norm_sync2 = 1.0 alpha_sync2 = -1.2 norm_bb1 = 1.0 temp1 = 40 norm_bb2 = 1.0 temp2 = 60 norm_agn = -9. alpha_agn = -2. nu = 10**np.linspace(6, 18, 10000) # frequency range redshift = [2.0, 2.0, 2.0, 2.0, 2.0] # generate with the provided model fnu = md.sync_law(nu, [norm_sync1, alpha_sync1], redshift[0]) + \ md.sync_law(nu, [norm_sync2, alpha_sync2], redshift[1]) + \ md.BB_law(nu, [norm_bb1, temp1], redshift[2]) + \ md.BB_law(nu, [norm_bb2, temp2], redshift[3]) + \ md.AGN_law(nu, [norm_agn, alpha_agn], redshift[4]) # list of the filters filter_name = np.array([ 'VLA_L', 'VLA_C', 'VLA_C', 'VLA_X', 'VLA_X', 'ATCA_47', 'ALMA_3', 'ALMA_6', 'ALMA_6_nr1', 'laboca_870', 'spire_500', 'spire_350', 'spire_250', 'pacs_160', 'pacs_70', 'mips_24', 'irs_16', 'irac_4' ]) data_nature = np.array([ 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'u', 'u', 'u', 'd', 'd', 'd', 'd', 'd', 'd' ]) # "d" for detections, "u" for upper limit arrangement = np.array([ '4', '6', '5', '6', '5', '4', '7', '3', '2', '1', '1', '1', '1', '1', '1',
import mm_utilities as mm import read_files as rd #def fake_sync_source(): # define the parameters of the model and create # the normalisation will effectively be values-23 due to the Jansky transformation alpha = -1.0 norm_sync = 1.0 norm_bb = 1.0 temp = 40 nu = 10**np.linspace(6, 16, 10000) # frequency range redshift = [0., 0.] # generate with the provided model fnu = md.sync_law(nu, [norm_sync, alpha], redshift[0]) + md.BB_law( nu, [norm_bb, temp], redshift[1]) #print md.sync_law(nu, [norm_sync, alpha], redshift) #print #print md.BB_law(nu, [norm_bb, temp], redshift) # list of the filters filter_name = np.array([ '74MHz(VLA)', '408MHz', '1.4GHz', '4.85GHz', '8.4GHz', 'ALMA_3', 'ALMA_6', 'laboca_870', 'spire_500', 'spire_350', 'spire_250', 'pacs_160', 'pacs_100', 'pacs_70', 'mips_24' ]) data_nature = np.array([ 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd' ]) # "d" for detections, "ul" for upper limit arrangement = np.array([ '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'
import mm_utilities as mm import read_files as rd norm_sync = 1.0 alpha_sync = -1.0 norm_bb = 1.0 temp = 40 norm_agn = -9. alpha_agn = -2. nu = 10**np.linspace(6, 18, 10000) # frequency range redshift = [0., 0., 0.] # generate with the provided model fnu = md.sync_law(nu, [norm_sync, alpha_sync], redshift[0]) + \ md.BB_law(nu, [norm_bb, temp], redshift[1]) + \ md.AGN_law(nu, [norm_agn, alpha_agn], redshift[2]) # list of the filters filter_name = np.array([ '74MHz(VLA)', '408MHz', 'ALMA_3', 'ALMA_6', 'laboca_870', 'spire_500', 'spire_350', 'spire_250', 'pacs_160', 'pacs_100', 'pacs_70', 'mips_24', 'irac_4', 'irac_3', 'irac_2', 'irac_1' ]) data_nature = np.array([ 'd', 'd', 'u', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd', 'd' ]) # "d" for detections, "ul" for upper limit arrangement = np.array([ '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1', '1'