Ejemplo n.º 1
0
class ConvPoseMachine(object):
    """
      The class for Pose Estimation. Include train, val, val & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.single_pose_detector()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)

        self.optimizer, self.scheduler = Trainer.init(
            self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.pose_data_loader.get_trainloader()
        self.val_loader = self.pose_data_loader.get_valloader()

        self.mse_loss = self.pose_model_manager.get_pose_loss()

    def _get_parameters(self):

        return self.pose_net.parameters()

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.pose_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1

        # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects)
        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, solver_dict=self.configer.get('solver'))
            inputs = data_dict['img']
            heatmap = data_dict['heatmap']

            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs, heatmap = RunnerHelper.to_device(self, inputs, heatmap)
            # self.pose_visualizer.vis_peaks(heatmap[0], inputs[0], name='cpm')

            # Forward pass.
            outputs = self.pose_net(inputs)

            # Compute the loss of the train batch & backward.
            loss = self.mse_loss(outputs, heatmap)

            self.train_losses.update(loss.item(), inputs.size(0))
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                heatmap = data_dict['heatmap']
                # Change the data type.
                inputs, heatmap = RunnerHelper.to_device(self, inputs, heatmap)

                # Forward pass.
                outputs = self.pose_net(inputs)

                # Compute the loss of the val batch.
                loss = self.mse_loss(outputs[-1], heatmap)

                self.val_losses.update(loss.item(), inputs.size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self,
                                  self.pose_net,
                                  iters=self.runner_state['iters'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.pose_net.train()
Ejemplo n.º 2
0
class OpenPose(object):
    """
      The class for Pose Estimation. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_schedule_loss = AverageMeter()
        self.train_losses = AverageMeter()
        self.train_loss_heatmap = AverageMeter()
        self.train_loss_associate = AverageMeter()
        self.val_losses = AverageMeter()
        self.val_loss_heatmap = AverageMeter()
        self.val_loss_associate = AverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.get_multi_pose_model()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)

        self.optimizer, self.scheduler = Trainer.init(
            self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.pose_data_loader.get_trainloader()
        self.val_loader = self.pose_data_loader.get_valloader()

        self.weights = self.configer.get('network', 'loss_weights')
        self.mse_loss = self.pose_model_manager.get_pose_loss()

    def _get_parameters(self):
        lr_1 = []
        lr_2 = []
        params_dict = dict(self.pose_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                lr_2.append(value)
            else:
                lr_1.append(value)

        params = [
            {
                'params': lr_1,
                'lr': self.configer.get('solver', 'lr')['base_lr'],
                'weight_decay': 0.0
            },
            {
                'params': lr_2,
                'lr': self.configer.get('solver', 'lr')['base_lr'],
                'weight_decay': 0.0
            },
        ]

        return params

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.pose_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1
        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self,
                           backbone_list=(0, ),
                           solver_dict=self.configer.get('solver'))
            self.data_time.update(time.time() - start_time)
            # Forward pass.
            out_dict = self.pose_net(data_dict)

            # Compute the loss of the train batch & backward.
            loss_dict = self.mse_loss(out_dict,
                                      data_dict,
                                      gathered=self.configer.get(
                                          'network', 'gathered'))

            loss = loss_dict['loss']
            self.train_losses.update(loss.item(),
                                     len(DCHelper.tolist(data_dict['meta'])))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info('Loss Heatmap:{}, Loss Asso: {}'.format(
                    self.train_loss_heatmap.avg,
                    self.train_loss_associate.avg))
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))

                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()
                self.train_loss_heatmap.reset()
                self.train_loss_associate.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out_dict = self.pose_net(data_dict)
                # Compute the loss of the val batch.
                loss_dict = self.mse_loss(out_dict,
                                          data_dict,
                                          gathered=self.configer.get(
                                              'network', 'gathered'))

                self.val_losses.update(loss_dict['loss'].mean().item(),
                                       len(DCHelper.tolist(data_dict['meta'])))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.runner_state['val_loss'] = self.val_losses.avg
            RunnerHelper.save_net(self,
                                  self.pose_net,
                                  val_loss=self.val_losses.avg)
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.val_loss_heatmap.reset()
            self.val_loss_associate.reset()
            self.pose_net.train()