def __init__(self,
              inplanes,
              planes,
              stride=1,
              downsample=None,
              lv_init=-5,
              var_p=-1):
     super(Bottleneck, self).__init__()
     self.bn1 = nn.BatchNorm2d(inplanes)
     self.conv1 = vi.BayesConv2d(inplanes,
                                 planes,
                                 kernel_size=1,
                                 bias=False,
                                 lv_init=lv_init,
                                 var_p=var_p)
     self.bn2 = nn.BatchNorm2d(planes)
     self.conv2 = vi.BayesConv2d(planes,
                                 planes,
                                 kernel_size=3,
                                 stride=stride,
                                 padding=1,
                                 bias=False,
                                 lv_init=lv_init,
                                 var_p=var_p)
     self.bn3 = nn.BatchNorm2d(planes)
     self.conv3 = vi.BayesConv2d(planes,
                                 planes * 4,
                                 kernel_size=1,
                                 bias=False,
                                 lv_init=lv_init,
                                 var_p=var_p)
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
Ejemplo n.º 2
0
    def __init__(self, in_planes, planes, dropout_rate, stride=1, lv_init=-5, var_p=-1):
        super(WideBasic, self).__init__()
        self.bn1 = nn.BatchNorm2d(in_planes)
        self.conv1 = vi.BayesConv2d(in_planes, planes, kernel_size=3, padding=1, bias=True, lv_init=lv_init, var_p=var_p)
        self.dropout = nn.Dropout(p=dropout_rate)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv2 = vi.BayesConv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=True, lv_init=lv_init, var_p=var_p)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            self.shortcut = nn.Sequential(
                vi.BayesConv2d(in_planes, planes, kernel_size=1, stride=stride, bias=True, lv_init=lv_init, var_p=var_p),
            )
Ejemplo n.º 3
0
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return vi.BayesConv2d(in_planes,
                          out_planes,
                          kernel_size=1,
                          stride=stride,
                          bias=False)
    def _make_layer(self,
                    block,
                    planes,
                    blocks,
                    stride=1,
                    lv_init=-5,
                    var_p=-1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                vi.BayesConv2d(self.inplanes,
                               planes * block.expansion,
                               kernel_size=1,
                               stride=stride,
                               bias=False,
                               lv_init=lv_init,
                               var_p=var_p), )

        layers = list()
        layers.append(
            block(self.inplanes,
                  planes,
                  stride,
                  downsample,
                  lv_init=lv_init,
                  var_p=var_p))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(
                block(self.inplanes, planes, lv_init=lv_init, var_p=var_p))

        return nn.Sequential(*layers)
Ejemplo n.º 5
0
def conv3x3(in_planes, out_planes, stride=1, lv_init=-6, var_p=-1):
    return vi.BayesConv2d(in_planes,
                          out_planes,
                          kernel_size=3,
                          stride=stride,
                          padding=1,
                          bias=True,
                          lv_init=lv_init,
                          var_p=var_p)
Ejemplo n.º 6
0
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return vi.BayesConv2d(in_planes,
                          out_planes,
                          kernel_size=3,
                          stride=stride,
                          padding=dilation,
                          groups=groups,
                          bias=False,
                          dilation=dilation)
    def __init__(self, num_classes=10, depth=110, lv_init=-5, var_p=-1):
        super(PreResNet, self).__init__()
        if depth >= 44:
            assert (depth - 2) % 9 == 0, 'depth should be 9n+2'
            n = (depth - 2) // 9
            block = Bottleneck
        else:
            assert (depth - 2) % 6 == 0, 'depth should be 6n+2'
            n = (depth - 2) // 6
            block = BasicBlock
        self.var_p = var_p

        self.inplanes = 16
        self.conv1 = vi.BayesConv2d(3,
                                    16,
                                    kernel_size=3,
                                    padding=1,
                                    bias=False,
                                    var_p=var_p)
        self.layer1 = self._make_layer(block,
                                       16,
                                       n,
                                       lv_init=lv_init,
                                       var_p=var_p)
        self.layer2 = self._make_layer(block,
                                       32,
                                       n,
                                       stride=2,
                                       lv_init=lv_init,
                                       var_p=var_p)
        self.layer3 = self._make_layer(block,
                                       64,
                                       n,
                                       stride=2,
                                       lv_init=lv_init,
                                       var_p=var_p)
        self.bn = nn.BatchNorm2d(64 * block.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.avgpool = nn.AvgPool2d(8)
        self.fc = vi.BayesLinear(64 * block.expansion,
                                 num_classes,
                                 var_p=var_p)

        for m in self.modules():
            if isinstance(m, vi.BayesConv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
Ejemplo n.º 8
0
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None, lv_init=-1, var_p=-1):
        super(ResNet, self).__init__()
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
        self._norm_layer = norm_layer

        self.inplanes = 64
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = vi.BayesConv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
                               bias=False, lv_init=lv_init, var_p=var_p)
        self.bn1 = norm_layer(self.inplanes)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0], lv_init=lv_init, var_p=var_p)
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0], lv_init=lv_init, var_p=var_p)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1], lv_init=lv_init, var_p=var_p)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2], lv_init=lv_init, var_p=var_p)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = vi.BayesLinear(512 * block.expansion, num_classes, lv_init=lv_init, var_p=var_p)

        for m in self.modules():
            if isinstance(m, vi.BayesConv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)
Ejemplo n.º 9
0
def make_layers(cfg, batch_norm=False, lv_init=-5, var_p=-1):
    layers = list()
    in_channels = 3
    #print('make_layers', lv_init)
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = vi.BayesConv2d(in_channels,
                                    v,
                                    kernel_size=3,
                                    padding=1,
                                    lv_init=lv_init,
                                    var_p=var_p)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)
Ejemplo n.º 10
0
def conv1x1(in_planes, out_planes, stride=1, lv_init=-1, var_p=-1):
    """1x1 convolution"""
    return vi.BayesConv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False, lv_init=lv_init, var_p=var_p)