def prep_net(self, gpu_id=None, path='',dist=False):
        import torch
        import models.pytorch.model as model

        print('path = %s' % (path))

        print('Model set! dist mode? ', dist)
        self.net = model.SIGGRAPHGenerator(dist=dist)
        self.net.load_state_dict(torch.load(path))
        if gpu_id!=-1:
            self.net.cuda()
        self.net.eval()
        self.net_set = True
Ejemplo n.º 2
0
    def prep_net(self, gpu_id=None, path='', dist=False):
        import torch
        import models.pytorch.model as model
        print('path = %s' % path)
        print('Model set! dist mode? ', dist)
        self.net = model.SIGGRAPHGenerator(dist=dist)
        state_dict = torch.load(path)
        if hasattr(state_dict, '_metadata'):
            del state_dict._metadata

        # patch InstanceNorm checkpoints prior to 0.4
        for key in list(state_dict.keys()):  # need to copy keys here because we mutate in loop
            self.__patch_instance_norm_state_dict(state_dict, self.net, key.split('.'))
        self.net.load_state_dict(state_dict)
        if gpu_id != -1:
            self.net.cuda()
        self.net.eval()
        self.net_set = True