def optimize_latents():
    print("Optimizing Latents.")
    synthesizer = StyleGANGenerator(args.model_type).model.synthesis
    latent_optimizer = LatentOptimizer(synthesizer, args.vgg_layer)

    # Optimize only the dlatents.
    for param in latent_optimizer.parameters():
        param.requires_grad_(False)

    if args.video or args.save_optimized_image:
        # Hook, saves an image during optimization to be used to create video.
        generated_image_hook = GeneratedImageHook(
            latent_optimizer.post_synthesis_processing, args.save_frequency)

    reference_image = load_images([args.image_path])
    reference_image = torch.from_numpy(reference_image).cuda()
    reference_image = latent_optimizer.vgg_processing(reference_image)
    reference_features = latent_optimizer.vgg16(reference_image).detach()
    reference_image = reference_image.detach()

    if args.use_latent_finder:
        image_to_latent = ImageToLatent().cuda()
        image_to_latent.load_state_dict(torch.load(args.image_to_latent_path))
        image_to_latent.eval()

        latents_to_be_optimized = image_to_latent(reference_image)
        latents_to_be_optimized = latents_to_be_optimized.detach().cuda(
        ).requires_grad_(True)
    else:
        latents_to_be_optimized = torch.zeros(
            (1, 18, 512)).cuda().requires_grad_(True)

    criterion = LatentLoss()
    optimizer = torch.optim.SGD([latents_to_be_optimized],
                                lr=args.learning_rate)

    progress_bar = tqdm(range(args.iterations))
    for step in progress_bar:
        optimizer.zero_grad()

        generated_image_features = latent_optimizer(latents_to_be_optimized)

        loss = criterion(generated_image_features, reference_features)
        loss.backward()
        loss = loss.item()

        optimizer.step()
        progress_bar.set_description("Step: {}, Loss: {}".format(step, loss))

    optimized_dlatents = latents_to_be_optimized.detach().cpu().numpy()
    np.save(args.dlatent_path, optimized_dlatents)

    if args.video:
        images_to_video(generated_image_hook.get_images(), args.video_path)
    if args.save_optimized_image:
        save_image(generated_image_hook.last_image, args.optimized_image_path)
Ejemplo n.º 2
0
def result_get():
    synthesizer = StyleGANGenerator(args.model_type).model.synthesis
    latent_optimizer = LatentOptimizer(synthesizer, args.vgg_layer)
    image_to_latent = ImageToLatent().cuda()
    FeatureMapper = FeatureMapping().cuda()
    FeatureMapper.load_state_dict(
        torch.load('./output/models/FeatureMapper_90.pth'))
    image_to_latent.load_state_dict(
        torch.load('output/models/ImageToLatent_90.pth'))
    X_train = np.zeros((2, 256, 256, 3))
    #img1 = image.load_img('./data/train/tfaces/0020_01.png', target_size=(256, 256))
    #img2 = image.load_img('./data/train/tfaces/0022_01.png', target_size=(256, 256))
    img1 = image.load_img('./data/sy_imgs/example0.png',
                          target_size=(256, 256))
    img2 = image.load_img('./data/sy_imgs/example14.png',
                          target_size=(256, 256))

    img1 = image.img_to_array(img1) / 255.0
    img2 = image.img_to_array(img2) / 255.0
    X_train[0] = img1
    X_train[1] = img2
    device = torch.device('cuda')
    smile = np.array((np.load(
        './InterFaceGAN/boundaries/stylegan_ffhq_smile_w_boundary.npy')))
    smile_w = torch.from_numpy(
        np.tile(
            np.concatenate((np.tile(smile, (9, 1)), np.zeros((9, 512))),
                           axis=0), (2, 1, 1))).cuda()
    batchimg = X_train.astype(np.float16)
    reference_image = torch.from_numpy(batchimg).float().to(device)
    reference_image = reference_image.permute(0, 3, 1, 2)
    latents_optimized = image_to_latent(reference_image)
    latents_to_be_optimized = latents_optimized.view(-1, 18 * 512)
    latents_to_be_optimized = FeatureMapper(latents_to_be_optimized)
    latents_to_be_optimized = latents_to_be_optimized.view(-1, 18, 512)
    latents_to_be_optimized = latents_to_be_optimized.cuda().requires_grad_(
        True)
    l1 = latents_to_be_optimized.clone()
    for j in range(30):
        lx = l1.clone()
        lx += smile_w / 10 * j
        gen = latent_optimizer(lx, batchimg)
        for i in range(2):
            image_dir = args.optimized_image_path + \
                        "video_" + str(i) +"_ra_"+str(j)+".jpg"
            save_img = gen[i].detach().cpu().numpy()
            save_image(save_img, image_dir)
Ejemplo n.º 3
0
def optimize_latents():
    # logger
    logger = make_logger("project", args.output_dir, 'log')

    logger.info("Optimizing Latents.")  # optimize to latent
    global_time = time.time()

    # the module generating image
    synthesizer = StyleGANGenerator(args.model_type).model.synthesis
    # the optimizer severs as getting the featuremap of the image
    latent_optimizer = LatentOptimizer(synthesizer, args.vgg_layer)

    # Optimizer only the dlatents.
    for param in latent_optimizer.parameters():  # frozen the parameters
        param.requires_grad_(False)

    if args.video or args.save_optimized_image:  # if need save video or the optimized_image
        # Hook, saves an image during optimization to be used to create video.
        generated_image_hook = GeneratedImageHook(
            latent_optimizer.post_synthesis_processing, args.save_frequency)

    image_to_latent = ImageToLatent().cuda()
    FeatureMapper = FeatureMapping().cuda()
    FeatureMapper.load_state_dict(
        torch.load('./output/models/FeatureMapper_90.pth'))
    #image_to_latent = torch.load('./output/models/ImageToLatent_105.pth')
    # best 110
    # try below 100
    image_to_latent.load_state_dict(
        torch.load('output/models/ImageToLatent_90.pth'))
    # for param in image_to_latent.parameters():  # frozen the parameters
    #   param.requires_grad_(False)
    # You can use models from scatch

    #image_to_latent.train() # training for the first step
    FeatureMapper.train()  # The feature mapping step
    X_train, Y_train = DataSet()
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(image_to_latent.parameters(),
                                 lr=args.learning_rate)
    save_dir = os.path.join(args.output_dir, 'models')
    os.makedirs(save_dir, exist_ok=True)
    device = torch.device('cuda')
    imgprocess = ImageProcessing().cuda().eval()
    imgpostprocess = PostSynthesisProcessing().cuda().eval()
    sum_loss = 0
    batch_size = 8
    for epoch in range(1, args.epochs + 1):
        # logger.info("Epoch: [%d]" % epoch)
        index = [i for i in range(len(X_train))]
        random.shuffle(index)
        X_train = X_train[index]
        Y_train = Y_train[index]
        index_b = []
        ite = int(len(X_train) / batch_size)
        for i in range(ite):
            batchx = index[i * batch_size:i * batch_size + batch_size]
            batchy = Y_train[i * batch_size:i * batch_size + batch_size]
            index_b.append(batchx)
        for (i, batchind) in enumerate(index_b, 1):
            batchimg = X_train[batchind].astype(np.float16)
            batchlats = Y_train[batchind].astype(np.float16)
            reference_image = torch.from_numpy(batchimg).float().to(device)
            reference_image = reference_image.permute(0, 3, 1, 2)
            generated_features = torch.from_numpy(batchlats).float().to(device)
            latents_optimized = image_to_latent(reference_image)
            # On first step , this do not use
            latents_to_be_optimized = latents_optimized.view(-1, 18 * 512)
            latents_to_be_optimized = FeatureMapper(latents_to_be_optimized)
            latents_to_be_optimized = latents_to_be_optimized.view(-1, 18, 512)
            latents_to_be_optimized = latents_to_be_optimized.cuda(
            ).requires_grad_(True)
            generated_imgs = latent_optimizer(latents_to_be_optimized,
                                              batchimg)
            nimgs = latent_optimizer(generated_features, batchimg)
            gen_feat = latent_optimizer.vgg16(imgprocess(generated_imgs))
            n_feat = latent_optimizer.vgg16(imgprocess(nimgs))
            # until here , for the second step (Mapping)
            # loss=criterion(latents_to_be_optimized,generated_features)
            loss = criterion(gen_feat, n_feat) + criterion(
                generated_imgs, nimgs)  # second loss for second step
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            sum_loss += loss.item()
        if (epoch) % 1 == 0:
            print("epoch [" + str(epoch) + "] finished!")
        if (epoch) % 10 == 0:
            elapsed = time.time() - global_time
            elapsed = str(datetime.timedelta(seconds=elapsed)).split('.')[0]
            logger.info("Elapsed: [%s] Epoch: [%d] Step: %d  Loss: %f" %
                        (elapsed, epoch, i, sum_loss / 300))
            sum_loss = 0
            model_save_file = os.path.join(
                save_dir, "FeatureMapper" + "_" + str(epoch) + ".pth")
            torch.save(FeatureMapper.state_dict(), model_save_file)
            model_save_file = os.path.join(
                save_dir, "ImageToLatent" + "_" + str(epoch) + ".pth")
            torch.save(image_to_latent.state_dict(), model_save_file)
            image_dir = args.optimized_image_path + \
                str(epoch) + "_" + ".jpg"
            save_img = generated_imgs[0].detach().cpu().numpy()
            save_image(save_img, image_dir)
            image_dir = args.optimized_image_path + \
                        str(epoch) + "_r" + ".jpg"
            save_image(nimgs[0].detach().cpu().numpy(), image_dir)
    if args.video:
        images_to_video(generated_image_hook.get_images(), args.video_path)
    if args.save_optimized_image:
        save_image(generated_image_hook.last_image, args.optimized_image_path)
Ejemplo n.º 4
0
def optimize_latents():
    print("Optimizing Latents.")
    generator = StyledGenerator(512).to(device)
    generator.load_state_dict(torch.load(args.path)['generator'])
    generator.eval()
    latent_optimizer = LatentOptimizer(generator, args.vgg_layer)
    mean_style = get_mean_style(generator, device)
    total = np.zeros((83 * 3, 512))
    # Optimize only the dlatents.
    for param in latent_optimizer.parameters():
        param.requires_grad_(False)

    if args.video or args.save_optimized_image:
        # Hook, saves an image during optimization to be used to create video.
        generated_image_hook = GeneratedImageHook(
            latent_optimizer.post_synthesis_processing, args.save_frequency)

    for i in range(3 * 83):  #3 for each pictrue
        iid = i % 3
        path = int(i / 3)
        iterations = int(200 * iid + 300)
        image_path = './data/' + str(path) + '.jpg'
        print(image_path)
        reference_image = load_images([image_path])
        reference_image = torch.from_numpy(reference_image).to(device)
        reference_image = latent_optimizer.vgg_processing(
            reference_image)  #normalize
        reference_features = latent_optimizer.vgg16(
            reference_image).detach()  #vgg
        reference_image = reference_image.detach()

        if args.use_latent_finder:
            image_to_latent = ImageToLatent().cuda()
            image_to_latent.load_state_dict(
                torch.load(args.image_to_latent_path))
            image_to_latent.eval()

            latents_to_be_optimized = image_to_latent(reference_image)
            latents_to_be_optimized = latents_to_be_optimized.detach().cuda(
            ).requires_grad_(True)
        else:
            latents_to_be_optimized = torch.zeros(
                (1, 512)).cuda().requires_grad_(True)

        criterion = LatentLoss()
        optimizer = torch.optim.SGD([latents_to_be_optimized],
                                    lr=args.learning_rate)

        progress_bar = tqdm(range(iterations))

        for step in progress_bar:
            optimizer.zero_grad()

            generated_image_features = latent_optimizer(
                latents_to_be_optimized, mean_style, i)
            #print(latents_to_be_optimized)
            loss = criterion(generated_image_features, reference_features)
            loss.backward()
            loss = loss.item()

            optimizer.step()
            progress_bar.set_description("Step: {}, Loss: {}".format(
                step, loss))

        optimized_dlatents = latents_to_be_optimized.detach().cpu().numpy()
        total[i] = optimized_dlatents[0]

    np.save(args.dlatent_path, total)
Ejemplo n.º 5
0
def optimize_latents():
    # logger
    logger = make_logger("project", args.output_dir, 'log')

    logger.info("Optimizing Latents.")  # optimize to latent
    global_time = time.time()

    # the module generating image
    synthesizer = StyleGANGenerator(args.model_type).model.synthesis
    # the optimizer severs as getting the featuremap of the image
    latent_optimizer = LatentOptimizer(synthesizer, args.vgg_layer)

    # Optimizer only the dlatents.
    for param in latent_optimizer.parameters():  # frozen the parameters
        param.requires_grad_(False)

    if args.video or args.save_optimized_image:  # if need save video or the optimized_image
        # Hook, saves an image during optimization to be used to create video.
        generated_image_hook = GeneratedImageHook(
            latent_optimizer.post_synthesis_processing, args.save_frequency)

    image_to_latent = ImageToLatent().cuda()
    # image_to_latent.load_state_dict(torch.load('output/models'))
    image_to_latent.train()

    dataset = make_dataset(folder=False,
                           img_dir='./data/sy_imgs',
                           resolution=1024)
    data = get_data_loader(dataset, batch_size=16, num_workers=4)

    criterion = LatentLoss()
    optimizer = torch.optim.Adam(image_to_latent.parameters(),
                                 lr=args.learning_rate)

    save_dir = os.path.join(args.output_dir, 'models')
    os.makedirs(save_dir, exist_ok=True)

    device = torch.device('cuda')
    imgprocess = ImageProcessing().cuda().eval()
    imgpostprocess = PostSynthesisProcessing().cuda().eval()
    sum_loss = 0

    for epoch in range(1, args.epochs + 1):
        # logger.info("Epoch: [%d]" % epoch)

        for (i, batch) in enumerate(data, 1):
            reference_image = batch.to(device)
            style_image = reference_image.clone()  # [1, 3, 1024, 2024]
            reference_image = imgprocess(reference_image)
            # print(reference_image.size())
            # print(reference_image[0][1]) # 值在0到1之间 tensor([-0.2157, -0.2157, -0.2235,  ...,  0.0431,  0.0431,  0.0431]
            # reference_image = latent_optimizer.vgg_processing(
            #    reference_image)  # normalization
            # print(reference_image.size()) # ([1, 3, 256, 256])
            # print(reference_image[0][1][1]) # 这里出了问题,去了和上面一样的tensor,基本都变成了-2.03
            # assert False
            reference_features = latent_optimizer.vgg16(reference_image)

            # reference_image = reference_image.detach()

            # latents should be get from the gmapping class from stylegan
            latents_to_be_optimized = image_to_latent(reference_image)
            # print(latents_to_be_optimized.size()) # torch.Size([1, 18, 512])
            # print(latents_to_be_optimized)
            # latents_to_be_optimized = latents_to_be_optimized.detach().cuda().requires_grad_(True)
            latents_to_be_optimized = latents_to_be_optimized.cuda(
            ).requires_grad_(True)

            generated_image = latent_optimizer(latents_to_be_optimized,
                                               style_image)
            generated_image_features = latent_optimizer.vgg16(generated_image)
            # print(generated_image_features.size()) # torch.Size([1, 3, 256, 256])
            # print(generated_image_features[0][1])
            # assert False
            loss = criterion(generated_image_features, reference_features)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            sum_loss += loss.item()

        if (epoch) % 1 == 0:
            elapsed = time.time() - global_time
            elapsed = str(datetime.timedelta(seconds=elapsed)).split('.')[0]
            logger.info("Elapsed: [%s] Epoch: [%d] Step: %d  Loss: %f" %
                        (elapsed, epoch, i, sum_loss / 100))
            print(latents_to_be_optimized[0, :10, :10])
            print()
            sum_loss = 0
            model_save_file = os.path.join(
                save_dir, "ImageToLatent" + "_" + str(epoch) + ".pth")
            torch.save(image_to_latent.state_dict(), model_save_file)
            image_dir = args.optimized_image_path + \
                str(epoch) + "_" + ".jpg"
            save_img = imgpostprocess(
                generated_image[0].detach().cpu()).numpy()
            save_image(save_img, image_dir)

    if args.video:
        images_to_video(generated_image_hook.get_images(), args.video_path)
    if args.save_optimized_image:
        save_image(generated_image_hook.last_image, args.optimized_image_path)
def optimize_latents():
    print("Optimizing Latents.")
    generator = StyledGenerator(512).to(device)
    generator.load_state_dict(torch.load(args.path)['generator'])
    generator.eval()
    latent_optimizer = LatentOptimizer(generator, args.vgg_layer)
    mean_style = get_mean_style(generator, device)
    # Optimize only the dlatents.
    for param in latent_optimizer.parameters():
        param.requires_grad_(False)

    if args.video or args.save_optimized_image:
        # Hook, saves an image during optimization to be used to create video.
        generated_image_hook = GeneratedImageHook(
            latent_optimizer.post_synthesis_processing, args.save_frequency)

    reference_image = load_images([args.image_path])
    reference_image = torch.from_numpy(reference_image).to(device)
    reference_image = latent_optimizer.vgg_processing(
        reference_image)  #normalize
    utils.save_image(reference_image,
                     './reference.png',
                     nrow=1,
                     normalize=True,
                     range=(-1, 1))
    reference_features = latent_optimizer.vgg16(reference_image).detach()  #vgg
    reference_image = reference_image.detach()

    if args.use_latent_finder:
        image_to_latent = ImageToLatent().cuda()
        image_to_latent.load_state_dict(torch.load(args.image_to_latent_path))
        image_to_latent.eval()

        latents_to_be_optimized = image_to_latent(reference_image)
        latents_to_be_optimized = latents_to_be_optimized.detach().cuda(
        ).requires_grad_(True)
    else:
        latents_to_be_optimized = torch.zeros(
            (1, 512)).cuda().requires_grad_(True)
    #print(latents_to_be_optimized.mean(),latents_to_be_optimized.std())
    criterion = LatentLoss()
    optimizer = torch.optim.RMSprop([latents_to_be_optimized],
                                    lr=args.learning_rate,
                                    weight_decay=0.02)
    #print(latents_to_be_optimized.mean(),latents_to_be_optimized.std())
    progress_bar = tqdm(range(args.iterations))
    for step in progress_bar:
        #print(latents_to_be_optimized)
        optimizer.zero_grad()
        generated_image_features = latent_optimizer(latents_to_be_optimized,
                                                    mean_style)
        loss = criterion(generated_image_features, reference_features)
        loss.backward()
        loss = loss.item()

        optimizer.step()
        # if step==args.iterations:
        #     break
        # with torch.no_grad():
        #    latents_to_be_optimized.add_(-latents_to_be_optimized.mean()+3e-2*torch.randn(1).to('cuda'))
        #    latents_to_be_optimized.div_(latents_to_be_optimized.std()+3e-2*torch.randn(1).to('cuda'))
        #print(latents_to_be_optimized.mean(),latents_to_be_optimized.std())
        progress_bar.set_description("Step: {}, Loss: {}".format(step, loss))

    print(latents_to_be_optimized)
    #latents_to_be_optimized=latent_optimizer.normalize(latents_to_be_optimized)
    #print(latents_to_be_optimized.mean(),latents_to_be_optimized.std())
    optimized_dlatents = latents_to_be_optimized.detach().cpu().numpy()
    np.save(args.dlatent_path, optimized_dlatents)

    if args.video:
        images_to_video(generated_image_hook.get_images(), args.video_path)
    if args.save_optimized_image:
        save_image(generated_image_hook.last_image, args.optimized_image_path)