Ejemplo n.º 1
0
    val_loader = Loader(val_path,
                        arg.batch_size,
                        transform=preprocess,
                        sampler=arg.sampler,
                        torch_type=arg.dtype,
                        cpus=arg.cpus,
                        shuffle=False,
                        drop_last=False)
    test_loader = Loader(test_path,
                         1,
                         torch_type=arg.dtype,
                         cpus=arg.cpus,
                         shuffle=False,
                         drop_last=False)
    norm_layer = nn.BatchNorm2d

    act = nn.ReLU
    if arg.model == "unet":
        net = Unet2D(feature_scale=arg.feature_scale, act=act)
    elif arg.model == "unetres":
        net = UnetRes2D(1, nn.InstanceNorm2d, is_pool=arg.pool)

    net = nn.DataParallel(net).to(torch_device)
    recon_loss = nn.BCEWithLogitsLoss()

    model = CNNTrainer(arg, net, torch_device, recon_loss=recon_loss)

    if arg.test is False:
        model.train(train_loader, val_loader)
    model.test(test_loader, val_loader)
Ejemplo n.º 2
0
        norm_layer = nn.InstanceNorm2d

    if arg.act == "relu":
        act = nn.ReLU
    elif arg.act == "elu":
        act = nn.ELU
    elif arg.act == "leaky":
        act = nn.LeakyReLU
    elif arg.act == "prelu":
        act = nn.PReLU

    if arg.model == "fusion":
        net = Fusionnet(1, 1, arg.ngf, arg.clamp)
    elif arg.model == "unet":
        net = Unet2D(feature_scale=arg.feature_scale,
                     is_pool=arg.pool,
                     act=act)
    elif arg.model == "unetgn":
        net = UnetGN2D(feature_scale=arg.feature_scale, is_pool=arg.pool)
    elif arg.model == "unetslim":
        net = UnetSlim(feature_scale=arg.feature_scale, norm=norm_layer)
    elif arg.model == "unet_sh":
        net = UnetSH2D(arg.sh_size,
                       feature_scale=arg.feature_scale,
                       is_pool=arg.pool)
    elif arg.model == "unetres":
        net = UnetRes2D(1, nn.InstanceNorm2d, is_pool=arg.pool)
    elif arg.model == "unetgcn":
        net = UnetGCN(arg.feature_scale, norm=norm_layer, is_pool=arg.pool)
    elif arg.model == "unetgcnseb":
        net = UnetGCNSEB(arg.feature_scale, norm=norm_layer, is_pool=arg.pool)
Ejemplo n.º 3
0
                                 shuffle=True,
                                 drop_last=True)

    test_loader = nucleusloader(f_path_test,
                                batch_size=1,
                                transform=None,
                                cpus=arg.cpus,
                                shuffle=False,
                                drop_last=True)
    #test_loader = RBCLoader(f_path + "/test", batch_size=arg.batch_size,
    #                         transform=None,shuffle=True)

    if arg.model == "fusion":
        net = Fusionnet(arg.in_channel, arg.out_channel, arg.ngf, arg.clamp)
    elif arg.model == "unet":
        net = Unet2D(feature_scale=arg.feature_scale)
    elif arg.model == "unet_sh":
        net = UnetSH2D(arg.sh_size, feature_scale=arg.feature_scale)
    else:
        raise NotImplementedError("Not Implemented Model")

    net = nn.DataParallel(net).to(torch_device)
    if arg.loss == "l2":
        recon_loss = nn.L2Loss()
    elif arg.loss == "l1":
        recon_loss = nn.L1Loss()

    recon_loss = EdgeWeightedLoss(1, 10)
    #recon_loss=nn.BCELoss()

    model = CNNTrainer(arg,
Ejemplo n.º 4
0
	os.environ["CUDA_VISIBLE_DEVICES"] = arg.gpus
	torch_device = torch.device("cuda")

	train_path = "data/prostate/train/"
	val_path = "data/prostate/val"
	test_path = "data/prostate/test"

    preprocess = preprocess.get_preprocess(arg.augment)

	train_loader = Loader(train_path, arg.batch_size, transform = preprocess, sampler = '',
		torch_type = 'float', cpus = 4, shuffle = True, drop_last = True)
	val_loader = Loader(val_path, arg.batch_size, transform = preprocess, sampler = '',
		torch_type = 'float', cpus = 4, shuffle = True, drop_last = True)
	test_loader = Loader(test_path, arg.batch_size, transform = None, sampler = '',
		torch_type = 'float', cpus = 4, shuffle = True, drop_last = True)
	norm_layer = nn.BatchNorm2d

	act = nn.ReLU

	net = Unet2D(feature_scale = 4, act = act)

	net = nn.DataParallel(net).to(torch_device)
	recon_loss = nn.BCEWithLogitsLoss()

	model = CNNTrainer(arg, net, torch_device, recon_loss = recon_loss)

	if arg.test is False:
		model.train(train_loader, val_loader)
	model.test(test_loader, val_loader)