Ejemplo n.º 1
0
def evaluate(model, validate_loader, condition, cuda):
    '''Evaluate the loss of partial data during training. 
    '''

    losses = []

    for (iteration, (batch_x, global_condition)) in enumerate(validate_loader):

        if condition:
            global_condition = move_data_to_gpu(global_condition, cuda)
        else:
            global_condition = None

        batch_x = move_data_to_gpu(batch_x, cuda)

        batch_input = batch_x[:, 0:-1]
        output_width = batch_input.shape[-1] - model.receptive_field + 1
        batch_target = batch_x[:, -output_width:]

        with torch.no_grad():
            model.eval()
            batch_output = model(batch_input, global_condition)
            loss = _loss_func(batch_output, batch_target)
            losses.append(loss.data.cpu().numpy())

        if iteration == 100:
            break

    return np.mean(losses)
Ejemplo n.º 2
0
def forward(model, generate_func, cuda, return_target):
    """Forward data to a model.

    Args:
      generate_func: generate function
      cuda: bool
      return_target: bool

    Returns:
      dict, keys: 'audio_name', 'output'; optional keys: 'target'
    """

    outputs = []
    audio_names = []

    if return_target:
        targets = []

    # Evaluate on mini-batch
    for data in generate_func:

        if return_target:
            (batch_x, batch_y, batch_audio_names) = data

        else:
            (batch_x, batch_audio_names) = data

        batch_x = move_data_to_gpu(batch_x, cuda)

        # 预测
        model.eval()
        batch_output = model(batch_x)

        # 添加数据
        outputs.append(batch_output.data.cpu().numpy())
        audio_names.append(batch_audio_names)

        if return_target:
            targets.append(batch_y)

    dict = {}

    outputs = np.concatenate(outputs, axis=0)
    dict['output'] = outputs

    audio_names = np.concatenate(audio_names, axis=0)
    dict['audio_name'] = audio_names

    if return_target:
        targets = np.concatenate(targets, axis=0)
        dict['target'] = targets

    return dict
Ejemplo n.º 3
0
def forward(model, generate_func, cuda, has_target):
    """Forward data to a model.
    Args:
      model: object
      generate_func: generate function
      cuda: bool
      has_target: bool, True if generate_func yield (batch_x, batch_y),
                        False if generate_func yield (batch_x)
    Returns:
      (outputs, targets) | outputs
    """

    model.eval()

    outputs = []
    targets = []

    # Evaluate on mini-batch
    for data in generate_func:

        if has_target:
            (batch_x, batch_y) = data
            targets.append(batch_y)

        else:
            batch_x = data

        batch_x = move_data_to_gpu(batch_x, cuda)

        # Predict
        batch_output = model(batch_x)

        outputs.append(batch_output.data.cpu().numpy())

    if has_target:
        outputs = np.concatenate(outputs, axis=0)
        targets = np.concatenate(targets, axis=0)
        return outputs, targets

    else:

        return outputs
Ejemplo n.º 4
0
def train(args):

    logging.info('config=%s', json.dumps(vars(args)))

    # Arguments & parameters
    workspace = args.workspace
    cuda = args.cuda

    # Load model
    model_class, model_params = MODELS[args.model]
    model = model_class(**{k: args.model_params[k] for k in model_params if k in args.model_params})

    if args.train_model is not None:
        logging.info("continue training ...")
        model_path = os.path.join(workspace, 'logs', get_filename(__file__),
                                  args.train_model)
        checkpoint = torch.load(model_path)
        model.load_state_dict(checkpoint['state_dict'])

    logging.info("sequence length: {}".format(model.seq_len))

    if cuda:
        model.cuda()

    # Paths
    hdf5_path = os.path.join(workspace, 'data.h5')

    models_dir = os.path.join(workspace, 'models', get_filename(__file__))

    create_folder(models_dir)

    # Data generator
    generator = DataGenerator(hdf5_path=hdf5_path,
                              target_device=args.target_device,
                              train_house_list=args.train_house_list,
                              validate_house_list=args.validate_house_list,
                              batch_size=args.batch_size,
                              seq_len=model.seq_len,
                              width=args.width,
                              binary_threshold=args.binary_threshold,
                              balance_threshold=args.balance_threshold,
                              balance_positive=args.balance_positive)

    # Optimizer
    learning_rate = 1e-3
    optimizer = optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999),
                           eps=1e-08, weight_decay=0.)

    iteration = 0
    train_bgn_time = time.time()

    for (batch_x, batch_y) in generator.generate():

        if iteration > 1000*300:
            break

        # Evaluate
        if iteration % 1000 == 0:

            train_fin_time = time.time()

            tr_result_dict = evaluate(model=model,
                                      generator=generator,
                                      data_type='train',
                                      max_iteration=args.validate_max_iteration,
                                      cuda=cuda,
                                      binary=args.binary_threshold is not None)

            va_result_dict = evaluate(model=model,
                                      generator=generator,
                                      data_type='validate',
                                      max_iteration=args.validate_max_iteration,
                                      cuda=cuda,
                                      binary=args.binary_threshold is not None)

            logging.info('train: {}'.format(tr_result_dict))
            logging.info('validate: {}'.format(va_result_dict))

            train_time = train_fin_time - train_bgn_time
            validate_time = time.time() - train_fin_time

            logging.info(
                'iteration: {}, train time: {:.3f} s, validate time: {:.3f} s, learning rate: {}'.format(
                    iteration, train_time, validate_time, learning_rate))

            logging.info('------------------------------------')

            train_bgn_time = time.time()

        # Reduce learning rate
        if iteration % 1000 == 0 and iteration > 0 and learning_rate > 5e-5:
            for param_group in optimizer.param_groups:
                learning_rate *= 0.9
                param_group['lr'] = learning_rate

        batch_x = move_data_to_gpu(batch_x, cuda)
        batch_y = move_data_to_gpu(batch_y, cuda)

        # Forward
        forward_time = time.time()
        model.train()
        output = model(batch_x)

        # Loss
        if args.binary_threshold is not None:
            loss = loss_func_binary(output, batch_y)
        else:
            loss = loss_func(output, batch_y)

        # Backward
        optimizer.zero_grad()
        loss.backward()
        if args.max_norm is not None:
            torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=args.max_norm)
        optimizer.step()

        # Save model
        if (iteration>1) and (iteration % 1000 == 0) and ((iteration//1000+4) // (((iteration//1000-1)//100+1)*100) == 1):
            save_out_dict = {'iteration': iteration,
                             'state_dict': model.state_dict(),
                             'optimizer': optimizer.state_dict()}

            save_out_path = args.basename + '_{}_{}_iter_{}_wd_{}_sl_{}.tar'.format(
                args.target_device,
                args.model,
                iteration,
                args.width,
                model.seq_len
            )

            create_folder(os.path.dirname(save_out_path))
            torch.save(save_out_dict, save_out_path)

            logging.info('Save model to {}'.format(save_out_path))

        iteration += 1
Ejemplo n.º 5
0
def train(args):

    # 训练相关参数设置
    dataset_dir = args.dataset_dir
    subdir = args.subdir
    workspace = args.workspace
    filename = args.filename
    validate = args.validate
    holdout_fold = args.holdout_fold
    mini_data = args.mini_data
    cuda = args.cuda

    labels = config.labels

    if 'mobile' in subdir:
        devices = ['a', 'b', 'c']
    else:
        devices = ['a']

    classes_num = len(labels)

    # 路径设置
    if mini_data:
        hdf5_path = os.path.join(workspace, 'features', 'logmel', subdir,
                                 'mini_development.h5')
    else:
        hdf5_path = os.path.join(workspace, 'features', 'logmel', subdir,
                                 'development.h5')

    if validate:

        dev_train_csv = os.path.join(dataset_dir, subdir, 'evaluation_setup',
                                     'fold{}_train.txt'.format(holdout_fold))

        dev_validate_csv = os.path.join(dataset_dir, subdir, 'evaluation_setup',
                                    'fold{}_evaluate.txt'.format(holdout_fold))

        models_dir = os.path.join(workspace, 'models', subdir, filename,
                                  'holdout_fold={}'.format(holdout_fold))

    else:
        dev_train_csv = None
        dev_validate_csv = None

        models_dir = os.path.join(workspace, 'models', subdir, filename,
                                  'full_train')

    create_folder(models_dir)

    # 模型
    model = Model(classes_num)
    # 将模型导入GPU运算
    if cuda:
        model.cuda()

    # 产生数据
    generator = DataGenerator(hdf5_path=hdf5_path,
                              batch_size=batch_size,
                              dev_train_csv=dev_train_csv,
                              dev_validate_csv=dev_validate_csv)

    # 优化器,这个步骤是为了找到最值
    optimizer = optim.Adam(model.parameters(), lr=1e-3, betas=(0.9, 0.999),
                           eps=1e-08, weight_decay=0.)

    train_bgn_time = time.time()

    # 这里开始是训练,一共训练iteration这么多轮
    for (iteration, (batch_x, batch_y)) in enumerate(generator.generate_train()):

        # 每一百轮就评估一下当前分数多少,loss多少
        if iteration % 100 == 0:

            train_fin_time = time.time()

            (tr_acc, tr_loss) = evaluate(model=model,
                                         generator=generator,
                                         data_type='train',
                                         devices=devices,
                                         max_iteration=None,
                                         cuda=cuda)

            logging.info('tr_acc: {:.3f}, tr_loss: {:.3f}'.format(
                tr_acc, tr_loss))
            # evaluate函数的到分数和误差,并显示在屏幕上
            if validate:

                (va_acc, va_loss) = evaluate(model=model,
                                             generator=generator,
                                             data_type='validate',
                                             devices=devices,
                                             max_iteration=None,
                                             cuda=cuda)

                logging.info('va_acc: {:.3f}, va_loss: {:.3f}'.format(
                    va_acc, va_loss))

            train_time = train_fin_time - train_bgn_time
            validate_time = time.time() - train_fin_time

            logging.info(
                'iteration: {}, train time: {:.3f} s, validate time: {:.3f} s'
                    ''.format(iteration, train_time, validate_time))

            logging.info('------------------------------------')

            train_bgn_time = time.time()

        # 每1000轮保存一次信息
        if iteration % 1000 == 0 and iteration > 0:

            save_out_dict = {'iteration': iteration,
                             'state_dict': model.state_dict(),
                             'optimizer': optimizer.state_dict()
                             }
            save_out_path = os.path.join(
                models_dir, 'md_{}_iters.tar'.format(iteration))
            torch.save(save_out_dict, save_out_path)
            logging.info('Model saved to {}'.format(save_out_path))

        # 学习率的设置,每200轮下降一些学习率,这样有利于找到最优参数,不容易陷入局部最优
        if iteration % 200 == 0 > 0:
            for param_group in optimizer.param_groups:
                param_group['lr'] *= 0.9

        # 这是生成训练的样本
        batch_x = move_data_to_gpu(batch_x, cuda)
        batch_y = move_data_to_gpu(batch_y, cuda)
        # 开始训练
        model.train()
        batch_output = model(batch_x)
        # 计算loss
        loss = F.nll_loss(batch_output, batch_y)

        # 向后反馈,更新参数
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # 这是迭代次数,可以更改这里
        if iteration == 10000:
            break
Ejemplo n.º 6
0
def train(args):

    # Arugments & parameters
    dataset = args.dataset
    dataset_dir = args.dataset_dir
    workspace = args.workspace
    filename = args.filename
    batch_size = args.batch_size  # Use an audio clip as a mini-batch. Must
    # be 1 if audio clips has different length.
    condition = args.condition
    cuda = args.cuda

    quantize_bins = config.quantize_bins
    dilations = config.dilations

    # Paths
    models_dir = os.path.join(workspace, 'models',
                              'dataset={}'.format(dataset), filename,
                              'condition={}'.format(condition))
    create_folder(models_dir)

    # Data Generator
    Dataset = get_dataset(dataset)
    train_dataset = Dataset(dataset_dir, data_type='train')
    validate_dataset = Dataset(dataset_dir, data_type='validate')

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=1,
                                               pin_memory=True)

    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size,
                                                  shuffle=True,
                                                  num_workers=1,
                                                  pin_memory=True)

    # Model
    model = WaveNet(
        dilations,
        residual_channels=config.residual_channels,
        dilation_channels=config.dilation_channels,
        skip_channels=config.skip_channels,
        quantize_bins=config.quantize_bins,
        global_condition_channels=config.global_condition_channels,
        global_condition_cardinality=Dataset.global_condition_cardinality,
        use_cuda=cuda)

    if cuda:
        model.cuda()

    # Optimizer
    optimizer = optim.Adam(model.parameters(),
                           lr=1e-3,
                           betas=(0.9, 0.999),
                           eps=1e-08,
                           weight_decay=0.)

    train_bgn_time = time.time()
    iteration = 0

    while True:
        for (batch_x, global_condition) in train_loader:
            '''batch_x: (batch_size, seq_len)
            global_condition: (batch_size,)
            '''

            print('iteration: {}, input size: {}'.format(
                iteration, batch_x.shape))

            # Evaluate
            if iteration % 1000 == 0:
                train_fin_time = time.time()
                evaluate_bgn_time = time.time()
                loss = evaluate(model, validate_loader, condition, cuda)

                print('-----------------')
                logging.info(
                    'iteration: {}, loss: {:.3f}, train_time: {:.3f}, '
                    'validate time: {:.3f} s'.format(
                        iteration, loss, train_fin_time - train_bgn_time,
                        time.time() - evaluate_bgn_time))

                train_bgn_time = time.time()

            # Save model
            if iteration % 10000 == 0:
                save_out_dict = {
                    'iteration': iteration,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                }

                save_out_path = os.path.join(
                    models_dir, 'md_{}_iters.tar'.format(iteration))

                torch.save(save_out_dict, save_out_path)
                logging.info('Save model to {}'.format(save_out_path))

            # Move data to GPU
            if condition:
                global_condition = move_data_to_gpu(global_condition, cuda)
            else:
                global_condition = None

            batch_x = move_data_to_gpu(batch_x, cuda)

            # Prepare input and target data
            batch_input = batch_x[:, 0:-1]
            output_width = batch_input.shape[-1] - model.receptive_field + 1
            batch_target = batch_x[:, -output_width:]

            # Forward
            model.train()
            batch_output = model(batch_input, global_condition)
            loss = _loss_func(batch_output, batch_target)

            # Backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            print('loss: {:.3f}'.format(loss.data.cpu().numpy()))

            iteration += 1