Ejemplo n.º 1
0
                                           num_sample=args.num_sample,
                                           normalize_vq=True,
                                           noise_x=True,
                                           noise_y=True).cuda()
    dataset_type = 'multi'
elif model_type == 'wavernn':
    print("Model type is wavernn")
    model_fn = lambda dataset: wr.Model(rnn_dims=896,
                                        fc_dims=896,
                                        pad=2,
                                        upsample_factors=(4, 4, 4),
                                        feat_dims=80).cuda()
    dataset_type = 'single'
elif model_type == 'nc':
    print("Model type is nc")
    model_fn = lambda dataset: nc.Model(rnn_dims=896, fc_dims=896).cuda()
    dataset_type = 'single'
else:
    sys.exit(f'Unknown model: {model_type}')

if dataset_type == 'multi':
    data_path = config.multi_speaker_data_path
    with open(f'{data_path}/index.pkl', 'rb') as f:
        index = pickle.load(f)

    logger.log(f"len of vctk index pkl object is {len(index)}"
               )  # should be equal to total number of speakers in the dataset
    # logger.log(f"index.pkl file --- index[:5] {index[:5]}")
    # logger.log(f"index.pkl file --- index[0][:5] {index[0][:5]}")

    test_index = [
Ejemplo n.º 2
0
                                           noise_x=True,
                                           noise_y=True,
                                           DEVICE=DEVICE).to(DEVICE)
    dataset_type = 'multi'
elif model_type == 'wavernn':
    raise ValueError("NYI wavernn")
    model_fn = lambda dataset: wr.Model(rnn_dims=896,
                                        fc_dims=896,
                                        pad=2,
                                        upsample_factors=(4, 4, 4),
                                        feat_dims=80,
                                        DEVICE=DEVICE).to(DEVICE)
    dataset_type = 'single'
elif model_type == 'nc':
    raise ValueError("NYI nc")
    model_fn = lambda dataset: nc.Model(
        rnn_dims=896, fc_dims=896, DEVICE=DEVICE).to(DEVICE)
    dataset_type = 'single'
else:
    sys.exit(f'Unknown model: {model_type}')

if dataset_type == 'multi':
    """
    data_path = config.multi_speaker_data_path
    data_path = "gt_data_dir"
    with open(f'{data_path}/index.pkl', 'rb') as f:
        index = pickle.load(f)
    test_index = [x[-1:] if i < 2 * args.count else [] for i, x in enumerate(index)]
    train_index = [x[:-1] if i < args.count else x for i, x in enumerate(index)]
    dataset = env.MultispeakerDataset(train_index, data_path)
    """
elif dataset_type == 'single':