nargs='+', type=int, default=[10, 20, 50], help='ks for Metric@k') parser.add_argument('--best_metric', type=str, default='NDCG@10', help='Metric for determining the best model') ################ # Model ################ parser.add_argument('--model_code', type=str, default='bert', choices=MODELS.keys()) parser.add_argument('--model_init_seed', type=int, default=None) # BERT # parser.add_argument('--bert_max_len', type=int, default=None, help='Length of sequence for bert') parser.add_argument('--bert_num_items', type=int, default=None, help='Number of total items') parser.add_argument('--bert_hidden_units', type=int, default=None, help='Size of hidden vectors (d_model)') parser.add_argument('--bert_num_blocks',
import pytorch_retinanet.model_pnasnet import pytorch_retinanet.model_resnet import pytorch_retinanet.model_se_resnext import pytorch_retinanet.model_xception import torch from config import DATA_DIR, IMG_SIZE, RESULTS_DIR, TEST_DIR, WEIGHTS_DIR from datasets.test_dataset import TestDataset from models import MODELS from torch import nn, optim from torch.optim import lr_scheduler from torch.utils.data import DataLoader from torchvision import datasets, models, transforms from utils.logger import Logger from utils.my_utils import set_seed model_configs = MODELS.keys() def load_model(checkpoint: str) -> nn.Module: """ Helper to load model weihts """ print(f"Loading model from: {checkpoint}") device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # load model model = torch.load(checkpoint) model = model.to(device) model.eval() # model = torch.nn.DataParallel(model).cuda() return model