Ejemplo n.º 1
0
Archivo: model.py Proyecto: jcyk/seqgen
 def __init__(self, vocab_src, vocab_tgt, embed_dim, hidden_size,
              num_layers, dropout, input_feed):
     super(ResponseGenerator, self).__init__()
     self.vocab_src = vocab_src
     self.vocab_tgt = vocab_tgt
     self.encoder_src = LSTMencoder(vocab_src,
                                    embed_dim=embed_dim,
                                    hidden_size=hidden_size // 2,
                                    num_layers=num_layers,
                                    dropout_in=dropout,
                                    dropout_out=dropout,
                                    bidirectional=True,
                                    pretrained_embed=None)
     self.embed_tgt = Embedding(vocab_tgt.size, embed_dim,
                                vocab_tgt.padding_idx)
     self.encoder_ske = LSTMencoder(vocab_tgt,
                                    embed_dim=embed_dim,
                                    hidden_size=hidden_size // 2,
                                    num_layers=num_layers,
                                    dropout_in=dropout,
                                    dropout_out=dropout,
                                    bidirectional=True,
                                    pretrained_embed=self.embed_tgt)
     self.decoder = LSTMdecoder(vocab_tgt,
                                embed_dim=embed_dim,
                                hidden_size=hidden_size,
                                num_layers=num_layers,
                                dropout_in=dropout,
                                dropout_out=dropout,
                                encoder_hidden_size=hidden_size,
                                pretrained_embed=self.embed_tgt,
                                input_feed=input_feed)
     self.copy = Linear(hidden_size, 1)
     self.generate = Linear(hidden_size, vocab_tgt.size)
Ejemplo n.º 2
0
    def __init__(self, cfg):
        super(PCNN, self).__init__()

        self.use_pcnn = cfg.use_pcnn
        if cfg.dim_strategy == 'cat':
            cfg.in_channels = cfg.word_dim + 2 * cfg.pos_dim
        else:
            cfg.in_channels = cfg.word_dim

        self.embedding = Embedding(cfg)
        self.cnn = CNN(cfg)
        self.fc1 = nn.Linear(
            len(cfg.kernel_sizes) * cfg.out_channels, cfg.intermediate)
        self.fc2 = nn.Linear(cfg.intermediate, cfg.num_relations)
        self.dropout = nn.Dropout(cfg.dropout)

        if self.use_pcnn:
            self.fc_pcnn = nn.Linear(
                3 * len(cfg.kernel_sizes) * cfg.out_channels,
                len(cfg.kernel_sizes) * cfg.out_channels)
            self.pcnn_mask_embedding = nn.Embedding(4, 3)
            masks = torch.tensor([[0, 0, 0], [100, 0, 0], [0, 100, 0],
                                  [0, 0, 100]])
            self.pcnn_mask_embedding.weight.data.copy_(masks)
            self.pcnn_mask_embedding.weight.requires_grad = False
Ejemplo n.º 3
0
def test_Embedding_sum():
    config.dim_strategy = 'sum'
    embed = Embedding(config)
    feature = embed((x, x_pos))
    dim = config.word_dim

    assert feature.shape == torch.Size((3, 5, dim))
Ejemplo n.º 4
0
Archivo: GCN.py Proyecto: zxlzr/deepke
    def __init__(self, cfg):
        super(GCN, self).__init__()

        if cfg.dim_strategy == 'cat':
            cfg.input_size = cfg.word_dim + 2 * cfg.pos_dim
        else:
            cfg.input_size = cfg.word_dim

        self.embedding = Embedding(cfg)
        self.gcn = GCNBlock(cfg)
        self.fc = nn.Linear(cfg.hidden_size, cfg.num_attributes)
Ejemplo n.º 5
0
    def __init__(self, cfg):
        super(Transformer, self).__init__()

        if cfg.dim_strategy == 'cat':
            cfg.hidden_size = cfg.word_dim + 2 * cfg.pos_dim
        else:
            cfg.hidden_size = cfg.word_dim

        self.embedding = Embedding(cfg)
        self.transformer = TransformerBlock(cfg)
        self.fc = nn.Linear(cfg.hidden_size, cfg.num_relations)
Ejemplo n.º 6
0
    def __init__(self, cfg):
        super(BiLSTM, self).__init__()

        if cfg.dim_strategy == 'cat':
            cfg.input_size = cfg.word_dim + 2 * cfg.pos_dim
        else:
            cfg.input_size = cfg.word_dim

        self.embedding = Embedding(cfg)
        self.bilstm = RNN(cfg)
        self.fc = nn.Linear(cfg.hidden_size, cfg.num_attributes)
        self.dropout = nn.Dropout(cfg.dropout)
Ejemplo n.º 7
0
    def __init__(self):
        super().__init__()

        self.embedding = Embedding(3, 128)

        self.sa1 = SA(128)
        self.sa2 = SA(128)
        self.sa3 = SA(128)
        self.sa4 = SA(128)

        self.linear = nn.Sequential(
            nn.Conv1d(512, 1024, kernel_size=1, bias=False),
            nn.BatchNorm1d(1024),
            nn.LeakyReLU(negative_slope=0.2)
        )
Ejemplo n.º 8
0
    def __init__(self,
                 space_dim=2,
                 embed_hidden=128,
                 enc_stacks=3,
                 ff_hidden=512,
                 enc_heads=16,
                 query_hidden=360,
                 att_hidden=256,
                 crit_hidden=256,
                 n_history=3,
                 p_dropout=0.1):
        """Agent, made of an encoder + decoder for the actor part, and a critic
        part.

        Args:
            space_dim (int, optional): Dimension for the cities coordinates.
                Defaults to 2.
            embed_hidden (int, optional): Embeddings hidden size. Defaults to 128.
            enc_stacks (int, optional): Number of encoder layers. Defaults to 3.
            ff_hidden (int, optional): Hidden size for the FF part of the encoder.
                Defaults to 512.
            enc_heads (int, optional): Number of attention heads for the encoder.
                Defaults to 16.
            query_hidden (int, optional): Query hidden size. Defaults to 360.
            att_hidden (int, optional): Attention hidden size. Defaults to 256.
            crit_hidden (int, optional): Critic hidden size. Defaults to 256.
            n_history (int, optional): Size of history (memory size of the
                decoder). Defaults to 3.
            p_dropout (float, optional): Dropout rate. Defaults to 0.1.
        """
        super().__init__()

        # Actor
        self.embedding = Embedding(in_dim=space_dim, out_dim=embed_hidden)
        self.encoder = Encoder(num_layers=enc_stacks,
                               n_hidden=embed_hidden,
                               ff_hidden=ff_hidden,
                               num_heads=enc_heads,
                               p_dropout=p_dropout)
        self.decoder = Decoder(n_hidden=embed_hidden,
                               att_dim=att_hidden,
                               query_dim=query_hidden,
                               n_history=n_history)

        # Critic
        self.critic = Critic(n_hidden=embed_hidden,
                             att_hidden=att_hidden,
                             crit_hidden=crit_hidden)
Ejemplo n.º 9
0
    def __init__(self, cfg):
        super(Capsule, self).__init__()

        if cfg.dim_strategy == 'cat':
            cfg.in_channels = cfg.word_dim + 2 * cfg.pos_dim
        else:
            cfg.in_channels = cfg.word_dim

        # capsule config
        cfg.input_dim_capsule = cfg.out_channels
        cfg.num_capsule = cfg.num_relations

        self.num_relations = cfg.num_relations
        self.embedding = Embedding(cfg)
        self.cnn = CNN(cfg)
        self.capsule = CapsuleLayer(cfg)
Ejemplo n.º 10
0
 def __init__(self, vocab, embed_dim=512, hidden_size=512, 
     num_layers=1, dropout_in=0.1, dropout_out=0.1, 
     bidirectional = True, pretrained_embed = None):
     super(LSTMencoder, self).__init__()
     self.vocab  = vocab
     self.embed_dim = embed_dim
     self.hidden_size = hidden_size
     self.num_layers = num_layers
     self.dropout_in = dropout_in
     self.dropout_out = dropout_out
     self.bidirectional = bidirectional
     if pretrained_embed is not None:
         self.embed_tokens = pretrained_embed
     else:
         self.embed_tokens = Embedding(vocab.size, embed_dim, vocab.padding_idx)
     self.lstm = LSTM(
         input_size=embed_dim,
         hidden_size=hidden_size,
         num_layers=num_layers,
         dropout=self.dropout_out if num_layers > 1 else 0.,
         bidirectional=bidirectional
     )
Ejemplo n.º 11
0
    def __init__(self,
                 vocab,
                 embed_dim=512,
                 hidden_size=512,
                 num_layers=1,
                 dropout_in=0.1,
                 dropout_out=0.1,
                 encoder_hidden_size=512,
                 pretrained_embed=None,
                 input_feed=False):
        super(LSTMdecoder, self).__init__()
        self.embed_dim = embed_dim
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.dropout_in = dropout_in
        self.dropout_out = dropout_out
        self.input_feed = input_feed
        if pretrained_embed is not None:
            self.embed_tokens = pretrained_embed
        else:
            self.embed_tokens = Embedding(vocab.size, embed_dim,
                                          vocab.padding_idx)

        self.lstm = LSTM(
            input_size=embed_dim + (hidden_size if self.input_feed else 0),
            hidden_size=hidden_size,
            num_layers=num_layers,
            dropout=self.dropout_out if num_layers > 1 else 0.,
        )
        self.attention_src = GeneralAttention(hidden_size, encoder_hidden_size,
                                              encoder_hidden_size)
        self.proj_with_src = Linear(encoder_hidden_size + hidden_size,
                                    hidden_size)
        self.attention_ske = GeneralAttention(hidden_size, hidden_size,
                                              hidden_size)
        self.gate_with_ske = Linear(2 * hidden_size, hidden_size)
Ejemplo n.º 12
0
def test_Embedding_cat():
    embed = Embedding(config)
    feature = embed((x, x_pos))
    dim = config.word_dim + config.pos_dim

    assert feature.shape == torch.Size((3, 5, dim))
Ejemplo n.º 13
0
 def init_model(dim, normfac, classnums, embeddims, N, max_state_dur,
                output_initial_bias, device):
     incode_embedding = Embedding(classnums, embeddims, device)
     model = Model(dim, normfac, incode_embedding, N, max_state_dur,
                   output_initial_bias, device)
     return model