limit_val_num_samples=100 if debug else None) # accumulation_steps = 8 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images def img_denormalize(nimg): img = denormalize(nimg, mean=mean, std=std) return img[(0, 1, 2), :, :] #################### Model #################### model = LWRefineNet(num_channels=5, num_classes=num_classes) #################### Solver #################### num_epochs = 100 criterion = nn.CrossEntropyLoss(weight=torch.tensor([0.1, 3.0])) lr = 0.05 weight_decay = 5e-4 momentum = 0.9 nesterov = True optimizer = optim.SGD(model.parameters(), lr=1.0, momentum=momentum, weight_decay=weight_decay,
val_batch_size=val_batch_size, pin_memory=True, train_sampler=train_sampler, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None) accumulation_steps = 2 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = LWRefineNet(num_channels=3, num_classes=num_classes) #################### Solver #################### num_epochs = 50 criterion = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 1.0])) lr = 0.001 weight_decay = 1e-4 optimizer = optim.Adam(model.parameters(), lr=1.0, weight_decay=weight_decay) le = len(train_loader) def lambda_lr_scheduler(iteration, lr0, n, a):
std = (5.0, 5.0, 5.0) max_value = 1.0 transforms = A.Compose( [A.Normalize(mean=mean, std=std, max_pixel_value=max_value), ToTensorV2()]) _, data_loader, _ = get_train_val_loaders( train_ds, val_ds, train_transforms=transforms, val_transforms=transforms, batch_size=batch_size, num_workers=num_workers, val_batch_size=batch_size, pin_memory=True, ) prepare_batch = inference_prepare_batch_f32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = LWRefineNet(num_channels=3, num_classes=num_classes) run_uuid = "bf1fa0a668cd4d4da7de6f2c77b6bebb" weights_filename = "checkpoint_model_28000.pth" has_targets = True
pin_memory=True, train_sampler=train_sampler, limit_train_num_samples=100 if debug else None, limit_val_num_samples=100 if debug else None ) accumulation_steps = 2 prepare_batch = prepare_batch_fp32 # Image denormalization function to plot predictions with images img_denormalize = partial(denormalize, mean=mean, std=std) #################### Model #################### model = LWRefineNet(num_channels=3, num_classes=num_classes) #################### Solver #################### num_epochs = 100 names = ["cross entropy loss", "jaccard loss"] xentropy = nn.CrossEntropyLoss(weight=torch.tensor([0.1, 2.0])) jaccard_loss = SoftmaxJaccardWithLogitsLoss() criterion = SumOfLosses([xentropy, jaccard_loss], coeffs=[1.0, 2.0], names=names, total_loss_name="supervised batch loss") output_names = names + ["supervised batch loss", ] lr = 0.045 weight_decay = 5e-4 momentum = 0.9