Ejemplo n.º 1
0
                                 i2h_stride=(1, 1),
                                 i2h_pad=(1, 1),
                                 h2h_kernel=(5, 5),
                                 h2h_dilate=(1, 1),
                                 config=config),
                         TrajGRU(input_channel=64,
                                 num_filter=64,
                                 b_h_w=(batch_size, 132, 102),
                                 zoneout=0.0,
                                 L=9,
                                 i2h_kernel=(3, 3),
                                 i2h_stride=(1, 1),
                                 i2h_pad=(1, 1),
                                 h2h_kernel=(5, 5),
                                 h2h_dilate=(1, 1),
                                 config=config)
                     ]]

data_loader = DataGenerator(data_path=global_config['DATA_PATH'],
                            config=config)

encoder = Encoder(encoder_params[0], encoder_params[1]).to(config['DEVICE'])
forecaster = Forecaster(forecaster_params[0],
                        forecaster_params[1],
                        config=config).to(config['DEVICE'])
encoder_forecaster = EF(encoder, forecaster).to(config['DEVICE'])

weight_path = save_dir + '/model_25500.pth'
encoder_forecaster.load_state_dict(torch.load(weight_path,
                                              map_location='cuda'))
test(encoder_forecaster, data_loader, config, save_dir, crop=None)
Ejemplo n.º 2
0
def conv_test(model_path,
              start_pred_fn,
              test_case,
              in_len,
              out_len,
              batch_size,
              multitask,
              crop=None):

    config = {
        'DEVICE': torch.device('cuda:0'),
        'IN_LEN': in_len,
        'OUT_LEN': out_len,
        'BATCH_SIZE': batch_size,
    }

    convlstm_encoder_params = [[
        OrderedDict({'conv1_leaky_1': [1, 8, 7, 5, 1]}),
        OrderedDict({'conv2_leaky_1': [64, 192, 5, 3, 1]}),
        OrderedDict({'conv3_leaky_1': [192, 192, 3, 2, 1]}),
    ],
                               [
                                   ConvLSTM(input_channel=8,
                                            num_filter=64,
                                            b_h_w=(batch_size, 96, 96),
                                            kernel_size=3,
                                            stride=1,
                                            padding=1,
                                            config=config),
                                   ConvLSTM(input_channel=192,
                                            num_filter=192,
                                            b_h_w=(batch_size, 32, 32),
                                            kernel_size=3,
                                            stride=1,
                                            padding=1,
                                            config=config),
                                   ConvLSTM(input_channel=192,
                                            num_filter=192,
                                            b_h_w=(batch_size, 16, 16),
                                            kernel_size=3,
                                            stride=1,
                                            padding=1,
                                            config=config),
                               ]]

    convlstm_forecaster_params = [[
        OrderedDict({'deconv1_leaky_1': [192, 192, 4, 2, 1]}),
        OrderedDict({'deconv2_leaky_1': [192, 64, 5, 3, 1]}),
        OrderedDict({
            'deconv3_leaky_1': [64, 8, 7, 5, 1],
            'conv3_leaky_2': [8, 8, 3, 1, 1],
            'conv3_3': [8, 1, 1, 1, 0]
        }),
    ],
                                  [
                                      ConvLSTM(input_channel=192,
                                               num_filter=192,
                                               b_h_w=(batch_size, 16, 16),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                      ConvLSTM(input_channel=192,
                                               num_filter=192,
                                               b_h_w=(batch_size, 32, 32),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                      ConvLSTM(input_channel=64,
                                               num_filter=64,
                                               b_h_w=(batch_size, 96, 96),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                  ]]

    encoder = Encoder(convlstm_encoder_params[0],
                      convlstm_encoder_params[1]).to(config['DEVICE'])
    forecaster = Forecaster(convlstm_forecaster_params[0],
                            convlstm_forecaster_params[1],
                            config=config).to(config['DEVICE'])
    model = EF(encoder, forecaster).to(config['DEVICE'])
    model.load_state_dict(torch.load(model_path, map_location='cuda'))

    data = get_data(start_pred_fn, crop=crop, config=config)
    data = mm_dbz(data)

    weight = global_config['MERGE_WEIGHT']

    pred, label = prepare_testing(data, model, weight=weight, config=config)
    pred = np.maximum(dbz_mm(pred), 0)
    label = dbz_mm(label)
    csi = fp_fn_image_csi(pred, label)
    # print('CSI: ', csi)
    csi_multi = fp_fn_image_csi_muti_reg(pred, label)
    # print('CSI Multi: ', csi_multi)
    rmse, rmse_rain, rmse_non_rain = cal_rmse_all(pred, label)
    # print('rmse_all', rmse)
    # print('rmse_rain', rmse_rain)
    # print('rmse_non_rain', rmse_non_rain)

    if not os.path.exists('./imgs_conv'):
        os.makedirs('./imgs_conv')
    path = './imgs_conv/conv_{}_{}_{}_{}/'.format(test_case, in_len, out_len,
                                                  multitask)
    try:
        os.makedirs(path)
    except:
        pass
    try:
        os.makedirs(path + 'imgs/')
    except:
        pass

    #Save erros gif
    errs = np.sqrt(np.square(pred - label))
    make_gif(errs / errs.max() * 255, path + 'errs.gif')
    #Save pred gif
    make_gif(pred / 60 * 255, path + 'pred.gif')
    #Save colored pred gif
    make_gif_color(pred, path + 'pred_colored.gif')
    #Save gt gif
    make_gif(label / 60 * 255, path + 'gt.gif')
    #Save colored gt gif
    make_gif_color(label, path + 'gt_colored.gif')
    #Save imgs
    for i in range(pred.shape[0]):
        cv2.imwrite(
            path + 'imgs/' + str(i) + '.png',
            cv2.cvtColor(np.array(pred[i] / 80 * 255, dtype=np.uint8),
                         cv2.COLOR_GRAY2BGR))

    # for i in range(pred.shape[0]):
    #     cv2.imwrite(path+str(i)+'.png',
    #                 cv2.cvtColor(np.array(pred[i]/60*255, dtype=np.uint8), cv2.COLOR_GRAY2BGR))

    # cv2.imwrite('conv_pred_1.png', rainfall_shade(pred[-1]))
    # cv2.imwrite('conv_label_1.png', rainfall_shade(data[-1]))

    return [rmse, rmse_rain, rmse_non_rain], csi, csi_multi
Ejemplo n.º 3
0
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                      ConvLSTM(input_channel=64,
                                               num_filter=64,
                                               b_h_w=(batch_size, 96, 96),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                  ]]

    encoder = Encoder(convlstm_encoder_params[0],
                      convlstm_encoder_params[1]).to(config['DEVICE'])
    forecaster = Forecaster(convlstm_forecaster_params[0],
                            convlstm_forecaster_params[1],
                            config=config).to(config['DEVICE'])
    model = EF(encoder, forecaster).to(config['DEVICE'])
    model.load_state_dict(
        torch.load(
            '/home/warit/senior/experiments/conv_logs/logs_5_1_4_True_02_17_11_35/model_f1_i5000.pth'
        ))

    w = train_weight_model(model,
                           500,
                           crop=None,
                           epochs=2,
                           learning_rate=1e-2,
                           config=config)
    np.savez('learnt_weight.npz', w=w)
Ejemplo n.º 4
0
                                               num_filter=192,
                                               b_h_w=(batch_size, 44, 34),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                      ConvLSTM(input_channel=64,
                                               num_filter=64,
                                               b_h_w=(batch_size, 132, 102),
                                               kernel_size=3,
                                               stride=1,
                                               padding=1,
                                               config=config),
                                  ]]

    data_loader = DataGenerator(data_path=global_config['DATA_PATH'],
                                config=config)

    encoder = Encoder(convlstm_encoder_params[0],
                      convlstm_encoder_params[1]).to(config['DEVICE'])
    forecaster = Forecaster(convlstm_forecaster_params[0],
                            convlstm_forecaster_params[1],
                            config=config).to(config['DEVICE'])
    encoder_forecaster = EF(encoder, forecaster).to(config['DEVICE'])
    optim = torch.optim.Adam(encoder_forecaster.parameters(), lr=LR)
    trainer = Trainer(config=config,
                      model=encoder_forecaster,
                      optimizer=optim,
                      data_loader=data_loader,
                      save_dir=logs_name)
    trainer.train()
Ejemplo n.º 5
0
def conv_test(model_path, start_pred_fn, test_case, in_len, out_len, batch_size, multitask, crop=None):

    config = {
        'DEVICE': torch.device('cuda:0'),
        'IN_LEN': in_len,
        'OUT_LEN': out_len,
        'BATCH_SIZE': batch_size,
    }

    convlstm_encoder_params = [
        [
            OrderedDict({'conv1_leaky_1': [1, 8, 7, 5, 1]}),
            OrderedDict({'conv2_leaky_1': [64, 192, 5, 3, 1]}),
            OrderedDict({'conv3_leaky_1': [192, 192, 3, 2, 1]}),
        ],

        [
            ConvLSTM(input_channel=8, num_filter=64, b_h_w=(batch_size, 168, 126),
                    kernel_size=3, stride=1, padding=1, config=config),
            ConvLSTM(input_channel=192, num_filter=192, b_h_w=(batch_size, 56, 42),
                    kernel_size=3, stride=1, padding=1, config=config),
            ConvLSTM(input_channel=192, num_filter=192, b_h_w=(batch_size, 28, 21),
                    kernel_size=3, stride=1, padding=1, config=config),
        ]
    ]

    convlstm_forecaster_params = [
        [
            OrderedDict({'deconv1_leaky_1': [192, 192, 4, 2, 1]}),
            OrderedDict({'deconv2_leaky_1': [192, 64, 5, 3, 1]}),
            OrderedDict({
                'deconv3_leaky_1': [64, 8, 7, 5, 1],
                'conv3_leaky_2': [8, 8, 3, 1, 1],
                'conv3_3': [8, 1, 1, 1, 0]
            }),
        ],

        [
            ConvLSTM(input_channel=192, num_filter=192, b_h_w=(batch_size, 28, 21),
                    kernel_size=3, stride=1, padding=1, config=config),
            ConvLSTM(input_channel=192, num_filter=192, b_h_w=(batch_size, 56, 42),
                    kernel_size=3, stride=1, padding=1, config=config),
            ConvLSTM(input_channel=64, num_filter=64, b_h_w=(batch_size, 168, 126),
                    kernel_size=3, stride=1, padding=1, config=config),
        ]
    ]

    encoder = Encoder(convlstm_encoder_params[0], convlstm_encoder_params[1]).to(
        config['DEVICE'])
    forecaster = Forecaster(
        convlstm_forecaster_params[0], convlstm_forecaster_params[1], config=config).to(config['DEVICE'])
    model = EF(encoder, forecaster).to(config['DEVICE'])
    model.load_state_dict(
        torch.load(model_path, map_location='cuda'))

    files = sorted([file for file in glob.glob(global_config['TEST_PATH'])])
    idx = 0
    if start_pred_fn != '':
        try:
            idx = next(i for i,f in enumerate(files) if os.path.basename(f) == start_pred_fn)
        except:
            idx = -1
            print('not found')
    scale_div=4
    data = np.zeros((config['IN_LEN'] + global_config['OUT_TARGET_LEN'], int(global_config['DATA_HEIGHT']/scale_div), int((global_config['DATA_WIDTH'] - 40)/scale_div)), dtype=np.float32)
    for i, file in enumerate(files[idx - config['IN_LEN']:idx + global_config['OUT_TARGET_LEN']]):
        fd = np.fromfile(file, dtype=np.float32).reshape((global_config['DATA_HEIGHT'], global_config['DATA_WIDTH']))[:,20:-20]
        fd = cv2.resize(fd, (int((global_config['DATA_WIDTH'] - 40)/scale_div), int(global_config['DATA_HEIGHT']/scale_div)), interpolation = cv2.INTER_AREA)
        data[i, :] = fd
    
    data = mm_dbz(data)
    input = data[:in_len]
    label = data[in_len:]
    preds = []
    with torch.no_grad():
        input = torch.from_numpy(input[:, None, None]).to(config['DEVICE'])
        for i in range(18):
            pred = model(input)
            pred[pred<0.2 + 0.035*i] -= 0.04*i
            pred = torch.clamp(pred, min=mm_dbz(0), max=mm_dbz(60))
            preds.append(pred.detach().cpu().numpy()[0, 0, 0])
            input = torch.cat((input[1:], pred), 0)
    pred = np.array(preds)
    print(pred.shape, label.shape)
    pred = np.maximum(dbz_mm(pred), 0)
    label = dbz_mm(label)
    csi = fp_fn_image_csi(pred, label)
    # print('CSI: ', csi)
    csi_multi = fp_fn_image_csi_muti_reg(pred, label)
    # print('CSI Multi: ', csi_multi)
    rmse, rmse_rain, rmse_non_rain = cal_rmse_all(pred, label)
    # print('rmse_all', rmse)
    # print('rmse_rain', rmse_rain)
    # print('rmse_non_rain', rmse_non_rain)

    if not os.path.exists('./imgs_conv'):
        os.makedirs('./imgs_conv')
    path = './imgs_conv/conv_{}_{}_{}_{}/'.format(test_case, in_len, out_len, multitask)
    try:
        os.makedirs(path)
    except:
        pass
    try:
        os.makedirs(path+'imgs/')
    except:
        pass

    #Save erros gif
    errs = np.sqrt(np.square(pred - label))
    make_gif(errs / errs.max() * 255, path + 'errs.gif')
    #Save pred gif
    make_gif(pred / 60 * 255, path + 'pred.gif')
    #Save colored pred gif
    make_gif_color(pred, path + 'pred_colored.gif')
    #Save gt gif
    make_gif(label / 60 * 255, path + 'gt.gif')
    #Save colored gt gif
    make_gif_color(label, path + 'gt_colored.gif')
    #Save imgs
    for i in range(pred.shape[0]):
        cv2.imwrite(path+'imgs/'+str(i)+'.png', 
                    cv2.cvtColor(np.array(pred[i]/80*255, dtype=np.uint8), cv2.COLOR_GRAY2BGR))
    
    # for i in range(pred.shape[0]):
    #     cv2.imwrite(path+str(i)+'.png',
    #                 cv2.cvtColor(np.array(pred[i]/60*255, dtype=np.uint8), cv2.COLOR_GRAY2BGR))

    # cv2.imwrite('conv_pred_1.png', rainfall_shade(pred[-1]))
    # cv2.imwrite('conv_label_1.png', rainfall_shade(data[-1]))

    return [rmse, rmse_rain, rmse_non_rain], csi, csi_multi