optim.Adam elif opt.optim == 'bert_adam': from transformers import AdamW pytorch_optim = AdamW else: raise NotImplementedError if opt.adv: d = Discriminator(opt.hidden_size) framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader, adv_data_loader, adv=opt.adv, d=d) else: framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader) prefix = '-'.join( [model_name, encoder_name, opt.train, opt.val, str(N), str(K)]) if opt.adv is not None: prefix += '-adv_' + opt.adv if opt.na_rate != 0: prefix += '-na{}'.format(opt.na_rate) if model_name == 'proto': model = Proto(sentence_encoder, hidden_size=opt.hidden_size) elif model_name == 'gnn': model = GNN(sentence_encoder, N, use_sup_cost=sup_cost) elif model_name == 'snail': print("HINT: SNAIL works only in PyTorch 0.3.1") model = SNAIL(sentence_encoder, N, K) elif model_name == 'metanet': model = MetaNet(N, K, sentence_encoder.embedding, max_length, use_sup_cost=sup_cost) elif model_name == 'siamese': model = Siamese(sentence_encoder, hidden_size=opt.hidden_size, dropout=opt.dropout) elif model_name == 'pair': model = Pair(sentence_encoder, hidden_size=opt.hidden_size) else: raise NotImplementedError if not os.path.exists('checkpoint'): os.mkdir('checkpoint') ckpt = 'checkpoint/{}.pth.tar'.format(prefix) if opt.save_ckpt: ckpt = opt.save_ckpt if torch.cuda.is_available(): model.cuda() if not opt.only_test: if encoder_name == 'bert': bert_optim = True else: bert_optim = False framework.train(model, prefix, batch_size, trainN, N, K, Q, pytorch_optim=pytorch_optim, load_ckpt=opt.load_ckpt, save_ckpt=ckpt, na_rate=opt.na_rate, val_step=opt.val_step, fp16=opt.fp16, pair=opt.pair, train_iter=opt.train_iter, val_iter=opt.val_iter, bert_optim=bert_optim, sup_cls=sup_cost) else: ckpt = opt.load_ckpt acc = framework.eval(model, batch_size, N, K, Q, opt.test_iter, na_rate=opt.na_rate, ckpt=ckpt, pair=opt.pair) wfile = open('logs/' + ckpt.replace('checkpoint/', '') + '.txt', 'a') wfile.write(str(N) + '\t' + str(K) + '\t' + str(acc * 100) + '\n') wfile.close() print("RESULT: %.2f" % (acc * 100))
def main(): parser = argparse.ArgumentParser() parser.add_argument('--train', default='train_wiki', help='train file') parser.add_argument('--val', default='val_wiki', help='val file') parser.add_argument('--test', default='test_wiki', help='test file') parser.add_argument('--adv', default=None, help='adv file') parser.add_argument('--trainN', default=10, type=int, help='N in train') parser.add_argument('--N', default=5, type=int, help='N way') parser.add_argument('--K', default=5, type=int, help='K shot') parser.add_argument('--Q', default=5, type=int, help='Num of query per class') parser.add_argument('--batch_size', default=4, type=int, help='batch size') parser.add_argument('--train_iter', default=30000, type=int, help='num of iters in training') parser.add_argument('--val_iter', default=1000, type=int, help='num of iters in validation') parser.add_argument('--test_iter', default=3000, type=int, help='num of iters in testing') parser.add_argument('--val_step', default=2000, type=int, help='val after training how many iters') parser.add_argument('--model', default='proto', help='model name') parser.add_argument('--encoder', default='cnn', help='encoder: cnn or bert') parser.add_argument('--max_length', default=128, type=int, help='max length') parser.add_argument('--lr', default=1e-1, type=float, help='learning rate') parser.add_argument('--weight_decay', default=1e-5, type=float, help='weight decay') parser.add_argument('--dropout', default=0.0, type=float, help='dropout rate') parser.add_argument('--na_rate', default=0, type=int, help='NA rate (NA = Q * na_rate)') parser.add_argument('--grad_iter', default=1, type=int, help='accumulate gradient every x iterations') parser.add_argument('--optim', default='sgd', help='sgd / adam / bert_adam') parser.add_argument('--hidden_size', default=230, type=int, help='hidden size') parser.add_argument('--load_ckpt', default=None, help='load ckpt') parser.add_argument('--save_ckpt', default=None, help='save ckpt') parser.add_argument('--fp16', action='store_true', help='use nvidia apex fp16') parser.add_argument('--only_test', action='store_true', help='only test') parser.add_argument('--pair', action='store_true', help='use pair model') opt = parser.parse_args() trainN = opt.trainN N = opt.N K = opt.K Q = opt.Q batch_size = opt.batch_size model_name = opt.model encoder_name = opt.encoder max_length = opt.max_length print("{}-way-{}-shot Few-Shot Relation Classification".format(N, K)) print("model: {}".format(model_name)) print("encoder: {}".format(encoder_name)) print("max_length: {}".format(max_length)) if encoder_name == 'cnn': try: glove_mat = np.load('./pretrain/glove/glove_mat.npy') glove_word2id = json.load( open('./pretrain/glove/glove_word2id.json')) except: raise Exception( "Cannot find glove files. Run glove/download_glove.sh to download glove files." ) sentence_encoder = CNNSentenceEncoder(glove_mat, glove_word2id, max_length) elif encoder_name == 'bert': if opt.pair: sentence_encoder = BERTPAIRSentenceEncoder( './pretrain/bert-base-uncased', max_length) else: sentence_encoder = BERTSentenceEncoder( './pretrain/bert-base-uncased', max_length) else: raise NotImplementedError if opt.pair: train_data_loader = get_loader_pair(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) val_data_loader = get_loader_pair(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) test_data_loader = get_loader_pair(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) else: train_data_loader = get_loader(opt.train, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) val_data_loader = get_loader(opt.val, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) test_data_loader = get_loader(opt.test, sentence_encoder, N=N, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.adv: adv_data_loader = get_loader_unsupervised(opt.adv, sentence_encoder, N=trainN, K=K, Q=Q, na_rate=opt.na_rate, batch_size=batch_size) if opt.optim == 'sgd': pytorch_optim = optim.SGD elif opt.optim == 'adam': pytorch_optim = optim.Adam elif opt.optim == 'bert_adam': from pytorch_transformers import AdamW pytorch_optim = AdamW else: raise NotImplementedError if opt.adv: d = Discriminator(opt.hidden_size) framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader, adv_data_loader, adv=opt.adv, d=d) else: framework = FewShotREFramework(train_data_loader, val_data_loader, test_data_loader) prefix = '-'.join( [model_name, encoder_name, opt.train, opt.val, str(N), str(K)]) if opt.adv is not None: prefix += '-adv_' + opt.adv if opt.na_rate != 0: prefix += '-na{}'.format(opt.na_rate) if model_name == 'proto': model = Proto(sentence_encoder, hidden_size=opt.hidden_size) elif model_name == 'gnn': model = GNN(sentence_encoder, N) elif model_name == 'snail': print("HINT: SNAIL works only in PyTorch 0.3.1") model = SNAIL(sentence_encoder, N, K) elif model_name == 'metanet': model = MetaNet(N, K, sentence_encoder.embedding, max_length) elif model_name == 'siamese': model = Siamese(sentence_encoder, hidden_size=opt.hidden_size, dropout=opt.dropout) elif model_name == 'pair': model = Pair(sentence_encoder, hidden_size=opt.hidden_size) else: raise NotImplementedError if not os.path.exists('checkpoint'): os.mkdir('checkpoint') ckpt = 'checkpoint/{}.pth.tar'.format(prefix) if opt.save_ckpt: ckpt = opt.save_ckpt if torch.cuda.is_available(): model.cuda() if not opt.only_test: if encoder_name == 'bert': bert_optim = True else: bert_optim = False framework.train(model, prefix, batch_size, trainN, N, K, Q, pytorch_optim=pytorch_optim, load_ckpt=opt.load_ckpt, save_ckpt=ckpt, na_rate=opt.na_rate, val_step=opt.val_step, fp16=opt.fp16, pair=opt.pair, train_iter=opt.train_iter, val_iter=opt.val_iter, bert_optim=bert_optim) else: ckpt = opt.load_ckpt acc = 0 his_acc = [] total_test_round = 5 for i in range(total_test_round): cur_acc = framework.eval(model, batch_size, N, K, Q, opt.test_iter, na_rate=opt.na_rate, ckpt=ckpt, pair=opt.pair) his_acc.append(cur_acc) acc += cur_acc acc /= total_test_round nhis_acc = np.array(his_acc) error = nhis_acc.std() * 1.96 / (nhis_acc.shape[0]**0.5) print("RESULT: %.2f\\pm%.2f" % (acc * 100, error * 100)) result_file = open('./result.txt', 'a+') result_file.write( "test data: %12s | model: %45s | acc: %.6f\n | error: %.6f\n" % (opt.test, prefix, acc, error)) result_file = open('./result_detail.txt', 'a+') result_detail = { 'test': opt.test, 'model': prefix, 'acc': acc, 'his': his_acc } result_file.write("%s\n" % (json.dumps(result_detail)))