Ejemplo n.º 1
0
def load_models(load_path):
    model_args = json.load(open(os.path.join(load_path, 'options.json'), 'r'))
    vars(args).update(model_args)
    autoencoder = Seq2Seq(emsize=args.emsize,
                          nhidden=args.nhidden,
                          ntokens=args.ntokens,
                          nlayers=args.nlayers,
                          noise_r=args.noise_r,
                          hidden_init=args.hidden_init,
                          dropout=args.dropout,
                          gpu=args.cuda)
    gan_gen = MLP_G(ninput=args.z_size,
                    noutput=args.nhidden,
                    layers=args.arch_g)
    gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d)

    autoencoder = autoencoder.cuda()
    gan_gen = gan_gen.cuda()
    gan_disc = gan_disc.cuda()

    word2idx = json.load(open(os.path.join(args.save, 'vocab.json'), 'r'))
    idx2word = {v: k for k, v in word2idx.items()}

    print('Loading models from {}'.format(args.save))
    loaded = torch.load(os.path.join(args.save, "model.pt"))
    autoencoder.load_state_dict(loaded.get('ae'))
    gan_gen.load_state_dict(loaded.get('gan_g'))
    gan_disc.load_state_dict(loaded.get('gan_d'))
    return model_args, idx2word, autoencoder, gan_gen, gan_disc
Ejemplo n.º 2
0
###############################################################################
# Build the models
###############################################################################

ntokens = len(corpus.dictionary.word2idx)
autoencoder = Seq2Seq2Decoder(emsize=args.emsize,
                              nhidden=args.nhidden,
                              ntokens=ntokens,
                              nlayers=args.nlayers,
                              noise_r=args.noise_r,
                              hidden_init=args.hidden_init,
                              dropout=args.dropout,
                              gpu=args.cuda)

gan_gen = MLP_G(ninput=args.z_size, noutput=args.nhidden, layers=args.arch_g)
gan_disc = MLP_D(ninput=args.nhidden, noutput=1, layers=args.arch_d)
classifier = MLP_Classify(ninput=args.nhidden,
                          noutput=1,
                          layers=args.arch_classify)
g_factor = None

print(autoencoder)
print(gan_gen)
print(gan_disc)
print(classifier)

optimizer_ae = optim.SGD(autoencoder.parameters(), lr=args.lr_ae)
optimizer_gan_g = optim.Adam(gan_gen.parameters(),
                             lr=args.lr_gan_g,
                             betas=(args.beta1, 0.999))
Ejemplo n.º 3
0
    ngf = int(opt.ngf)
    ndf = int(opt.ndf)
    nc = 1  #By default our data has only one channel
    niter = int(opt.niter)
    Diters = int(opt.Diters)

    workers = int(opt.workers)
    lambda_ = int(opt.lambda_)
    cuda = opt.cuda

    #datapath='../../../../../'
    #f = h5py.File(opt.datapath+'fields_z='+opt.redshift+'.hdf5', 'r')
    #f = f['delta_HI']

    if opt.MLP == True:
        netG = MLP_G(s_sample, nz, nc, ngf, ngpu)
        netD = MLP_D(s_sample, nz, nc, ngf, ngpu)

    else:
        netG = DCGAN_G(s_sample, nz, nc, ngf, ngpu)
        netD = DCGAN_D(s_sample, nz, nc, ndf, ngpu)

    #experiments/ch128_lr0005_tanh/netD_epoch_47.pth
    epoch_load = opt.epoch_st - 1
    wass_loss = []

    if opt.load_weights == True:
        netG.load_state_dict(
            torch.load(opt.experiment + 'netG_epoch_' + str(epoch_load) +
                       '.pth'))
        netD.load_state_dict(
Ejemplo n.º 4
0
###############################################################################
# Build the models
###############################################################################

ntokens = len(corpus.dictionary.word2idx)
autoencoder = Seq2Seq(emsize=emsize,
                      nhidden=nhidden,
                      ntokens=ntokens,
                      nlayers=nlayers,
                      noise_radius=noise_radius,
                      hidden_init=False,
                      dropout=dropout,
                      gpu=cuda)

gan_gen = MLP_G(ninput=z_size, noutput=nhidden, layers=arch_g)
gan_disc = MLP_D(ninput=nhidden, noutput=1, layers=arch_d)

#1204delete
#print(autoencoder)
#print(gan_gen)
#print(gan_disc)

optimizer_ae = optim.SGD(autoencoder.parameters(), lr=lr_ae)
optimizer_gan_g = optim.Adam(gan_gen.parameters(),
                             lr=lr_gan_g,
                             betas=(beta1, 0.999))
optimizer_gan_d = optim.Adam(gan_disc.parameters(),
                             lr=lr_gan_d,
                             betas=(beta1, 0.999))
Ejemplo n.º 5
0
Archivo: train.py Proyecto: memray/ARAE
###############################################################################
# Build the models
###############################################################################

ntokens = len(corpus.dictionary.word2idx)
autoencoder = Seq2Seq2Decoder(emsize=args.emsize,
                      nhidden=args.nhidden,
                      ntokens=ntokens,
                      nlayers=args.nlayers,
                      noise_r=args.noise_r,
                      hidden_init=args.hidden_init,
                      dropout=args.dropout,
                      gpu=args.cuda)

gan_gen = MLP_G(input_dim=args.z_size, output_dim=args.nhidden, arch_layers=args.arch_g)
gan_disc = MLP_D(input_dim=args.nhidden, output_dim=1, arch_layers=args.arch_d)
classifier = MLP_Classify(ninput=args.nhidden, noutput=1, layers=args.arch_classify)
g_factor = None

print(autoencoder)
print(gan_gen)
print(gan_disc)
print(classifier)

optimizer_ae = optim.SGD(autoencoder.parameters(), lr=args.lr_ae)
optimizer_gan_g = optim.Adam(gan_gen.parameters(),
                             lr=args.lr_gan_g,
                             betas=(args.beta1, 0.999))
optimizer_gan_d = optim.Adam(gan_disc.parameters(),
                             lr=args.lr_gan_d,
Ejemplo n.º 6
0
    elif classname.find('BatchNorm') != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


# In[16]:


from tqdm import tqdm
if model_name=='DC':
    G = DCGAN_G(isize=img_size, nz=z_size, nc=image_chanel, ngf=hidden_size, ngpu=0)
    G.apply(weights_init)
    D = Sinkhorn_DCGAN_D(isize=img_size, nz=z_size, nc=image_chanel, ndf=hidden_size, ngpu=0, output_dimension=output_dimension)
    D.apply(weights_init)
if model_name=='MLP':
    G = MLP_G(isize=img_size, nz=z_size, nc=image_chanel, ngf=hidden_size, ngpu=0)
    D = Sinkhorn_MLP_D(isize=img_size, nz=z_size, nc=image_chanel, ndf=hidden_size, ngpu=0)
print(G)
print(D)
if use_cuda:
    G.cuda()
    D.cuda()
G_lr = D_lr = 5e-5
optimizers = {
    'D': torch.optim.RMSprop(D.parameters(), lr=D_lr),
    'G': torch.optim.RMSprop(G.parameters(), lr=G_lr)
}
data_iter=iter(data_loader)
errs_real=[]
errs_fake=[]
Ejemplo n.º 7
0
def main():
    state_dict = torch.load(args.ae_model)
    with open(args.ae_args) as f:
        ae_args = json.load(f)

    corpus = Corpus(args.data_file,
                    args.dict_file,
                    vocab_size=ae_args['vocab_size'])
    autoencoder = Seq2Seq(emsize=ae_args['emsize'],
                          nhidden=ae_args['nhidden'],
                          ntokens=ae_args['ntokens'],
                          nlayers=ae_args['nlayers'],
                          noise_radius=ae_args['noise_radius'],
                          hidden_init=ae_args['hidden_init'],
                          dropout=ae_args['dropout'],
                          gpu=args.cuda)
    autoencoder.load_state_dict(state_dict)
    for param in autoencoder.parameters():
        param.requires_grad = False
    # save arguments
    with open(os.path.join(out_dir, 'args.json'), 'w') as f:
        json.dump(vars(args), f)
    log.info('[Data and AE model loaded.]')

    gan_gen = MLP_G(ninput=args.nhidden,
                    noutput=args.nhidden,
                    layers=args.arch_g)
    gan_disc = MLP_D(ninput=2 * args.nhidden, noutput=1, layers=args.arch_d)
    optimizer_gan_g = optim.Adam(gan_gen.parameters(),
                                 lr=args.lr_gan_g,
                                 betas=(args.beta1, 0.999))
    optimizer_gan_d = optim.Adam(gan_disc.parameters(),
                                 lr=args.lr_gan_d,
                                 betas=(args.beta1, 0.999))
    criterion_ce = nn.CrossEntropyLoss()

    if args.cuda:
        autoencoder = autoencoder.cuda()
        gan_gen = gan_gen.cuda()
        gan_disc = gan_disc.cuda()
        criterion_ce = criterion_ce.cuda()

    one = to_gpu(args.cuda, torch.FloatTensor([1]))
    mone = one * -1
    train_pairs = BatchGen(corpus.get_chunks(size=2), args.batch_size)

    def train_gan_g(batch):
        gan_gen.train()
        gan_gen.zero_grad()

        source, _ = batch
        source = to_gpu(args.cuda, Variable(source))
        source_hidden = autoencoder(source, noise=False, encode_only=True)

        fake_hidden = gan_gen(source_hidden)
        errG = gan_disc(source_hidden, fake_hidden)

        # loss / backprop
        errG.backward(one)
        optimizer_gan_g.step()

        return errG

    def train_gan_d(batch):
        # clamp parameters to a cube
        for p in gan_disc.parameters():
            p.data.clamp_(-args.gan_clamp, args.gan_clamp)

        gan_disc.train()
        gan_disc.zero_grad()

        # positive samples ----------------------------
        # generate real codes
        source, target = batch
        source = to_gpu(args.cuda, Variable(source))
        target = to_gpu(args.cuda, Variable(target))

        # batch_size x nhidden
        source_hidden = autoencoder(source, noise=False, encode_only=True)
        target_hidden = autoencoder(target, noise=False, encode_only=True)

        # loss / backprop
        errD_real = gan_disc(source_hidden, target_hidden)
        errD_real.backward(one)

        # negative samples ----------------------------

        # loss / backprop
        fake_hidden = gan_gen(source_hidden)
        errD_fake = gan_disc(source_hidden.detach(), fake_hidden.detach())
        errD_fake.backward(mone)

        optimizer_gan_d.step()
        errD = -(errD_real - errD_fake)

        return errD, errD_real, errD_fake

    niter = 0
    start_time = datetime.now()

    for t in range(args.updates):
        niter += 1

        # train discriminator/critic
        for i in range(args.niters_gan_d):
            # feed a seen sample within this epoch; good for early training
            errD, errD_real, errD_fake = \
                train_gan_d(next(train_pairs))

        # train generator
        for i in range(args.niters_gan_g):
            errG = train_gan_g(next(train_pairs))

        if niter % args.log_interval == 0:
            eta = str((datetime.now() - start_time) / (t + 1) *
                      (args.updates - t - 1)).split('.')[0]
            log.info('[{}/{}] Loss_D: {:.6f} (real: {:.6f} '
                     'fake: {:.6f}) Loss_G: {:.6f} ETA: {}'.format(
                         niter, args.updates,
                         errD.data.cpu()[0],
                         errD_real.data.cpu()[0],
                         errD_fake.data.cpu()[0],
                         errG.data.cpu()[0], eta))
        if niter % args.save_interval == 0:
            save_model(gan_gen, out_dir, 'gan_gen_model_{}.pt'.format(t))
            save_model(gan_disc, out_dir, 'gan_disc_model_{}.pt'.format(t))
Ejemplo n.º 8
0
###############################################################################

ntokens = len(corpus.dictionary.word2idx)
autoencoder = Seq2Seq(emsize=emsize,
                      nhidden=nhidden,
                      ntokens=ntokens,
                      nlayers=nlayers,
                      noise_radius=noise_radius,
                      hidden_init=False,
                      dropout=dropout,
                      gpu=cuda)

# In[695]:

gan_gen = MLP_G(ninput=z_size,
                noutput=nhidden,
                ncategory=ncategory,
                layers=arch_g)

# In[696]:

gan_disc = MLP_D(ninput=nhidden, noutput=1, ncategory=ncategory, layers=arch_d)

# In[697]:

#1204delete
#print(autoencoder)
#print(gan_gen)
#print(gan_disc)

optimizer_ae = optim.SGD(autoencoder.parameters(), lr=lr_ae)
optimizer_gan_g = optim.Adam(gan_gen.parameters(),
Ejemplo n.º 9
0
char_ae.load_state_dict(char_ae_params)

word_ae = Seq2Seq(emsize=word_args.emsize,
                  nhidden=word_args.nhidden,
                  ntokens=word_args.ntokens,
                  nlayers=word_args.nlayers,
                  noise_r=word_args.noise_r,
                  hidden_init=word_args.hidden_init,
                  dropout=word_args.dropout)

word_ae.load_state_dict(word_ae_params)

D = MLP_D(input_dim=args.nhidden, output_dim=1, arch_layers=args.arch_d)
G = MLP_G(input_dim=args.nhidden,
          output_dim=args.nhidden,
          noise_dim=args.z_size,
          arch_layers=args.arch_g)
if args.finetune_ae:
    logger.info("AE will be fine-tuned")
    optimizer_D = optim.Adam(list(D.parameters()) +
                             list(char_ae.parameters()) +
                             list(word_ae.parameters()),
                             lr=args.lr_gan_d,
                             betas=(args.beta1, 0.999))
    optimizer_G = optim.Adam(list(G.parameters()) +
                             list(char_ae.parameters()) +
                             list(word_ae.parameters()),
                             lr=args.lr_gan_g,
                             betas=(args.beta1, 0.999))
else:
    logger.info("AE will not be fine-tuned")