def evaluation(args): #-----------------load detection model ------------------------- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") dec_model = dec_net_seg.resnetssd50(pretrained=False, num_classes=args.num_classes) dec_model = load_dec_weights(dec_model, args.dec_weights) dec_model = dec_model.to(device) dec_model.eval() #-----------------load segmentation model ------------------------- seg_model = seg_net.SEG_NET(num_classes=args.num_classes) seg_model.load_state_dict(torch.load(args.seg_weights)) seg_model = seg_model.to(device) seg_model.eval() ##-------------------------------------------------------------- data_transforms = seg_transforms.Compose([ seg_transforms.ConvertImgFloat(), seg_transforms.Resize(args.img_height, args.img_width), seg_transforms.ToTensor() ]) dsets = seg_dataset_kaggle.NucleiCell(args.testDir, args.annoDir, data_transforms, imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) # for validation data ----------------------------------- detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() ap_05, ap_07 = seg_eval_kaggle.do_python_eval(dsets=dsets, dec_model=dec_model, seg_model=seg_model, detector=detector, anchors=anchors, device=device, args=args, offline=True) print('Finish')
def train(args): if not os.path.exists(args.weightDst): os.mkdir(args.weightDst) #-----------------load detection model ------------------------- device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") dec_model = dec_net_seg.resnetssd50(pretrained=False, num_classes=args.num_classes) resume_dict = torch.load(args.dec_weights,map_location='cpu')#map_location='cpu' # resume_dict = {k[7:]: v for k, v in resume_dict.items()} dec_model.load_state_dict(resume_dict,strict=False)#strict=False dec_model = dec_model.to(device) #------------------------------------------------------------------- dec_model.eval() # detector set to 'evaluation' mode for param in dec_model.parameters(): param.requires_grad = False #-----------------load segmentation model ------------------------- seg_model = seg_net.SEG_NET(num_classes=args.num_classes) seg_model = seg_model.to(device) ##-------------------------------------------------------------- data_transforms = { 'train': seg_transforms.Compose([seg_transforms.ConvertImgFloat(), seg_transforms.PhotometricDistort(), seg_transforms.Expand(), seg_transforms.RandomSampleCrop(), seg_transforms.RandomMirror_w(), seg_transforms.RandomMirror_h(), seg_transforms.Resize(args.img_height, args.img_width), seg_transforms.ToTensor()]), 'val': seg_transforms.Compose([seg_transforms.ConvertImgFloat(), seg_transforms.Resize(args.img_height, args.img_width), seg_transforms.ToTensor()]) } dsets = {'train': seg_dataset_kaggle.NucleiCell(args.trainDir, args.annoDir, data_transforms['train'], imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix), 'val': seg_dataset_kaggle.NucleiCell(args.valDir, args.annoDir, data_transforms['val'], imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix)} dataloader = torch.utils.data.DataLoader(dsets['train'], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, collate_fn=collater, pin_memory=True) optimizer = optim.Adam(params=filter(lambda p: p.requires_grad, seg_model.parameters()), lr=args.init_lr) scheduler = lr_scheduler.ExponentialLR(optimizer, gamma=0.98, last_epoch=-1) criterion = SEG_loss(height=args.img_height, width=args.img_width) if args.vis: cv2.namedWindow('img') for idx in range(len(dsets['train'])): img, bboxes, labels, masks = dsets['train'].__getitem__(idx) img = img.numpy().transpose(1, 2, 0).copy()*255 print(img.shape) bboxes = bboxes.numpy() labels = labels.numpy() masks = masks.numpy() for idx in range(bboxes.shape[0]): y1, x1, y2, x2 = bboxes[idx, :] y1 = int(y1) x1 = int(x1) y2 = int(y2) x2 = int(x2) cv2.rectangle(img, (x1, y1), (x2, y2), (255, 255, 255), 2, lineType=1) mask = masks[idx, :, :] img = map_mask_to_image(mask, img, color=np.random.rand(3)) cv2.imshow('img', img) k = cv2.waitKey(0) if k & 0xFF == ord('q'): cv2.destroyAllWindows() exit() cv2.destroyAllWindows() # for validation data ----------------------------------- detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() # -------------------------------------------------------- train_loss_dict = [] ap05_dict = [] ap07_dict = [] for epoch in range(args.num_epochs): print('Epoch {}/{}'.format(epoch, args.num_epochs - 1)) print('-' * 10) for phase in ['train', 'val']: if phase == 'train': scheduler.step() seg_model.train() running_loss = 0.0 for inputs, bboxes, labels, masks in dataloader: inputs = inputs.to(device) with torch.no_grad(): locs, conf, feat_seg = dec_model(inputs) detections = detector(locs, conf, anchors) optimizer.zero_grad() with torch.enable_grad(): outputs = seg_model(detections, feat_seg) loss = criterion(outputs, bboxes, labels, masks) loss.backward() optimizer.step() # statistics running_loss += loss.item() * inputs.size(0) epoch_loss = running_loss / len(dsets[phase]) print('{} Loss: {:.4f}'.format(phase, epoch_loss)) train_loss_dict.append(epoch_loss) np.savetxt('seg_train_loss.txt', train_loss_dict, fmt='%.6f') #if epoch % 5 == 0: # torch.save(seg_model.state_dict(), # os.path.join(args.weightDst, '{:d}_{:.4f}_model.pth'.format(epoch, epoch_loss))) #torch.save(seg_model.state_dict(), os.path.join(args.weightDst, 'end_model.pth')) else: #if epoch % 9 == 0: seg_model.eval() # Set model to evaluate mode ap_05, ap_07 = seg_eval_kaggle.do_python_eval(dsets=dsets[phase], dec_model=dec_model, seg_model=seg_model, detector=detector, anchors=anchors, device=device, args=args, offline=False) # print('ap05:{:.4f}, ap07:{:.4f}'.format(ap05, ap07)) if ap_05>0.7: torch.save(seg_model.state_dict(), os.path.join(args.weightDst, '{:d}_{:.4f}_model.pth'.format(epoch, epoch_loss))) ap05_dict.append(ap_05) np.savetxt('seg_ap_05.txt', ap05_dict, fmt='%.6f') ap07_dict.append(ap_07) np.savetxt('seg_ap_07.txt', ap07_dict, fmt='%.6f') print('Finish')
dec_model.load_state_dict(dec_dict_update, strict=True) return dec_model num_classes = 2 dec_weights = r"C:\Users\USER\Documents\studia\zaklad\EC_rainbow\ANCIS-Pytorch\dec0\end_model.pth" seg_weights = r"C:\Users\USER\Documents\studia\zaklad\EC_rainbow\ANCIS-Pytorch\seg0\end_model.pth" # -----------------load detection model ------------------------- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") dec_model = dec_net_seg.resnetssd50(pretrained=False, num_classes=num_classes) dec_model = load_dec_weights(dec_model, dec_weights) dec_model = dec_model.to(device) dec_model.eval() # -----------------load segmentation model ------------------------- seg_model = seg_net.SEG_NET(num_classes=num_classes) seg_model.load_state_dict(torch.load(seg_weights)) seg_model = seg_model.to(device) seg_model.eval() r = r"C:\Users\USER\Documents\studia\zaklad\EC_rainbow\cells\test_f\F0" data = io.imread(os.path.join(r, "test1.tif"), plugin="tifffile") image_o = img_as_float(data) rimg = image_o[..., :3].copy() rimg -= rimg.mean() rimg /= (rimg.std() * 10) + 1e-8 rimg += 0.3 image = np.concatenate((rimg, image_o[..., 3].copy()[..., np.newaxis]), axis=-1) image = image.astype(np.float32)
def test(args): #-----------------load detection model ------------------------- device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") dec_model = dec_net_seg.resnetssd50(pretrained=False, num_classes=args.num_classes) dec_model = load_dec_weights(dec_model, args.dec_weights) dec_model = dec_model.to(device) dec_model.eval() #-----------------load segmentation model ------------------------- seg_model = seg_net.SEG_NET(num_classes=args.num_classes) seg_model.load_state_dict(torch.load(args.seg_weights)) seg_model = seg_model.to(device) seg_model.eval() ##-------------------------------------------------------------- data_transforms = seg_transforms.Compose([ seg_transforms.ConvertImgFloat(), seg_transforms.Resize(args.img_height, args.img_width), seg_transforms.ToTensor() ]) dsets = seg_dataset_kaggle.NucleiCell(args.testDir, args.annoDir, data_transforms, imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) # for validation data ----------------------------------- detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() # for img_idx in [1,55,57,72,78,123]: for img_idx in range(len(dsets)): print('loading {}/{} image'.format(img_idx, len(dsets))) inputs, gt_boxes, gt_classes, gt_masks = dsets.__getitem__(img_idx) ori_img = dsets.load_img(img_idx) #ori_img_copy = ori_img.copy() #bboxes, labels, masks = dsets.load_annotation(dsets.img_files[img_idx]) #for mask in masks: # ori_img = map_mask_to_image(mask, ori_img, color=np.random.rand(3)) h, w, c = ori_img.shape x = inputs.unsqueeze(0) x = x.to(device) locs, conf, feat_seg = dec_model(x) detections = detector(locs, conf, anchors) outputs = seg_model(detections, feat_seg) mask_patches, mask_dets = outputs # For batches for b_mask_patches, b_mask_dets in zip(mask_patches, mask_dets): nd = len(b_mask_dets) # Step1: rearrange mask_patches and mask_dets for d in range(nd): d_mask = np.zeros((args.img_height, args.img_width), dtype=np.float32) d_mask_det = b_mask_dets[d].data.cpu().numpy() d_mask_patch = b_mask_patches[d].data.cpu().numpy() d_bbox = d_mask_det[0:4] d_conf = d_mask_det[4] d_class = d_mask_det[5] if d_conf < args.conf_thresh: continue [y1, x1, y2, x2] = d_bbox y1 = np.maximum(0, np.int32(np.round(y1))) x1 = np.maximum(0, np.int32(np.round(x1))) y2 = np.minimum(np.int32(np.round(y2)), args.img_height - 1) x2 = np.minimum(np.int32(np.round(x2)), args.img_width - 1) d_mask_patch = cv2.resize(d_mask_patch, (x2 - x1 + 1, y2 - y1 + 1)) d_mask_patch = np.where(d_mask_patch >= args.seg_thresh, 1., 0.) d_mask[y1:y2 + 1, x1:x2 + 1] = d_mask_patch d_mask = cv2.resize(d_mask, dsize=(w, h), interpolation=cv2.INTER_NEAREST) ori_img = map_mask_to_image(d_mask, ori_img, color=np.random.rand(3)) cv2.imshow('img', ori_img) k = cv2.waitKey(0) if k & 0xFF == ord('q'): cv2.destroyAllWindows() exit() elif k & 0xFF == ord('s'): # cv2.imwrite('kaggle_imgs/{}_ori.png'.format(img_idx), ori_img_copy) # cv2.imwrite('kaggle_imgs/{}_final.png'.format(img_idx), ori_img) cv2.imwrite('kaggle_imgs/img/{}_gt.png'.format(img_idx), ori_img) cv2.destroyAllWindows() print('Finish')
def test(args): #-----------------load detection model ------------------------- device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") dec_model = dec_net_seg.resnetssd50(pretrained=False, num_classes=args.num_classes) resume_dict = torch.load(args.dec_weights, map_location='cpu') resume_dict = {k: v for k, v in resume_dict.items()} dec_model.load_state_dict(resume_dict, strict=False) dec_model = dec_model.to(device) dec_model.eval() #-----------------load segmentation model ------------------------- seg_model = seg_net.SEG_NET(num_classes=args.num_classes) seg_model.load_state_dict(torch.load(args.seg_weights, map_location='cpu'), strict=False) seg_model = seg_model.to(device) seg_model.eval() ##-------------------------------------------------------------- data_transforms = seg_transforms.Compose([ seg_transforms.ConvertImgFloat(), seg_transforms.Resize(args.img_height, args.img_width), seg_transforms.ToTensor() ]) dsets = seg_dataset_kaggle.NucleiCell(args.testDir, args.annoDir, data_transforms, imgSuffix=args.imgSuffix, annoSuffix=args.annoSuffix) # for validation data ----------------------------------- detector = Detect(num_classes=args.num_classes, top_k=args.top_k, conf_thresh=args.conf_thresh, nms_thresh=args.nms_thresh, variance=[0.1, 0.2]) anchorGen = Anchors(args.img_height, args.img_width) anchors = anchorGen.forward() all_time = [] for img_idx in range(len(dsets)): time_begin = time.time() print('loading {}/{} image'.format(img_idx, len(dsets))) ori_img = dsets.load_img(img_idx) black = cv2.cvtColor( np.zeros((ori_img.shape[0], ori_img.shape[1]), dtype=np.uint8), cv2.COLOR_GRAY2BGR) img = ori_img.astype(np.float32) img = cv2.resize(img, dsize=(512, 512)) img = torch.from_numpy(img.copy().transpose((2, 0, 1))) inputs = img / 255 h, w, c = ori_img.shape x = inputs.unsqueeze(0) x = x.to(device) locs, conf, feat_seg = dec_model(x) detections = detector(locs, conf, anchors) outputs = seg_model(detections, feat_seg) mask_patches, mask_dets = outputs all_time.append(time.time() - time_begin) # For batches for b_mask_patches, b_mask_dets in zip(mask_patches, mask_dets): nd = len(b_mask_dets) # Step1: rearrange mask_patches and mask_dets for d in range(nd): d_mask = np.zeros((args.img_height, args.img_width), dtype=np.float32) d_mask_det = b_mask_dets[d].data.cpu().numpy() d_mask_patch = b_mask_patches[d].data.cpu().numpy() d_bbox = d_mask_det[0:4] d_conf = d_mask_det[4] if d_conf < args.conf_thresh: continue [y1, x1, y2, x2] = d_bbox y1 = np.maximum(0, np.int32(np.round(y1))) x1 = np.maximum(0, np.int32(np.round(x1))) y2 = np.minimum(np.int32(np.round(y2)), args.img_height - 1) x2 = np.minimum(np.int32(np.round(x2)), args.img_width - 1) d_mask_patch = cv2.resize(d_mask_patch, (x2 - x1 + 1, y2 - y1 + 1)) d_mask_patch = np.where(d_mask_patch >= args.seg_thresh, 1., 0.) d_mask[y1:y2 + 1, x1:x2 + 1] = d_mask_patch d_mask = cv2.resize(d_mask, dsize=(w, h), interpolation=cv2.INTER_NEAREST) #ori_img = map_mask_to_image(d_mask, ori_img, color=np.random.rand(3)) black = map_mask_to_image(d_mask, black, color=np.random.rand(3)) cv2.imwrite('TCGA_imgs/{}_gt.png'.format(img_idx), black) all_time = all_time[1:] print('avg time is {}'.format(np.mean(all_time))) print('FPS is {}'.format(1. / np.mean(all_time))) print('Finish')