Ejemplo n.º 1
0
def run_pipeline(root_dir, model_path, img_size, batch_size, use_gpu):
    images_path = os.path.join(root_dir, "images")
    masks_path = os.path.join(root_dir, "masks")
    outputs_path = os.path.join(root_dir, "outputs")

    sizes = []
    file_names = []
    for f in os.listdir(images_path):
        im = Image.open(os.path.join(images_path, f))
        sizes.append(im.size)
        file_names.append(f)

    model = UNet(num_channels=1, num_classes=2)
    use_gpu = use_gpu and torch.cuda.is_available()
    if use_gpu:
        model.cuda()
    model.load_state_dict(torch.load(model_path, map_location='cpu'))

    test_dataset = TestDataset(images_path,
                               im_size=[img_size, img_size],
                               transform=tr.ToTensor())
    test_loader = DataLoader(test_dataset,
                             batch_size=batch_size,
                             shuffle=False,
                             num_workers=1)
    print("Test Data : ", len(test_loader.dataset))
    start = timer()
    predict(model, test_loader, batch_size, sizes, file_names, masks_path,
            use_gpu)
    end = timer()
    print("Prediction completed in {:0.2f}s".format(end - start))
    generate_bbox(images_path, masks_path, outputs_path)
    end2 = timer()
    print("Bbox generation completed in {:0.2f}s".format(end2 - end))
def setup(opts):
    model = UNet(backbone=opts["backbone"], num_classes=2)

    if torch.cuda.is_available():
        print("Using CUDA")
        trained_dict = torch.load(opts["checkpoint"])['state_dict']
        model.load_state_dict(trained_dict, strict=False)
        model.cuda()
    else:
        print("Using CPU")
        trained_dict = torch.load(opts["checkpoint"], map_location="cpu")['state_dict']
        model.load_state_dict(trained_dict, strict=False)

    return model
Ejemplo n.º 3
0
def get_model(model_path, model_type, num_classes):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet16', 'UNet11', 'LinkNet34',
    :param problem_type: 'binary', 'parts', 'instruments'
    :return:
    """

    if model_type == 'UNet':
        model = UNet(num_classes=num_classes)
    else:
        model_name = model_list[model_type]
        model = model_name(num_classes=num_classes)


#    print(model)
    state = torch.load(str(model_path))
    state = {
        key.replace('module.', ''): value
        for key, value in state['model'].items()
    }
    model.load_state_dict(state)

    if torch.cuda.is_available():
        return model.cuda()

    model.eval()

    return model
Ejemplo n.º 4
0
def get_model(model_path, model_type):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet11', 'UNet16', 'AlbuNet34'
    :return:
    """

    num_classes = 1

    if model_type == 'UNet11':
        model = UNet11(num_classes=num_classes)
    elif model_type == 'UNet16':
        model = UNet16(num_classes=num_classes)
    elif model_type == 'AlbuNet34':
        model = AlbuNet34(num_classes=num_classes)
    elif model_type == 'UNet':
        model = UNet(num_classes=num_classes)
    else:
        model = UNet(num_classes=num_classes)

    state = torch.load(str(model_path))
    state = {
        key.replace('module.', ''): value
        for key, value in state['model'].items()
    }
    model.load_state_dict(state)

    if torch.cuda.is_available():
        return model.cuda()

    model.eval()

    return model
Ejemplo n.º 5
0
def build(config):
    global train_dataloader
    global val_dataloader
    global test_dataloader
    global model
    global loss_func
    global optimizer
    # ========= Build Data ==============
    if base_config['dataset'] == 'kaggle':
        from data import build_kaggle_dataset
        train_dataloader, val_dataloader, test_dataloader = build_kaggle_dataset(
            base_config)
    elif base_config['dataset'] == 'drive':
        from data import build_drive_dataset
        train_dataloader, val_dataloader, test_dataloader = build_drive_dataset(
            base_config)
    else:
        _logger.error('{} dataset is not supported now'.format(
            base_config['dataset']))
    # ======== Build Model
    if config['model'] == 'resnet101':
        from torchvision.models import resnet101
        model = resnet101(num_classes=base_config['n_classes'])
    elif config['model'] == 'resnext101':
        from torchvision.models import resnext101_32x8d
        model = resnext101_32x8d(num_classes=base_config['n_classes'])
    elif config['model'] == 'densenet':
        from torchvision.models import densenet121
        model = densenet121(num_classes=base_config['n_classes'])
    elif config['model'] == 'unet':
        from models import UNet
        model = UNet(num_classes=base_config['n_classes'])
    else:
        _logger.error('{} model is not supported'.format(config['model']))
    model = torch.nn.DataParallel(model.cuda())
    # Build optimizer
    if base_config['loss'] == 'ce':
        loss_func = torch.nn.CrossEntropyLoss().cuda()
    elif base_config['loss'] == 'bce':
        loss_func = torch.nn.BCELoss().cuda()
    elif base_config['loss'] == 'MSE':
        loss_func = torch.nn.MSELoss().cuda()
    else:
        _logger.error('{} loss is not supported'.format(config['loss']))
    if config['optimizer'] == 'SGD':
        optimizer = torch.optim.SGD(model.parameters(),
                                    lr=config['lr'],
                                    momentum=0.9,
                                    weight_decay=5e-4)
    if config['optimizer'] == 'Adadelta':
        optimizer = torch.optim.Adadelta(model.parameters(), lr=config['lr'])
    if config['optimizer'] == 'Adagrad':
        optimizer = torch.optim.Adagrad(model.parameters(), lr=config['lr'])
    if config['optimizer'] == 'Adam':
        optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'])
    if config['optimizer'] == 'Adamax':
        optimizer = torch.optim.Adam(model.parameters(), lr=config['lr'])
def get_model(model_path, model_type='unet11', problem_type='binary'):
    """

    :param model_path:
    :param model_type: 'UNet', 'UNet16', 'UNet11', 'LinkNet34'
    :param problem_type: 'binary', 'parts', 'instruments'
    :return:
    """
    if problem_type == 'binary':
        num_classes = 1
    elif problem_type == 'parts':
        num_classes = 4
    elif problem_type == 'instruments':
        num_classes = 8

    if model_type == 'UNet16':
        model = UNet16(num_classes=num_classes)
    elif model_type == 'UNet11':
        model = UNet11(num_classes=num_classes)
    elif model_type == 'LinkNet34':
        model = LinkNet34(num_classes=num_classes)
    elif model_type == 'UNet':
        model = UNet(num_classes=num_classes)
    elif model_type == 'DLinkNet':
        model = D_LinkNet34(num_classes=num_classes, pretrained=True)

    state = torch.load(str(model_path))
    state = {key.replace('module.', ''): value for key, value in state['model'].items()}
    model.load_state_dict(state)

    if torch.cuda.is_available():
        return model.cuda()

    model.eval()

    return model
Ejemplo n.º 7
0
def start():
    parser = argparse.ArgumentParser(
        description='UNet + BDCLSTM for BraTS Dataset')
    parser.add_argument('--batch-size',
                        type=int,
                        default=4,
                        metavar='N',
                        help='input batch size for training (default: 4)')
    parser.add_argument('--test-batch-size',
                        type=int,
                        default=4,
                        metavar='N',
                        help='input batch size for testing (default: 4)')
    parser.add_argument('--train',
                        action='store_true',
                        default=False,
                        help='Argument to train model (default: False)')
    parser.add_argument('--epochs',
                        type=int,
                        default=2,
                        metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--lr',
                        type=float,
                        default=0.001,
                        metavar='LR',
                        help='learning rate (default: 0.01)')
    parser.add_argument('--cuda',
                        action='store_true',
                        default=False,
                        help='enables CUDA training (default: False)')
    parser.add_argument('--log-interval',
                        type=int,
                        default=1,
                        metavar='N',
                        help='batches to wait before logging training status')
    parser.add_argument('--size',
                        type=int,
                        default=128,
                        metavar='N',
                        help='imsize')
    parser.add_argument('--load',
                        type=str,
                        default=None,
                        metavar='str',
                        help='weight file to load (default: None)')
    parser.add_argument('--data',
                        type=str,
                        default='./Data/',
                        metavar='str',
                        help='folder that contains data')
    parser.add_argument('--save',
                        type=str,
                        default='OutMasks',
                        metavar='str',
                        help='Identifier to save npy arrays with')
    parser.add_argument('--modality',
                        type=str,
                        default='flair',
                        metavar='str',
                        help='Modality to use for training (default: flair)')
    parser.add_argument('--optimizer',
                        type=str,
                        default='SGD',
                        metavar='str',
                        help='Optimizer (default: SGD)')

    args = parser.parse_args()
    args.cuda = args.cuda and torch.cuda.is_available()

    DATA_FOLDER = args.data

    # %% Loading in the model
    # Binary
    # model = UNet(num_channels=1, num_classes=2)
    # Multiclass
    model = UNet(num_channels=1, num_classes=3)

    if args.cuda:
        model.cuda()

    if args.optimizer == 'SGD':
        optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.99)
    if args.optimizer == 'ADAM':
        optimizer = optim.Adam(model.parameters(),
                               lr=args.lr,
                               betas=(args.beta1, args.beta2))

    # Defining Loss Function
    criterion = DICELossMultiClass()

    if args.train:
        # %% Loading in the Dataset
        full_dataset = BraTSDatasetUnet(DATA_FOLDER,
                                        im_size=[args.size, args.size],
                                        transform=tr.ToTensor())
        #dset_test = BraTSDatasetUnet(DATA_FOLDER, train=False,
        # keywords=[args.modality], im_size=[args.size,args.size], transform=tr.ToTensor())

        train_size = int(0.9 * len(full_dataset))
        test_size = len(full_dataset) - train_size
        train_dataset, validation_dataset = torch.utils.data.random_split(
            full_dataset, [train_size, test_size])

        train_loader = DataLoader(train_dataset,
                                  batch_size=args.batch_size,
                                  shuffle=True,
                                  num_workers=1)
        validation_loader = DataLoader(validation_dataset,
                                       batch_size=args.test_batch_size,
                                       shuffle=False,
                                       num_workers=1)
        #test_loader = DataLoader(full_dataset, batch_size=args.test_batch_size, shuffle=False, num_workers=1)

        print("Training Data : ", len(train_loader.dataset))
        print("Validaion Data : ", len(validation_loader.dataset))
        #print("Test Data : ", len(test_loader.dataset))

        loss_list = []
        start = timer()
        for i in tqdm(range(args.epochs)):
            train(model, i, loss_list, train_loader, optimizer, criterion,
                  args)
            test(model, validation_loader, criterion, args, validation=True)
        end = timer()
        print("Training completed in {:0.2f}s".format(end - start))

        plt.plot(loss_list)
        plt.title("UNet bs={}, ep={}, lr={}".format(args.batch_size,
                                                    args.epochs, args.lr))
        plt.xlabel("Number of iterations")
        plt.ylabel("Average DICE loss per batch")
        plt.savefig("./plots/{}-UNet_Loss_bs={}_ep={}_lr={}.png".format(
            args.save, args.batch_size, args.epochs, args.lr))

        np.save(
            './npy-files/loss-files/{}-UNet_Loss_bs={}_ep={}_lr={}.npy'.format(
                args.save, args.batch_size, args.epochs, args.lr),
            np.asarray(loss_list))
        print("Testing Validation")
        test(model, validation_loader, criterion, args, save_output=True)
        torch.save(
            model.state_dict(),
            'unet-multiclass-model-{}-{}-{}'.format(args.batch_size,
                                                    args.epochs, args.lr))

        print("Testing PDF images")
        test_dataset = TestDataset('./pdf_data/',
                                   im_size=[args.size, args.size],
                                   transform=tr.ToTensor())
        test_loader = DataLoader(test_dataset,
                                 batch_size=args.test_batch_size,
                                 shuffle=False,
                                 num_workers=1)
        print("Test Data : ", len(test_loader.dataset))
        test_only(model, test_loader, criterion, args)

    elif args.load is not None:
        test_dataset = TestDataset(DATA_FOLDER,
                                   im_size=[args.size, args.size],
                                   transform=tr.ToTensor())
        test_loader = DataLoader(test_dataset,
                                 batch_size=args.test_batch_size,
                                 shuffle=False,
                                 num_workers=1)
        print("Test Data : ", len(test_loader.dataset))
        model.load_state_dict(torch.load(args.load))
        test_only(model, test_loader, criterion, args)
Ejemplo n.º 8
0
# Alpha transperency
else:
	COLOR1 = [255, 0, 0]
	COLOR2 = [0, 0, 255]


#------------------------------------------------------------------------------
#	Create model and load weights
#------------------------------------------------------------------------------
model = UNet(
    backbone="mobilenetv2",
    num_classes=2,
	pretrained_backbone=None
)
if args.use_cuda:
	model = model.cuda()
trained_dict = torch.load(args.checkpoint, map_location="cpu")['state_dict']
model.load_state_dict(trained_dict, strict=False)
model.eval()


#------------------------------------------------------------------------------
#   Predict frames
#------------------------------------------------------------------------------
i = 0
while(cap.isOpened()):
	# Read frame from camera
	start_time = time()
	_, frame = cap.read()
	image = cv2.transpose(frame[...,::-1])
	h, w = image.shape[:2]
Ejemplo n.º 9
0
def train():
    t.cuda.set_device(1)

    # n_channels:医学影像为一通道灰度图    n_classes:二分类
    net = UNet(n_channels=1, n_classes=1)
    optimizer = t.optim.SGD(net.parameters(),
                            lr=opt.learning_rate,
                            momentum=0.9,
                            weight_decay=0.0005)
    criterion = t.nn.BCELoss()  # 二进制交叉熵(适合mask占据图像面积较大的场景)

    start_epoch = 0
    if opt.load_model_path:
        checkpoint = t.load(opt.load_model_path)

        # 加载多GPU模型参数到 单模型上
        state_dict = checkpoint['net']
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        net.load_state_dict(new_state_dict)  # 加载模型
        optimizer.load_state_dict(checkpoint['optimizer'])  # 加载优化器
        start_epoch = checkpoint['epoch']  # 加载训练批次

    # 学习率每当到达milestones值则更新参数
    if start_epoch == 0:
        scheduler = t.optim.lr_scheduler.MultiStepLR(optimizer,
                                                     milestones=opt.milestones,
                                                     gamma=0.1,
                                                     last_epoch=-1)  # 默认为-1
        print('从头训练 ,学习率为{}'.format(optimizer.param_groups[0]['lr']))
    else:
        scheduler = t.optim.lr_scheduler.MultiStepLR(optimizer,
                                                     milestones=opt.milestones,
                                                     gamma=0.1,
                                                     last_epoch=start_epoch)
        print('加载预训练模型{}并从{}轮开始训练,学习率为{}'.format(
            opt.load_model_path, start_epoch, optimizer.param_groups[0]['lr']))

    # 网络转移到GPU上
    if opt.use_gpu:
        net = t.nn.DataParallel(net, device_ids=opt.device_ids)  # 模型转为GPU并行
        net.cuda()
        cudnn.benchmark = True

    # 定义可视化对象
    vis = Visualizer(opt.env)

    train_data = NodeDataSet(train=True)
    val_data = NodeDataSet(val=True)
    test_data = NodeDataSet(test=True)

    # 数据集加载器
    train_dataloader = DataLoader(train_data,
                                  opt.batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers)
    val_dataloader = DataLoader(val_data,
                                opt.batch_size,
                                shuffle=True,
                                num_workers=opt.num_workers)
    test_dataloader = DataLoader(test_data,
                                 opt.test_batch_size,
                                 shuffle=False,
                                 num_workers=opt.num_workers)
    for epoch in range(opt.max_epoch - start_epoch):
        print('开始 epoch {}/{}.'.format(start_epoch + epoch + 1, opt.max_epoch))
        epoch_loss = 0

        # 每轮判断是否更新学习率
        scheduler.step()

        # 迭代数据集加载器
        for ii, (img, mask) in enumerate(
                train_dataloader):  # pytorch0.4写法,不再将tensor封装为Variable
            # 将数据转到GPU
            if opt.use_gpu:
                img = img.cuda()
                true_masks = mask.cuda()
            masks_pred = net(img)

            # 经过sigmoid
            masks_probs = t.sigmoid(masks_pred)

            # 损失 = 二进制交叉熵损失 + dice损失
            loss = criterion(masks_probs.view(-1), true_masks.view(-1))

            # 加入dice损失
            if opt.use_dice_loss:
                loss += dice_loss(masks_probs, true_masks)

            epoch_loss += loss.item()

            if ii % 2 == 0:
                vis.plot('训练集loss', loss.item())

            # 优化器梯度清零
            optimizer.zero_grad()
            # 反向传播
            loss.backward()
            # 更新参数
            optimizer.step()

        # 当前时刻的一些信息
        vis.log("epoch:{epoch},lr:{lr},loss:{loss}".format(
            epoch=epoch, loss=loss.item(), lr=optimizer.param_groups[0]['lr']))

        vis.plot('每轮epoch的loss均值', epoch_loss / ii)
        # 保存模型、优化器、当前轮次等
        state = {
            'net': net.state_dict(),
            'optimizer': optimizer.state_dict(),
            'epoch': epoch
        }
        t.save(state, opt.checkpoint_root + '{}_unet.pth'.format(epoch))

        # ============验证===================

        net.eval()
        # 评价函数:Dice系数    Dice距离用于度量两个集合的相似性
        tot = 0
        for jj, (img_val, mask_val) in enumerate(val_dataloader):
            img_val = img_val
            true_mask_val = mask_val
            if opt.use_gpu:
                img_val = img_val.cuda()
                true_mask_val = true_mask_val.cuda()

            mask_pred = net(img_val)
            mask_pred = (t.sigmoid(mask_pred) > 0.5).float()  # 阈值为0.5
            # 评价函数:Dice系数   Dice距离用于度量两个集合的相似性
            tot += dice_loss(mask_pred, true_mask_val).item()
        val_dice = tot / jj
        vis.plot('验证集 Dice损失', val_dice)

        # ============验证召回率===================
        # 每10轮验证一次测试集召回率
        if epoch % 10 == 0:
            result_test = []
            for kk, (img_test, mask_test) in enumerate(test_dataloader):
                # 测试 unet分割能力,故 不使用真值mask
                if opt.use_gpu:
                    img_test = img_test.cuda()
                mask_pred_test = net(img_test)  # [1,1,512,512]

                probs = t.sigmoid(mask_pred_test).squeeze().squeeze().cpu(
                ).detach().numpy()  # [512,512]
                mask = probs > opt.out_threshold
                result_test.append(mask)

            # 得到 测试集所有预测掩码,计算二维召回率
            vis.plot('测试集二维召回率', getRecall(result_test).getResult())
        net.train()
Ejemplo n.º 10
0
def predict():
    net = UNet(n_channels=1, n_classes=1)
    net.eval()
    # 将多GPU模型加载为CPU模型
    if opt.load_model_path:
        checkpoint = t.load(opt.load_model_path)
        state_dict = checkpoint['net']
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        net.load_state_dict(new_state_dict)  # 加载模型
        print('加载预训练模型{}'.format(opt.load_model_path))
    if opt.use_gpu:
        net.cuda()

    test_data = NodeDataSet(test=True)

    test_dataloader = DataLoader(test_data,
                                 opt.test_batch_size,
                                 shuffle=False,
                                 num_workers=opt.num_workers)
    for ii, full_img in enumerate(test_dataloader):
        img_test = full_img[0][0].unsqueeze(
            0)  # 第一个[0]  取 原图像的一个batch,第二个[0]指batch为1
        if opt.use_gpu:
            img_test = img_test.cuda()

        with t.no_grad():  # pytorch0.4版本写法
            output = net(img_test)
            probs = t.sigmoid(output).squeeze(0)

        full_mask = probs.squeeze().cpu().numpy()
        # ===========================================下面方法可能未考虑 一通道图像
        # if opt.use_dense_crf:
        #     full_mask = dense_crf(np.array(full_img).astype(np.uint8), full_mask)
        mask = full_mask > opt.out_threshold  # 预测mask值都太小,最大0.01

        # # 可视化1
        # plt.imsave(opt.save_test_dir+str(10000+ii)+'full_img.jpg', full_img[0][0].squeeze(0),cmap = cm.gray)  #保存原图
        # plt.imsave(opt.save_test_dir+str(10000+ii)+'mask.jpg', mask,cmap = cm.gray) #保存mask
        # plt.imsave(opt.save_test_dir+str(10000+ii)+'full_mask.jpg', full_img[0][0].squeeze(0).squeeze(0).numpy() * mask,cmap = cm.gray)  #保存mask之后的原图

        # 可视化2
        # # 多子图显示原图和mask
        # plt.subplot(1,3,1)
        # plt.title('origin')
        # plt.imshow(full_img[0][0].squeeze(0),cmap='Greys_r')
        #
        # plt.subplot(1, 3, 2)
        # plt.title('mask')
        # plt.imshow(mask,cmap='Greys_r')
        #
        # plt.subplot(1, 3, 3)
        # plt.title('origin_after_mask')
        # plt.imshow( full_img[0][0].squeeze(0).squeeze(0).numpy() * mask,cmap='Greys_r')
        #
        # plt.show()

        # 保存mask为npy
        np.save('/home/bobo/data/test/test8/' + str(10000 + ii) + '_mask.npy',
                mask)

    print('测试完毕')
Ejemplo n.º 11
0
class Anonymizer:
    @classmethod
    def check_for_numpy(cls, tensor):
        if isinstance(tensor, torch.Tensor):
            tensor = tensor.detach().cpu().numpy()
        return tensor

    @classmethod
    def get_number_of_batches(cls, image_paths, batch_size):
        batches = len(image_paths) / batch_size
        if not batches.is_integer():
            batches = math.floor(batches) + 1
        return int(batches)

    @classmethod
    def apply_mask(cls, image, mask):
        return np.multiply(image, mask)

    @classmethod
    def anonymize_image(cls, image, mask):
        image = Anonymizer.check_for_numpy(image)
        image = image.reshape(image.shape[-2:])
        image = np.float32(image)

        mask = Anonymizer.check_for_numpy(mask)
        mask = mask.reshape(mask.shape[-2:])
        mask = np.uint8(mask)

        im = Anonymizer.apply_mask(image, mask)
        cv2.imwrite("sanity_mask.jpg", 255 * mask)
        cv2.imwrite("sanity_image.jpg", image)
        cv2.imwrite("sanity_join.jpg", im)

        mask = Editor.invert_mask(mask)
        mask = np.uint8(mask)

        im = cv2.inpaint(im, mask, 10, cv2.INPAINT_TELEA)
        cv2.imwrite("sanity_anon.jpg", im)

        return im

    def __init__(self, batch_size, image_paths, write_path, state_dict):
        self.batch_size = batch_size
        self.image_paths = glob.glob(image_paths)
        self.batches = Anonymizer.get_number_of_batches(
            self.image_paths, self.batch_size)
        self.write_path = write_path
        self.model = UNet()
        self.state_dict = state_dict

    def process_batch(self, batch):
        # Grab a batch, shuffled according to the provided seed. Note that
        # i-th image: samples[i][0], i-th mask: samples[i][1]
        samples = Loader.get_batch(self.image_paths, self.batch_size, batch,
                                   None)
        samples.astype(float)
        # Cast samples into torch.FloatTensor for interaction with U-Net
        samples = torch.from_numpy(samples)
        samples = samples.float()

        # Cast into a CUDA tensor, if GPUs are available
        if torch.cuda.is_available():
            samples = samples.cuda()

        # Isolate images and their masks
        samples_images = samples[:, 0]
        samples_masks = samples[:, 1]

        # Reshape for interaction with U-Net
        samples_images = samples_images.unsqueeze(1)
        source = samples_images
        samples_masks = samples_masks.unsqueeze(1)

        # Run inputs through the model
        output = self.model(samples_images)

        # Clamp the target for proper interaction with BCELoss
        target = torch.clamp(samples_masks, min=0, max=1)

        del samples

        return source, output, target

    def anonymize(self):
        if not os.path.isdir(self.write_path):
            print("Making output directory")
            os.mkdir(self.write_path)
        count = 0
        for batch in range(self.batches):
            source, output, target = self.process_batch(batch)

            source = Anonymizer.check_for_numpy(source)
            source = source.reshape(source.shape[-2:])
            source = np.float32(source)

            binary_mask = Editor.make_binary_mask_from_torch(
                output[0, :, :, :], 1.0)
            inverted_binary_mask = Editor.invert_mask(
                binary_mask)  # Now a numpy array instead of torch tensor
            anonymized_image = Anonymizer.anonymize_image(
                source, inverted_binary_mask)

            cv2.imwrite(self.write_path + "/orig_" + str(count) + ".jpg",
                        source)
            cv2.imwrite(self.write_path + "/anon_" + str(count) + ".jpg",
                        anonymized_image)
            count += 1

            del batch, target, output, binary_mask, anonymized_image

    def set_cuda(self):
        if torch.cuda.is_available():
            self.model = self.model.cuda()

    def set_weights(self):
        if torch.cuda.is_available():
            buffered_state_dict = torch.load("weights/" + self.state_dict)
        else:
            buffered_state_dict = torch.load(
                "weights/" + self.state_dict,
                map_location=lambda storage, loc: storage)

        self.model.load_state_dict(buffered_state_dict)
        self.model.eval()
Ejemplo n.º 12
0
def main():
    use_cuda = torch.cuda.is_available()
    device = torch.device('cuda' if use_cuda else 'cpu')

    unet = UNet(input_dim, label_dim)
    unet.load_state_dict(
        torch.load('./checkpoints_1_19/checkpoint_30.pth', map_location='cpu'))

    unet.eval()

    if use_cuda:
        unet.cuda()

    criterion = nn.MSELoss()
    """
    if sys.platform.startswith('win'):
        num_workers = 0  # 0表示不用额外的进程来加速读取数据
    else:
        num_workers = 4

    # 读取训练数据集
    batch_size = 512

    #准备数据
    mnist_test_dataset_with_noise = MyMnistDataSet.MyMnistDataSet(root_dir='./mnist_dataset_noise',
                                                                  label_root_dir='./mnist_dataset', type_name='test',
                                                                  transform=transforms.ToTensor())
    test_data_loader_with_noise = torch.utils.data.DataLoader(mnist_test_dataset_with_noise, batch_size, shuffle=False,
                                                              num_workers=num_workers)
    #遍历数据已有模型进行reference
    test_loss_sum, batch_count, start_time = 0.0, 0, time.time()
    for X, y in test_data_loader_with_noise:

        X = X.to(device)
        y = y.to(device)

        y_hat = unet(X)

        l = criterion(y_hat, y)

        test_loss_sum += l.cpu().item()
        batch_count += 1

    print('predict: batch_cout %d, test loss %.4f, time %.1f sec'
          % (batch_count, test_loss_sum / batch_count, time.time() - start_time))
    """

    transform = transforms.Compose([
        transforms.CenterCrop(256),
        transforms.ToTensor(),
    ])
    dataset = SpectralDataSet(
        root_dir=
        '/mnt/liguanlin/DataSets/lowlight_hyperspectral_datasets/band_splited_dataset',
        type_name='test',
        transform=transform)

    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=False)

    count = 0

    mean_psnr = 0
    mean_ssim = 0
    total_psnr = 0
    total_ssim = 0

    goundtruth_total_pnsr = 0
    goundtruth_total_ssim = 0

    for real, labels in tqdm(dataloader):
        #print('real.shape', real.shape)
        #print('labels.shape', labels.shape)
        cur_batch_size = len(real)
        # Flatten the image
        real = real.to(device)
        labels = labels.to(device)

        pred = unet(real)

        print(pred.shape)
        print(real.shape)
        save_image(pred, 'pred.png', nrow=2)
        save_image(labels, 'labels.png', nrow=2)

        pred_numpy = pred.detach().cpu().numpy()
        label_numpy = labels.detach().cpu().numpy()
        origin_numpy = real.detach().cpu().numpy()

        print(pred_numpy.shape)

        for i in range(pred_numpy.shape[0]):
            numpy_img = pred_numpy[i].reshape(
                (pred_numpy.shape[2], pred_numpy.shape[3]))
            pred_numpy_img = numpy_img * 1023
            pred_numpy_img = pred_numpy_img.astype(np.int16)
            image = Image.fromarray(pred_numpy_img)
            iamge_name = "./test_results/pred/" + str(i) + ".png"
            image.save(iamge_name)
            #pred_numpy_img_8bit = numpy_img * 255

            label_numpy_img = label_numpy[i].reshape(
                (label_numpy.shape[2], label_numpy.shape[3]))
            label_numpy_img = label_numpy_img * 1023
            label_numpy_img = label_numpy_img.astype(np.int16)
            label_image = Image.fromarray(label_numpy_img)
            label_iamge_name = "./test_results/label/" + str(i) + ".png"
            label_image.save(label_iamge_name)

            origin_numpy_img = origin_numpy[i].reshape(
                (origin_numpy.shape[2], origin_numpy.shape[3]))
            origin_numpy_img = origin_numpy_img * 1023
            origin_numpy_img = origin_numpy_img.astype(np.int16)
            origin_image = Image.fromarray(origin_numpy_img)
            origin_iamge_name = "./test_results/original/" + str(i) + ".png"
            origin_image.save(origin_iamge_name)

            count += 1

            total_psnr += caculate_psnr_16bit(pred_numpy_img, origin_numpy_img)
            total_ssim += caculate_ssim_16bit(pred_numpy_img, label_numpy_img)

            goundtruth_total_pnsr += caculate_psnr_16bit(
                label_numpy_img, origin_numpy_img)
            goundtruth_total_ssim += caculate_ssim_16bit(
                label_numpy_img, pred_numpy_img)

        if (count == 4):
            break

    mean_psnr = total_psnr / count
    mean_ssim = total_ssim / count
    print("count = ", count)
    print("mean_psnr = ", mean_psnr)
    print("mean_ssim = ", mean_ssim)

    gound_truth_mean_psnr = goundtruth_total_pnsr / count
    gound_truth_mean_ssim = goundtruth_total_ssim / count

    print("gound_truth_mean_psnr = ", gound_truth_mean_psnr)
    print("gound_truth_mean_ssim = ", gound_truth_mean_ssim)
Ejemplo n.º 13
0
class Runner(object):
    def __init__(self,
                 hparams,
                 train_size: int,
                 class_weight: Optional[Tensor] = None):
        # model, criterion, and prediction
        self.model = UNet(ch_in=2, ch_out=1, **hparams.model)
        self.sigmoid = torch.nn.Sigmoid()
        self.criterion = torch.nn.BCEWithLogitsLoss(reduction='none')
        self.class_weight = class_weight

        # for prediction
        self.frame2time = hparams.hop_size / hparams.sample_rate
        self.T_6s = round(6 / self.frame2time) - 1
        self.T_12s = round(12 / self.frame2time) - 1
        self.metrics = ('precision', 'recall', 'F1')

        # optimizer and scheduler
        self.optimizer = AdamW(
            self.model.parameters(),
            lr=hparams.learning_rate,
            weight_decay=hparams.weight_decay,
        )
        self.scheduler = CosineLRWithRestarts(self.optimizer,
                                              batch_size=hparams.batch_size,
                                              epoch_size=train_size,
                                              **hparams.scheduler)
        self.scheduler.step()

        self.f1_last_restart = -1

        # device
        device_for_summary = self._init_device(hparams.device,
                                               hparams.out_device)

        # summary
        self.writer = SummaryWriter(logdir=hparams.logdir)
        path_summary = Path(self.writer.logdir, 'summary.txt')
        if not path_summary.exists():
            print_to_file(path_summary, summary,
                          (self.model,
                           (2, 128, 16 * hparams.model['stride'][1]**4)),
                          dict(device=device_for_summary))

        # save hyperparameters
        path_hparam = Path(self.writer.logdir, 'hparams.txt')
        if not path_hparam.exists():
            with path_hparam.open('w') as f:
                for var in vars(hparams):
                    value = getattr(hparams, var)
                    print(f'{var}: {value}', file=f)

    def _init_device(self, device, out_device) -> str:
        if device == 'cpu':
            self.device = torch.device('cpu')
            self.out_device = torch.device('cpu')
            self.str_device = 'cpu'
            return 'cpu'

        # device type
        if type(device) == int:
            device = [device]
        elif type(device) == str:
            device = [int(device[-1])]
        else:  # sequence of devices
            if type(device[0]) == int:
                device = device
            else:
                device = [int(d[-1]) for d in device]

        # out_device type
        if type(out_device) == int:
            out_device = torch.device(f'cuda:{out_device}')
        else:
            out_device = torch.device(out_device)

        self.device = torch.device(f'cuda:{device[0]}')
        self.out_device = out_device

        if len(device) > 1:
            self.model = nn.DataParallel(self.model,
                                         device_ids=device,
                                         output_device=out_device)
            self.str_device = ', '.join([f'cuda:{d}' for d in device])
        else:
            self.str_device = str(self.device)

        self.model.cuda(device[0])
        self.criterion.cuda(out_device)
        if self.sigmoid:
            self.sigmoid.cuda(device[0])
        torch.cuda.set_device(device[0])
        return 'cuda'

    def calc_loss(self, y: Tensor, out: Tensor, Ts: Union[List[int],
                                                          int]) -> Tensor:
        """

        :param y: (B, T) or (T,)
        :param out: (B, T) or (T,)
        :param Ts: length B list or int
        :return:
        """
        assert self.class_weight is not None
        weight = (y > 0).float() * self.class_weight[1].item()
        weight += (y == 0).float() * self.class_weight[0].item()

        if y.dim() == 1:  # if batch_size == 1
            y = (y, )
            out = (out, )
            weight = (weight, )
            Ts = (Ts, )

        loss = torch.zeros(1, device=self.out_device)
        for ii, T in enumerate(Ts):
            loss_no_red = self.criterion(out[ii:ii + 1, ..., :T],
                                         y[ii:ii + 1, :T])
            loss += (loss_no_red * weight[ii:ii + 1, :T]).sum() / T

        return loss

    def predict(self, out_np: ndarray, Ts: Union[List[int], int]) \
            -> Tuple[List[ndarray], List]:
        """ peak-picking prediction

        :param out_np: (B, T) or (T,)
        :param Ts: length B list or int
        :return: boundaries, thresholds
            boundaries: length B list of boundary interval ndarrays
            thresholds: length B list of threshold values
        """
        if out_np.ndim == 1:  # if batch_size == 1
            out_np = (out_np, )
            Ts = (Ts, )

        boundaries = []
        thresholds = []
        for item, T in zip(out_np, Ts):
            candid_idx = []
            for idx in range(1, T - 1):
                i_first = max(idx - self.T_6s, 0)
                i_last = min(idx + self.T_6s + 1, T)
                if item[idx] >= np.amax(item[i_first:i_last]):
                    candid_idx.append(idx)

            boundary_idx = []
            threshold = np.mean(item[candid_idx])
            for idx in candid_idx:
                if item[idx] > threshold:
                    boundary_idx.append(idx)

            boundary_interval = np.array(
                [[0] + boundary_idx, boundary_idx + [T]], dtype=np.float64).T
            boundary_interval *= self.frame2time

            boundaries.append(boundary_interval)
            thresholds.append(threshold)

        return boundaries, thresholds

    @staticmethod
    def evaluate(reference: Union[List[ndarray], ndarray],
                 prediction: Union[List[ndarray], ndarray]):
        """

        :param reference: length B list of ndarray or just ndarray
        :param prediction: length B list of ndarray or just ndarray
        :return: (3,) ndarray
        """
        if isinstance(reference, ndarray):  # if batch_size == 1
            reference = (reference, )

        result = np.zeros(3)
        for item_truth, item_pred in zip(reference, prediction):
            mir_result = mir_eval.segment.detection(item_truth,
                                                    item_pred,
                                                    trim=True)
            result += np.array(mir_result)

        return result

    # Running model for train, test and validation.
    def run(self, dataloader, mode: str, epoch: int):
        self.model.train() if mode == 'train' else self.model.eval()
        if mode == 'test':
            state_dict = torch.load(Path(self.writer.logdir, f'{epoch}.pt'))
            if isinstance(self.model, nn.DataParallel):
                self.model.module.load_state_dict(state_dict)
            else:
                self.model.load_state_dict(state_dict)
            path_test_result = Path(self.writer.logdir, f'test_{epoch}')
            os.makedirs(path_test_result, exist_ok=True)
        else:
            path_test_result = None

        avg_loss = 0.
        avg_eval = 0.
        all_thresholds = dict()
        print()
        pbar = tqdm(dataloader,
                    desc=f'{mode} {epoch:3d}',
                    postfix='-',
                    dynamic_ncols=True)

        for i_batch, (x, y, intervals, Ts, ids) in enumerate(pbar):
            # data
            n_batch = len(Ts) if hasattr(Ts, 'len') else 1
            x = x.to(self.device)  # B, C, F, T
            x = dataloader.dataset.normalization.normalize_(x)
            y = y.to(self.out_device)  # B, T

            # forward
            out = self.model(x)  # B, C, 1, T
            out = out[..., 0, 0, :]  # B, T

            # loss
            if mode != 'test':
                if mode == 'valid':
                    with torch.autograd.detect_anomaly():
                        loss = self.calc_loss(y, out, Ts)
                else:
                    loss = self.calc_loss(y, out, Ts)

            else:
                loss = 0

            out_np = self.sigmoid(out).detach().cpu().numpy()
            prediction, thresholds = self.predict(out_np, Ts)

            eval_result = self.evaluate(intervals, prediction)

            if mode == 'train':
                # backward
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
                self.scheduler.batch_step()
                loss = loss.item()
            elif mode == 'valid':
                loss = loss.item()
                if i_batch == 0:  # save only the 0-th data
                    id_0, T_0 = ids[0], Ts[0]
                    out_np_0 = out_np[0, :T_0]
                    pred_0, truth_0 = prediction[0][1:, 0], intervals[0][1:, 0]
                    t_axis = np.arange(T_0) * self.frame2time
                    fig = draw_lineplot(t_axis, out_np_0, pred_0, truth_0,
                                        id_0)
                    self.writer.add_figure(f'{mode}/out', fig, epoch)
                    np.save(Path(self.writer.logdir, f'{id_0}_{epoch}.npy'),
                            out_np_0)
                    np.save(
                        Path(self.writer.logdir, f'{id_0}_{epoch}_pred.npy'),
                        pred_0)
                    if epoch == 0:
                        np.save(Path(self.writer.logdir, f'{id_0}_truth.npy'),
                                truth_0)
            else:
                # save all test data
                for id_, item_truth, item_pred, item_out, threshold, T \
                        in zip(ids, intervals, prediction, out_np, thresholds, Ts):
                    np.save(path_test_result / f'{id_}_truth.npy', item_truth)
                    np.save(path_test_result / f'{id_}.npy', item_out[:T])
                    np.save(path_test_result / f'{id_}_pred.npy', item_pred)
                    all_thresholds[str(id_)] = threshold

            str_eval = np.array2string(eval_result / n_batch, precision=3)
            pbar.set_postfix_str(f'{loss / n_batch:.3f}, {str_eval}')

            avg_loss += loss
            avg_eval += eval_result

        avg_loss = avg_loss / len(dataloader.dataset)
        avg_eval = avg_eval / len(dataloader.dataset)

        if mode == 'test':
            np.savez(path_test_result / f'thresholds.npz', **all_thresholds)

        return avg_loss, avg_eval

    def step(self, valid_f1: float, epoch: int):
        """

        :param valid_f1:
        :param epoch:
        :return: test epoch or 0
        """
        last_restart = self.scheduler.last_restart
        self.scheduler.step()  # scheduler.last_restart can be updated

        if epoch == self.scheduler.last_restart:
            if valid_f1 < self.f1_last_restart:
                return last_restart
            else:
                self.f1_last_restart = valid_f1
                torch.save(self.model.module.state_dict(),
                           Path(self.writer.logdir, f'{epoch}.pt'))

        return 0
Ejemplo n.º 14
0
class Tester:

    @classmethod
    def partition_masks(cls, output, target):
        # Partition the union of the output and target into a true positive mask,
        # a false positive mask, and a false negative mask
        true_positive_mask = torch.min(output, target)
        false_positive_mask = output - true_positive_mask
        false_negative_mask = target - true_positive_mask
        return true_positive_mask, false_positive_mask, false_negative_mask

    @classmethod
    def get_partition_measures(cls, output, target):
        true_positive_mask, false_positive_mask, false_negative_mask = Tester.partition_masks(output, target)

        tp = torch.sum(true_positive_mask) / (torch.sum(true_positive_mask) + torch.sum(false_positive_mask))
        fp = torch.sum(false_positive_mask) / (torch.sum(true_positive_mask) + torch.sum(false_positive_mask))
        fn = torch.sum(false_negative_mask) / (torch.sum(true_positive_mask) + torch.sum(false_negative_mask))

        return tp, fp, fn

    @classmethod
    def get_dice(cls, output, target):
        tp, fp, fn = Tester.get_partition_measures(output, target)
        if tp + fp + fn == 0:
            return -1
        dice = (2*tp)/(2*tp + fp + fn)
        if math.isnan(dice):
            return 0
        return dice.item()

    @classmethod
    def get_intersection_over_union(cls, output, target):
        tp, fp, fn = Tester.get_partition_measures(output, target)
        if tp + fp + fn == 0:
            return -1
        iou = tp / (tp + fp + fn)
        if math.isnan(iou):
            return 0
        return iou.item()

    @classmethod
    def get_accuracy(cls, output, target):
        tp, fp, fn = Tester.get_partition_measures(output, target)
        if tp + fp == 0:
            return -1
        accuracy = tp / (tp + fp)
        if math.isnan(accuracy):
            return 0
        return accuracy.item()

    @classmethod
    def get_recall(cls, output, target):
        tp, fp, fn = Tester.get_partition_measures(output, target)
        if tp + fn == 0:
            return -1
        recall = tp / (tp + fn)
        if math.isnan(recall):
            return 0
        return recall.item()

    @classmethod
    def get_number_of_batches(cls, image_paths, batch_size):
        batches = len(image_paths) / batch_size
        if not batches.is_integer():
            batches = math.floor(batches) + 1
        return int(batches)

    @classmethod
    def evaluate_loss(cls, criterion, output, target):
        loss_1 = criterion(output, target)
        loss_2 = 1 - Tester.get_intersection_over_union(output, target)
        loss = loss_1 + 0.1 * loss_2
        return loss

    def __init__(self, side_length, batch_size, seed, image_paths, state_dict):
        self.side_length = side_length
        self.batch_size = batch_size
        self.seed = seed
        self.image_paths = glob.glob(image_paths)
        self.batches = Tester.get_number_of_batches(self.image_paths, self.batch_size)
        self.model = UNet()
        self.loader = Loader(self.side_length)
        self.state_dict = state_dict

    def set_cuda(self):
        if torch.cuda.is_available():
            self.model = self.model.cuda()

    def set_seed(self):
        if self.seed is not None:
            np.random.seed(self.seed)

    def process_batch(self, batch):
        # Grab a batch, shuffled according to the provided seed. Note that
        # i-th image: samples[i][0], i-th mask: samples[i][1]
        samples = Loader.get_batch(self.image_paths, self.batch_size, batch, self.seed)
        samples.astype(float)
        # Cast samples into torch.FloatTensor for interaction with U-Net
        samples = torch.from_numpy(samples)
        samples = samples.float()

        # Cast into a CUDA tensor, if GPUs are available
        if torch.cuda.is_available():
            samples = samples.cuda()

        # Isolate images and their masks
        samples_images = samples[:, 0]
        samples_masks = samples[:, 1]

        # Reshape for interaction with U-Net
        samples_images = samples_images.unsqueeze(1)
        samples_masks = samples_masks.unsqueeze(1)

        # Run inputs through the model
        output = self.model(samples_images)

        # Clamp the target for proper interaction with BCELoss
        target = torch.clamp(samples_masks, min=0, max=1)

        del samples

        return output, target

    def test_model(self):
        if torch.cuda.is_available():
            buffered_state_dict = torch.load("weights/" + self.state_dict)
        else:
            buffered_state_dict = torch.load("weights/" + self.state_dict, map_location=lambda storage, loc: storage)

        self.model.load_state_dict(buffered_state_dict)
        self.model.eval()

        criterion = nn.BCELoss()
        perfect_accuracy_count = 0
        zero_accuracy_count = 0
        image_count = 0

        accuracy_list = []
        recall_list = []
        iou_list = []
        dice_list = []
        losses_list = []

        for batch in range(self.batches):
            output, target = self.process_batch(batch)
            loss = Tester.evaluate_loss(criterion, output, target)

            print("Batch:", batch)
            print("~~~~~~~~~~~~~~~~~~~~~~~~~~")
            print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

            for i in range(0, output.shape[0]):
                image_count += 1
                binary_mask = Editor.make_binary_mask_from_torch(output[i, :, :, :], 1.0)

                # Metrics
                accuracy = Tester.get_accuracy(binary_mask, target[i, :, :, :].cpu())
                recall = Tester.get_recall(binary_mask, target[i, :, :, :].cpu())
                iou = Tester.get_intersection_over_union(binary_mask, target[i, :, :, :].cpu())
                dice = Tester.get_dice(binary_mask, target[i, :, :, :].cpu())

                if accuracy == 1:
                    perfect_accuracy_count += 1
                if accuracy == 0:
                    zero_accuracy_count += 1

                accuracy_list.append(accuracy)
                recall_list.append(recall)
                iou_list.append(iou)
                dice_list.append(dice)

                print("Accuracy:", accuracy)
                print("Recall:", recall)
                print("IoU:", iou)
                print("Dice:", dice,"\n")
                print("Mean Accuracy:", mean(accuracy_list))
                print("Mean Recall:", mean(recall_list))
                print("Mean IoU:", mean(iou_list))
                print("Mean Dice:", mean(dice_list))
                print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

            loss_value = loss.item()
            losses_list.append(loss_value)
            print("Test loss:", loss_value)
            print("~~~~~~~~~~~~~~~~~~~~~~~~~~")
            del output
            del target

        mean_iou = mean(iou_list)
        mean_accuracy = mean(accuracy_list)
        mean_recall = mean(recall_list)
        mean_dice = mean(dice_list)

        print("Perfect Accuracy Percentage:", perfect_accuracy_count / image_count)
        print("Zero Accuracy Percentage:", zero_accuracy_count / image_count)
        print("Mean Accuracy:", mean_accuracy)
        print("Mean Recall:", mean_recall)
        print("Mean IoU:", mean_iou)
        print("Mean Dice:", mean_dice)
Ejemplo n.º 15
0
    dset_pred = UnetPred(PRED_INPUT,
                         keywords=[args.modality],
                         im_size=[args.size, args.size],
                         transform=tr.ToTensor())

    pred_loader = DataLoader(dset_pred,
                             batch_size=args.test_batch_size,
                             shuffle=False,
                             num_workers=1)
    print("Prediction Data : ", len(pred_loader.dataset))

# %% Loading in the model
model = UNet()

if args.cuda:
    model.cuda()

if args.optimizer == 'SGD':
    optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.99)
if args.optimizer == 'ADAM':
    optimizer = optim.Adam(model.parameters(),
                           lr=args.lr,
                           betas=(args.beta1, args.beta2))

exp_lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)

# Defining Loss Function
criterion = DICELossMultiClass()


def train(epoch, scheduler, loss_lsit):
Ejemplo n.º 16
0
class Trainer:
    @classmethod
    def intersection_over_union(cls, y, z):
        iou = (torch.sum(torch.min(y, z))) / (torch.sum(torch.max(y, z)))
        return iou

    @classmethod
    def get_number_of_batches(cls, image_paths, batch_size):
        batches = len(image_paths) / batch_size
        if not batches.is_integer():
            batches = math.floor(batches) + 1
        return int(batches)

    @classmethod
    def evaluate_loss(cls, criterion, output, target):
        loss_1 = criterion(output, target)
        loss_2 = 1 - Trainer.intersection_over_union(output, target)
        loss = loss_1 + 0.1 * loss_2
        return loss

    def __init__(self, side_length, batch_size, epochs, learning_rate,
                 momentum_parameter, seed, image_paths, state_dict,
                 train_val_split):
        self.side_length = side_length
        self.batch_size = batch_size
        self.epochs = epochs
        self.learning_rate = learning_rate
        self.momentum_parameter = momentum_parameter
        self.seed = seed
        self.image_paths = glob.glob(image_paths)
        self.batches = Trainer.get_number_of_batches(self.image_paths,
                                                     self.batch_size)
        self.model = UNet()
        self.loader = Loader(self.side_length)
        self.state_dict = state_dict
        self.train_val_split = train_val_split
        self.train_size = int(np.floor((self.train_val_split * self.batches)))

    def set_cuda(self):
        if torch.cuda.is_available():
            self.model = self.model.cuda()

    def set_seed(self):
        if self.seed is not None:
            np.random.seed(self.seed)

    def process_batch(self, batch):
        # Grab a batch, shuffled according to the provided seed. Note that
        # i-th image: samples[i][0], i-th mask: samples[i][1]
        samples = Loader.get_batch(self.image_paths, self.batch_size, batch,
                                   self.seed)
        samples.astype(float)
        # Cast samples into torch.FloatTensor for interaction with U-Net
        samples = torch.from_numpy(samples)
        samples = samples.float()

        # Cast into a CUDA tensor, if GPUs are available
        if torch.cuda.is_available():
            samples = samples.cuda()

        # Isolate images and their masks
        samples_images = samples[:, 0]
        samples_masks = samples[:, 1]

        # Reshape for interaction with U-Net
        samples_images = samples_images.unsqueeze(1)
        samples_masks = samples_masks.unsqueeze(1)

        # Run inputs through the model
        output = self.model(samples_images)

        # Clamp the target for proper interaction with BCELoss
        target = torch.clamp(samples_masks, min=0, max=1)

        del samples

        return output, target

    def train_model(self):
        self.model.train()
        criterion = nn.BCELoss()
        optimizer = optim.Adam(self.model.parameters(), lr=self.learning_rate)

        iteration = 0
        best_iteration = 0
        best_loss = 10**10

        losses_train = []
        losses_val = []

        iou_train = []
        average_iou_train = []
        iou_val = []
        average_iou_val = []

        print("BEGIN TRAINING")
        print("TRAINING BATCHES:", self.train_size)
        print("VALIDATION BATCHES:", self.batches - self.train_size)
        print("BATCH SIZE:", self.batch_size)
        print("EPOCHS:", self.epochs)
        print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

        for k in range(0, self.epochs):
            print("EPOCH:", k + 1)
            print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

            # Train
            for batch in range(0, self.train_size):
                iteration = iteration + 1
                output, target = self.process_batch(batch)
                loss = Trainer.evaluate_loss(criterion, output, target)
                print("EPOCH:", self.epochs)
                print("Batch", batch, "of", self.train_size)

                # Aggregate intersection over union scores for each element in the batch
                for i in range(0, output.shape[0]):
                    binary_mask = Editor.make_binary_mask_from_torch(
                        output[i, :, :, :], 1.0)
                    iou = Trainer.intersection_over_union(
                        binary_mask, target[i, :, :, :].cpu())
                    iou_train.append(iou.item())
                    print("IoU:", iou.item())

                # Clear data to prevent memory overload
                del target
                del output

                # Clear gradients, back-propagate, and update weights
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                # Record the loss value
                loss_value = loss.item()
                if best_loss > loss_value:
                    best_loss = loss_value
                    best_iteration = iteration
                losses_train.append(loss_value)

                if batch == self.train_size - 1:
                    print("LOSS:", loss_value)
                    print("~~~~~~~~~~~~~~~~~~~~~~~~~~")

            average_iou = sum(iou_train) / len(iou_train)
            print("Average IoU:", average_iou)
            average_iou_train.append(average_iou)
            #Visualizer.save_loss_plot(average_iou_train, "average_iou_train.png")

            # Validate
            for batch in range(self.train_size, self.batches):
                output, target = self.process_batch(batch)
                loss = Trainer.evaluate_loss(criterion, output, target)

                for i in range(0, output.shape[0]):
                    binary_mask = Editor.make_binary_mask_from_torch(
                        output[i, :, :, :], 1.0)
                    iou = Trainer.intersection_over_union(
                        binary_mask, target[i, :, :, :].cpu())
                    iou_val.append(iou.item())
                    print("IoU:", iou.item())

                loss_value = loss.item()
                losses_val.append(loss_value)
                print("EPOCH:", self.epochs)
                print("VALIDATION LOSS:", loss_value)
                print("~~~~~~~~~~~~~~~~~~~~~~~~~~")
                del output
                del target

            average_iou = sum(iou_val) / len(iou_val)
            print("Average IoU:", average_iou)
            average_iou_val.append(average_iou)
            #Visualizer.save_loss_plot(average_iou_val, "average_iou_val.png")

        print("Least loss", best_loss, "at iteration", best_iteration)

        torch.save(self.model.state_dict(), "weights/" + self.state_dict)
Ejemplo n.º 17
0
def video_infer(args):
    cap = cv2.VideoCapture(args.video)
    _, frame = cap.read()
    H, W = frame.shape[:2]

    fourcc = cv2.VideoWriter_fourcc(*'DIVX')
    out = cv2.VideoWriter(args.output, fourcc, 30, (W,H))
    font = cv2.FONT_HERSHEY_SIMPLEX

    # Background
    if args.bg is not None:
        BACKGROUND = cv2.imread(args.bg)[...,::-1]
        BACKGROUND = cv2.resize(BACKGROUND, (W,H), interpolation=cv2.INTER_LINEAR)
        KERNEL_SZ = 25
        SIGMA = 0
    # Alpha transperency
    else:
        COLOR1 = [90, 140, 154]
        COLOR2 = [0, 0, 0]
    if args.model=='unet':
        model = UNet(backbone=args.net, num_classes=2, pretrained_backbone=None)
    elif args.model=='deeplabv3_plus':
        model = DeepLabV3Plus(backbone=args.net, num_classes=2, pretrained_backbone=None)
    elif args.model=='hrnet':
        model = HighResolutionNet(num_classes=2, pretrained_backbone=None)
    if args.use_cuda:
        model = model.cuda()
    trained_dict = torch.load(args.checkpoint, map_location="cpu")['state_dict']
    model.load_state_dict(trained_dict, strict=False)
    model.eval()

    while(cap.isOpened()):
        start_time = time()
        ret, frame = cap.read()
        if ret:
            image = frame[...,::-1]
            h, w = image.shape[:2]
            read_cam_time = time()

			# Predict mask
			X, pad_up, pad_left, h_new, w_new = utils.preprocessing(image, expected_size=args.input_sz, pad_value=0)
			preproc_time = time()
			with torch.no_grad():
				if args.use_cuda:
					mask = model(X.cuda())
					if mask.shape[1] != h_new:
						mask = F.interpolate(mask, size=(args.input_sz, args.input_sz), mode='bilinear', align_corners=True)
					mask = mask[..., pad_up: pad_up+h_new, pad_left: pad_left+w_new]
					mask = F.interpolate(mask, size=(h,w), mode='bilinear', align_corners=True)
					mask = F.softmax(mask, dim=1)
					mask = mask[0,1,...].cpu().numpy()
				else:
					mask = model(X)
					mask = mask[..., pad_up: pad_up+h_new, pad_left: pad_left+w_new]
					mask = F.interpolate(mask, size=(h,w), mode='bilinear', align_corners=True)
					mask = F.softmax(mask, dim=1)
					mask = mask[0,1,...].numpy()
			predict_time = time()

            # Draw result
            if args.bg is None:
                image_alpha = utils.draw_matting(image, mask)
                #image_alpha = utils.draw_transperency(image, mask, COLOR1, COLOR2)
            else:
                image_alpha = utils.draw_fore_to_back(image, mask, BACKGROUND, kernel_sz=KERNEL_SZ, sigma=SIGMA)
            draw_time = time()

            # Print runtime
            read = read_cam_time-start_time
            preproc = preproc_time-read_cam_time
            pred = predict_time-preproc_time
            draw = draw_time-predict_time
            total = read + preproc + pred + draw
            fps = 1 / pred
            print("read: %.3f [s]; preproc: %.3f [s]; pred: %.3f [s]; draw: %.3f [s]; total: %.3f [s]; fps: %.2f [Hz]" %
                (read, preproc, pred, draw, total, fps))
            # Wait for interupt
            cv2.putText(image_alpha, "%.2f [fps]" % (fps), (10, 50), font, 1.5, (0, 255, 0), 2, cv2.LINE_AA)
            out.write(image_alpha[..., ::-1])
            if args.watch:
                cv2.imshow('webcam', image_alpha[..., ::-1])
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            break
def video_infer(args):
    cap = cv2.VideoCapture(args.video)
    _, frame = cap.read()
    H, W = frame.shape[:2]

    fps = cap.get(cv2.CAP_PROP_FPS)
    out = cv2.VideoWriter(args.output,
                          cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps,
                          (W, H))

    # Background
    if args.bg is not None:
        BACKGROUND = cv2.imread(args.bg)[..., ::-1]
        BACKGROUND = cv2.resize(BACKGROUND, (W, H),
                                interpolation=cv2.INTER_LINEAR)
        KERNEL_SZ = 25
        SIGMA = 0
    # Alpha transperency
    else:
        COLOR1 = [255, 0, 0]
        COLOR2 = [0, 0, 255]
    if args.model == 'unet':
        model = UNet(backbone=args.net,
                     num_classes=2,
                     pretrained_backbone=None)
    elif args.model == 'deeplabv3_plus':
        model = DeepLabV3Plus(backbone=args.net,
                              num_classes=2,
                              pretrained_backbone=None)
    if args.use_cuda:
        model = model.cuda()
    trained_dict = torch.load(args.checkpoint,
                              map_location="cpu")['state_dict']
    model.load_state_dict(trained_dict, strict=False)
    model.eval()

    if W > H:
        w_new = int(args.input_sz)
        h_new = int(H * w_new / W)
    else:
        h_new = int(args.input_sz)
        w_new = int(W * h_new / H)
    disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
    prev_gray = np.zeros((h_new, w_new), np.uint8)
    prev_cfd = np.zeros((h_new, w_new), np.float32)
    is_init = True

    while (cap.isOpened()):
        start_time = time()
        ret, frame = cap.read()
        if ret:
            image = frame[..., ::-1]
            h, w = image.shape[:2]
            read_cam_time = time()

            # Predict mask
            X, pad_up, pad_left, h_new, w_new = utils.preprocessing(
                image, expected_size=args.input_sz, pad_value=0)
            preproc_time = time()
            with torch.no_grad():
                if args.use_cuda:
                    mask = model(X.cuda())
                    mask = mask[..., pad_up:pad_up + h_new,
                                pad_left:pad_left + w_new]
                    #mask = F.interpolate(mask, size=(h,w), mode='bilinear', align_corners=True)
                    mask = F.softmax(mask, dim=1)
                    mask = mask[0, 1, ...].cpu().numpy()  #(213, 320)
                else:
                    mask = model(X)
                    mask = mask[..., pad_up:pad_up + h_new,
                                pad_left:pad_left + w_new]
                    #mask = F.interpolate(mask, size=(h,w), mode='bilinear', align_corners=True)
                    mask = F.softmax(mask, dim=1)
                    mask = mask[0, 1, ...].numpy()
            predict_time = time()

            # optical tracking
            cur_gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
            cur_gray = cv2.resize(cur_gray, (w_new, h_new))
            scoremap = 255 * mask
            optflow_map = postprocess(cur_gray, scoremap, prev_gray, prev_cfd,
                                      disflow, is_init)
            optical_flow_track_time = time()
            prev_gray = cur_gray.copy()
            prev_cfd = optflow_map.copy()
            is_init = False
            optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
            optflow_map = threshold_mask(optflow_map,
                                         thresh_bg=0.2,
                                         thresh_fg=0.8)
            img_matting = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
            bg_im = np.ones_like(img_matting) * 255
            re_image = cv2.resize(image, (w_new, h_new))
            comb = (img_matting * re_image + (1 - img_matting) * bg_im).astype(
                np.uint8)
            comb = cv2.resize(comb, (W, H))
            comb = comb[..., ::-1]

            # Print runtime
            read = read_cam_time - start_time
            preproc = preproc_time - read_cam_time
            pred = predict_time - preproc_time
            optical = optical_flow_track_time - predict_time
            total = read + preproc + pred + optical
            print(
                "read: %.3f [s]; preproc: %.3f [s]; pred: %.3f [s]; optical: %.3f [s]; total: %.3f [s]; fps: %.2f [Hz]"
                % (read, preproc, pred, optical, total, 1 / pred))
            out.write(comb)
            if args.watch:
                cv2.imshow('webcam', comb[..., ::-1])
            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            break
    cap.release()
    out.release()
Ejemplo n.º 19
0
                    default='UNet',
                    type=str,
                    help='name of model for saving/loading weights')
parser.add_argument('--exp_name',
                    default='single_nuclei_lossless_augmentations',
                    type=str,
                    help='name of experiment for saving files')
args = parser.parse_args()

LR_SCHED = {0: args.lr, 100: args.lr * 0.1, 150: args.lr * 0.01}

torch.cuda.set_device(args.gpu)
cudnn.benchmark = True

net = UNet()
net.cuda()

# set model filenames
MODEL_CKPT = '../models-pytorch/best_{}_{}.pth'.format(args.model_name,
                                                       args.exp_name)

train_loader, valid_loader, len_train, len_valid = get_cropimg_training_loaders(
    imsize=args.img_size,
    test_size=args.valid_size,
    batch_size=args.batch_size,
    augment_prob=args.aug_prob,
    include_rnd=True)

msk_crit = nn.BCEWithLogitsLoss().cuda()
l1_crit = nn.L1Loss().cuda()
optimizer = optim.Adam(net.parameters(), lr=args.lr, weight_decay=args.l2)