Ejemplo n.º 1
0
def process_text(body, origin_domain, sha):
    extract_urls = ExtractURL(body, origin_domain, sha)
    suspicious_urls = set(extract_urls.processing())
    indicators = extract_urls.indicators
    tok = Tokenizer(body, sha)
    passwordlist = tok.processing()
    return indicators, list(suspicious_urls), passwordlist
Ejemplo n.º 2
0
def convert_examples_to_features(examples: List[CoupletExample], tokenizer: Tokenizer):
    features = []
    for example in tqdm(examples, desc="creating features"):
        seq_ids = tokenizer.convert_tokens_to_ids(example.seq)
        tag_ids = tokenizer.convert_tokens_to_ids(example.tag)
        features.append(CoupletFeatures(seq_ids, tag_ids))
    return features
Ejemplo n.º 3
0
def predict_demos(model, tokenizer: Tokenizer):
    demos = [
        "马齿草焉无马齿", "天古天今,地中地外,古今中外存天地", "笑取琴书温旧梦", "日里千人拱手划船,齐歌狂吼川江号子",
        "我有诗情堪纵酒", "我以真诚溶冷血", "三世业岐黄,妙手回春人共赞"
    ]
    sents = [
        torch.tensor(tokenizer.encode(sent)).unsqueeze(0) for sent in demos
    ]
    model.eval()
    device = next(model.parameters()).device
    for i, sent in enumerate(sents):
        sent = sent.to(device)
        with torch.no_grad():
            logits = model(sent).squeeze(0)
        pred = logits.argmax(dim=-1).tolist()
        pred = tokenizer.decode(pred)
        logger.info(f"上联:{demos[i]}。 预测的下联:{pred}")
Ejemplo n.º 4
0
def run():
    args = get_args()
    fdir = Path(args.dir)
    tb = SummaryWriter(args.logdir)  # 对啦,tensorboard画图的
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
    output_dir = Path(args.output)
    output_dir.mkdir(exist_ok=True, parents=True)
    logger.info(args)
    logger.info(f"loading vocab...")
    tokenizer = Tokenizer.from_pretrained(fdir / 'vocab.pkl')
    logger.info(f"loading dataset...")
    train_dataset = torch.load(fdir / 'train.pkl')
    test_dataset = torch.load(fdir / 'test.pkl')
    train_loader = DataLoader(train_dataset,
                              batch_size=args.batch_size,
                              shuffle=True)
    test_loader = DataLoader(test_dataset, batch_size=args.batch_size)
    logger.info(f"initializing model...")
    model = init_model_by_key(args, tokenizer)
    model.to(device)
    loss_function = nn.CrossEntropyLoss(ignore_index=tokenizer.pad_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    if args.fp16:
        try:
            from apex import amp  # 实现不同程度的混合精度加速,提升pytorch的训练速度
            amp.register_half_function(
                torch, 'einsum'
            )  # 某些不常用的函数,在使用前需要注册;某些函数(如einsum)暂不支持FP16加速,建议不要用的太heavy
            model, optimizer = amp.initialize(model,
                                              optimizer,
                                              opt_level=args.fp16_opt_level)
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
    if torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(
        optimizer, mode='min')  # 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能。
    logger.info(f"num gpu: {torch.cuda.device_count()}")
    global_step = 0
    for epoch in range(args.epochs):
        logger.info(f"***** Epoch {epoch} *****")
        model.train()
        t1 = time.time()
        accu_loss = 0.0
        for step, batch in enumerate(train_loader):
            optimizer.zero_grad()
            batch = tuple(t.to(device) for t in batch)
            input_ids, masks, lens, target_ids = batch
            logits = model(input_ids, masks)
            loss = loss_function(logits.view(-1, tokenizer.vocab_size),
                                 target_ids.view(-1))
            if torch.cuda.device_count() > 1:
                loss = loss.mean()
            accu_loss += loss.item()
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)

            optimizer.step()
            if step % 100 == 0:
                tb.add_scalar('loss', loss.item(),
                              global_step)  # tensorboard画图用的
                logger.info(
                    f"[epoch]: {epoch}, [batch]: {step}, [loss]: {loss.item()}"
                )
            global_step += 1
        scheduler.step(accu_loss)
        t2 = time.time()
        logger.info(
            f"epoch time: {t2-t1:.5}, accumulation loss: {accu_loss:.6}")
        if (epoch + 1) % args.test_epoch == 0:
            predict_demos(model, tokenizer)
            bleu, rl = auto_evaluate(model, test_loader, tokenizer)
            logger.info(f"BLEU: {round(bleu, 9)}, Rouge-L: {round(rl, 8)}")
        if (epoch + 1) % args.save_epoch == 0:
            filename = f"{model.__class__.__name__}_{epoch + 1}.bin"
            filename = output_dir / filename
            save_model(filename, model, args, tokenizer)
Ejemplo n.º 5
0
    dataset = TensorDataset(*tensors)
    return dataset


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--input", default='couplet', type=str)
    parser.add_argument("--output", default='dataset', type=str)
    parser.add_argument("--max_seq_len", default=32, type=int)
    args = parser.parse_args()

    input_dir = Path(args.input)
    output_dir = Path(args.output)
    output_dir.parent.mkdir(exist_ok=True, parents=True)
    vocab_file = input_dir / "vocabs"

    logger.info("creating tokenizer...")
    tokenizer = Tokenizer()
    tokenizer.build(vocab_file)

    logger.info("creating dataset...")
    train_dataset = create_dataset(input_dir / "train", tokenizer,
                                   args.max_seq_len)
    test_dataset = create_dataset(input_dir / "test", tokenizer,
                                  args.max_seq_len)

    logger.info("saving dataset...")
    tokenizer.save_pretrained(output_dir / "vocab.pkl")
    torch.save(train_dataset, output_dir / "train.pkl")
    torch.save(test_dataset, output_dir / "test.pkl")
Ejemplo n.º 6
0
    examine_headers = ExamineHeaders(msg)
    origin_ip, rbl_listed, rbl_comment, mailfrom, mailto, origin_domain = examine_headers.processing()
    indicators += examine_headers.indicators

    attachements = []
    payload_results = []
    suspicious_urls = set()

    if msg.content_type.is_multipart():
        for p in msg.walk():
            extract_urls = ExtractURL(p.body, origin_domain)
            suspicious_urls |= set(extract_urls.processing())
            indicators += extract_urls.indicators
            if p.is_body():
                content = p.body
                tok = Tokenizer(content)
                passwordlist += tok.processing()
                # TODO process that string
            elif p.is_attachment() or p.is_inline():
                content_type = p.detected_content_type
                filename = p.detected_file_name
                attachements.append((filename, content_type))
                if filename is not None and len(filename) > 0:
                    passwordlist.append(filename)
                    prefix, suffix = os.path.splitext(filename)
                    passwordlist.append(prefix)
                r, r_indicators = process_payload(filename, p.body, content_type, origin_domain, passwordlist)
                indicators += r_indicators
                payload_results.append(r)
            else:
                # What do we do there? Is it possible?
Ejemplo n.º 7
0
    origin_ip, rbl_listed, rbl_comment, mailfrom, mailto, origin_domain = examine_headers.processing(
    )
    indicators += examine_headers.indicators

    attachements = []
    payload_results = []
    suspicious_urls = set()

    if msg.content_type.is_multipart():
        for p in msg.walk():
            extract_urls = ExtractURL(p.body, origin_domain)
            suspicious_urls |= set(extract_urls.processing())
            indicators += extract_urls.indicators
            if p.is_body():
                content = p.body
                tok = Tokenizer(content)
                passwordlist += tok.processing()
                # TODO process that string
            elif p.is_attachment() or p.is_inline():
                content_type = p.detected_content_type
                filename = p.detected_file_name
                attachements.append((filename, content_type))
                if filename is not None and len(filename) > 0:
                    passwordlist.append(filename)
                    prefix, suffix = os.path.splitext(filename)
                    passwordlist.append(prefix)
                r, r_indicators = process_payload(filename, p.body,
                                                  content_type, origin_domain,
                                                  passwordlist)
                indicators += r_indicators
                payload_results.append(r)