Ejemplo n.º 1
0
def one_game():
    pygame.event.pump()
    game_over = False
    lead_x = 150
    lead_y = 150
    snake = Snake(showScreen, screenx, screeny, snakeImg, lead_x, lead_y)
    apple = Apple(showScreen, screenx, screeny, b_size, appleImg, snake.snake_list)

    while not game_over:
        x, y = apple.get_apple_pos()
        snake.update_snake_list(x, y)

        if snake.is_alive() is False: game_over = True
        showScreen.fill(white)
        if snake.eaten is True: apple.update_apple_pos(snake.snake_list)

        apple.display()
        snake.eaten = False
        snake.display()
        snake.display_score()
        pygame.display.update()

        a_x, a_y = apple.get_apple_pos()
        s_x, s_y = snake.get_snake_head()

        visited = snake.snake_list.copy()
        visited.remove([s_x, s_y])
        result = BreathFirstSearch(screenx, screeny, b_size, visited, [a_x, a_y], [s_x, s_y])

        next_cell = result[1]

        x_diff = next_cell[0] - s_x
        y_diff = next_cell[1] - s_y

        if x_diff > 0:  snake.direction = "right"
        elif x_diff < 0:  snake.direction = "left"
        elif y_diff > 0:  snake.direction = "down"
        elif y_diff < 0:  snake.direction = "up"

        time.tick(FPS)
Ejemplo n.º 2
0
def one_game():
    pygame.event.pump()
    game_over = False

    # snake will start in the middle of the game window
    lead_x = 70
    lead_y = 70

    # snake default direction is right
    snake = Snake(gameDisplay, display_width, display_height, img, lead_x,
                  lead_y)
    apple = Apple(gameDisplay, display_width, display_height, block_size, img2,
                  snake.snake_list)

    while not game_over:

        # based on the direction, we can work out the x, y changes to update the snake
        x, y = apple.get_apple_pos()
        snake.update_snake_list(x, y)

        # check if snake dies
        if snake.is_alive() is False:
            game_over = True

        gameDisplay.fill(white)

        # if snake eats the apple, make a random new apple
        if snake.eaten is True:
            apple.update_apple_pos(snake.snake_list)

        apple.display()
        snake.eaten = False
        snake.display()
        snake.display_score()
        pygame.display.update()

        # this part is using the snake position and apple
        # position to use the A* method to get the path
        a_x, a_y = apple.get_apple_pos()
        s_x, s_y = snake.get_snake_head()
        visited = snake.snake_list.copy()
        visited.remove([s_x, s_y])
        result = A_star(display_width, display_height, block_size, visited,
                        (a_x, a_y), (s_x, s_y))

        # since the path starts from snake position, the second element will
        # be next move
        next_cell = result[1]

        # update the snake position based on the next move position
        x_diff = next_cell[0] - s_x
        y_diff = next_cell[1] - s_y
        if x_diff > 0:
            snake.direction = "right"
        elif x_diff < 0:
            snake.direction = "left"
        elif y_diff > 0:
            snake.direction = "down"
        elif y_diff < 0:
            snake.direction = "up"

        clock.tick(FPS)
Ejemplo n.º 3
0
def training_game(times=10):
    # s list will store the score of each game
    s = []
    for i in range(times):
        # print out the game number
        print(i)

        pygame.event.pump()
        game_over = False

        # Will be the leader of the #1 block of the snake
        lead_x = 70
        lead_y = 70

        # snake default direction is right
        snake = RL_Snake(gameDisplay, display_width, display_height, img,
                         lead_x, lead_y)
        apple = Apple(gameDisplay, display_width, display_height, block_size,
                      img2, snake.snake_list)

        a_x, a_y = apple.get_apple_pos()

        # get the initial state, and action will be "up" starting
        old_state = snake.get_state([a_x, a_y])
        old_action = "up"

        while not game_over:

            # based on the direction, we can work out the x, y changes to update the snake
            a_x, a_y = apple.get_apple_pos()
            snake.update_snake_list(a_x, a_y)

            # snake not die or eats the apple, reward will be -10
            # this is negative so that it will "encourage" the snake to
            # move towards to the apple, since that is the only positive award
            reward = -10

            # check if snake dies
            if snake.is_alive() is False:
                game_over = True
                # if snake dies, award is -100
                reward = -100
                s.append(snake.snake_length - 1)

            gameDisplay.fill(white)

            # if snake eats the apple, make a random new apple
            if snake.eaten is True:
                apple.update_apple_pos(snake.snake_list)
                # if snake eats the apple, reward is 500
                reward = 500

            #############################################
            # get he new state and new action, then we can update the Q table
            state = snake.get_state([a_x, a_y])
            action = snake_agent.getA(tuple(state))

            snake_agent.updateQ(tuple(old_state), old_action, tuple(state),
                                action, reward)
            old_action = action

            # training will take a lot of time, so archive the Q table
            snake_agent.saveQ()

            # this part is using the snake position and apple
            # position to use the Sarsa method to get the action
            a_x, a_y = apple.get_apple_pos()
            old_state = snake.get_state([a_x, a_y])
            snake.set_direction_by_action(action)
            #############################################

            apple.display()
            snake.eaten = False
            snake.display()
            snake.display_score()
            pygame.display.update()
            clock.tick(FPS)
    # after traning is done, print out the average score
    print("Average score is: {}".format(sum(s) / len(s)))
Ejemplo n.º 4
0
def training_game(times=100):
    # s list will store the score of each game
    s = []
    for i in range(times):
        # print out the game number
        print(i)

        pygame.event.pump()
        game_over = False

        # Will be the leader of the #1 block of the snake
        lead_x = 70
        lead_y = 70

        # snake default direction is right
        snake = DQN_Snake(gameDisplay, display_width, display_height, img,
                          lead_x, lead_y)
        apple = Apple(gameDisplay, display_width, display_height, block_size,
                      img2, snake.snake_list)

        a_x, a_y = apple.get_apple_pos()

        # get the initial state, and action will be "up" starting
        action = "up"
        old_state = snake.get_state([a_x, a_y])

        while not game_over:

            # based on the direction, we can work out the x, y changes to update the snake
            a_x, a_y = apple.get_apple_pos()
            snake.update_snake_list(a_x, a_y)

            # get the new state
            state = snake.get_state([a_x, a_y])

            # snake not die or eats the apple, reward will be -10
            # this is negative so that it will "encourage" the snake to
            # move towards to the apple, since that is the only positive award
            reward = -10

            # check if snake dies
            if snake.is_alive() is False:
                game_over = True
                # copy the weights from q_model to target_model
                agent.copy_weights()
                # if snake dies, award is -100
                reward = -100
                s.append(snake.snake_length - 1)

            gameDisplay.fill(white)

            # if snake eats the apple, make a random new apple
            if snake.eaten is True:
                apple.update_apple_pos(snake.snake_list)
                # if snake eats the apple, reward is 100
                reward = 100

            #############################################

            # store the train_data to the memory
            agent.store_train_data(np.reshape(old_state, [1, 5]),
                                   look_up[action], reward,
                                   np.reshape(state, [1, 5]), game_over)

            # if the memory size is larger than the batch_size, start training
            if len(agent.memory) > batch_size:
                agent.train(batch_size)

            # push state to old state
            a_x, a_y = apple.get_apple_pos()
            old_state = snake.get_state([a_x, a_y])

            # get the action from the DQN model
            action = actions[agent.get_action(np.reshape(old_state, [1, 5]))]
            snake.set_direction_by_action(action)
            #############################################

            apple.display()
            snake.eaten = False
            snake.display()
            snake.display_score()
            pygame.display.update()
            clock.tick(FPS)
    # when the training is finised, sae the model
    agent.save_model()
    # after traning is done, print out the average score
    print("Average score is: {}".format(sum(s) / len(s)))
Ejemplo n.º 5
0
def training_game(times=40000):
    # we need to store the training data first
    # then use the data to train the NN
    train_data = []
    # f = open("train_data.txt", "rb")
    # train_data = pickle.load(f)
    # f.close()

    for i in range(times):
        # print out the game number
        print(i)

        pygame.event.pump()
        game_over = False

        # Will be the leader of the #1 block of the snake
        lead_x = 70
        lead_y = 70

        # snake default direction is right
        snake = NN_Snake(gameDisplay, display_width, display_height, img,
                         lead_x, lead_y)
        apple = Apple(gameDisplay, display_width, display_height, block_size,
                      img2, snake.snake_list)

        a_x, a_y = apple.get_apple_pos()

        # get the initial state, and action will be "up" starting
        action = "up"
        state = snake.get_state([a_x, a_y], action)
        old_distance = snake.get_distance([a_x, a_y])

        while not game_over:

            # based on the direction, we can work out the x, y changes to update the snake
            a_x, a_y = apple.get_apple_pos()
            snake.update_snake_list(a_x, a_y)

            # after snake moves, get the new distance
            distance = snake.get_distance([a_x, a_y])

            # default reward is 0
            reward = 0
            # check if snake dies
            if snake.is_alive() is False:
                game_over = True
                # if snake dies, award is -1
                reward = -1

            gameDisplay.fill(white)

            # if snake eats the apple, make a random new apple
            if snake.eaten is True:
                apple.update_apple_pos(snake.snake_list)

            # if snake eats the apple, or moved closer to apple, reward is 1
            if snake.eaten is True or distance < old_distance:
                reward = 1

            #############################################
            # collect the training data for NN
            train_data.append([np.array(state), reward])

            # this part is using random method to move the snake
            action = random.choice(actions)
            a_x, a_y = apple.get_apple_pos()
            old_distance = snake.get_distance([a_x, a_y])
            state = snake.get_state([a_x, a_y], action)
            snake.set_direction_by_action(action)
            #############################################

            apple.display()
            snake.eaten = False
            snake.display()
            snake.display_score()
            pygame.display.update()
            clock.tick(FPS)
    # store the training data to txt
    print(len(train_data))
    f = open("train_data.txt", "wb")
    pickle.dump(train_data, f)
    f.close()
Ejemplo n.º 6
0
def testing_game(times=10):
    # load the trained NN model
    model = load_model('my_model.h5')

    # s list will store the score of each game
    s = []
    for i in range(times):
        # print out the game number
        print(i)

        pygame.event.pump()
        game_over = False

        # Will be the leader of the #1 block of the snake
        lead_x = 70
        lead_y = 70

        # snake default direction is right
        snake = NN_Snake(gameDisplay, display_width, display_height, img,
                         lead_x, lead_y)
        apple = Apple(gameDisplay, display_width, display_height, block_size,
                      img2, snake.snake_list)

        a_x, a_y = apple.get_apple_pos()

        # get the initial state, and action will be "up" starting
        action = "up"
        state = snake.get_state([a_x, a_y], action)
        old_distance = snake.get_distance([a_x, a_y])

        while not game_over:

            # based on the direction, we can work out the x, y changes to update the snake
            a_x, a_y = apple.get_apple_pos()
            snake.update_snake_list(a_x, a_y)

            # check if snake dies
            if snake.is_alive() is False:
                game_over = True
                s.append(snake.snake_length)

            gameDisplay.fill(white)

            # if snake eats the apple, make a random new apple
            if snake.eaten is True:
                apple.update_apple_pos(snake.snake_list)

            #############################################
            # get the position of the apple
            a_x, a_y = apple.get_apple_pos()

            # use NN model to get the action with max Q
            precictions = {}
            for action in actions:
                state = snake.get_state([a_x, a_y], action)
                precictions[action] = model.predict(
                    np.array(state).reshape(-1, 5))[0][0]
            action = max(precictions, key=precictions.get)

            # set the direction of snake using the chosen action
            snake.set_direction_by_action(action)
            #############################################

            apple.display()
            snake.eaten = False
            snake.display()
            snake.display_score()
            pygame.display.update()
            clock.tick(FPS)
    # after traning is done, print out the average score
    print("Average score is: {}".format(sum(s) / len(s)))