Ejemplo n.º 1
0
def trackAlpha_vsNc(x_Nc):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackAlphaAfterDSB_vsNc'

    with open('results/' + filename + '.csv', 'w') as csvfile:

        first_time = True

        for i, Nc in enumerate(x_Nc):

            polymerParams['Nc'] = Nc
            p0 = RCLPolymer(**polymerParams)

            # Waiting time will be relaxation time (Nc dependant)
            simulationParams['waitingSteps'] = np.ceil(
                p0.relaxTime(simulationParams['diffusionConstant']) /
                simulationParams['dt_relax']).astype(int)
            simulationParams['VE_waitingSteps'] = np.ceil(
                p0.relaxTime(simulationParams['diffusionConstant']) /
                simulationParams['dt']).astype(int)

            results = {**polymerParams, **simulationParams}
            mc = Experiment(p0, results, simulationParams, trackAlpha)

            if first_time:
                fieldnames = ['experimentSetID'] + list(mc.results)
                writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                writer.writeheader()
                first_time = False
                os.makedirs('results/' + filename + '_figures')

            writer.writerow({**{'experimentSetID': str(i)}, **mc.results})

            # Save MSD raw data
            with open(
                    'results/' + filename + '_figures/nc' + str(Nc) +
                    'msd_data.csv', 'w') as rawdata:
                rowwriter = csv.writer(rawdata)
                for msd_data in mc.results['monomersMSD'].transpose():
                    rowwriter.writerow(msd_data)
            # Save MSD curve
            plt.figure()
            plt.plot(mc.results['monomersMSD'].transpose())
            legend = ['_o'] * polymerParams['numMonomers']
            legend[simulationParams['A1']] = 'a1'
            legend[simulationParams['A1'] + 1] = 'a2'
            legend[simulationParams['B1']] = 'b1'
            legend[simulationParams['B1'] + 1] = 'b2'
            legend = tuple(legend)
            plt.legend(legend)
            plt.savefig('results/' + filename + '_figures/nc' + str(Nc) +
                        '.png')
            plt.close()
Ejemplo n.º 2
0
def proba_v_gNc(polymerParams, simulationParams, x_g, x_Nc, errorbars=False):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_proba-v_gNc_withVE' + '.csv'

    first_time = True
    N = polymerParams['numMonomers']

    with open('results/' + filename, 'w') as csvfile:

        for i, g in enumerate(x_g):

            print("Simulation for g = %s " % g)
            simulationParams['genomicDistance'] = g

            for j, nc in enumerate(x_Nc):
                print("Simulation for Nc = %s " % nc)
                polymerParams['Nc'] = nc

                ### ADAPTIVE ENCOUNTER DISTANCE
                xi = 2 * (nc + simulationParams['Nc_inDamageFoci']) / (
                    (N - 1) * (N - 2))
                #                scaleFactor = np.sqrt( (1-xi0)*np.sqrt(xi0) / ((1-xi)*np.s1qrt(xi)) )
                simulationParams['encounterDistance'] = adaptiveEpsilon(
                    xi, N, polymerParams['b'])

                #                simulationParams['excludedVolumeCutOff'] = 3*simulationParams['encounterDistance']
                ### ADAPTIVE dt
                simulationParams['dt'] = np.round(
                    (0.2 * simulationParams['encounterDistance'])**2 /
                    (2 * simulationParams['diffusionConstant']),
                    decimals=4) - 0.0001

                simulationParams['numMaxSteps'] = int(60 //
                                                      simulationParams['dt'])

                print("ε = %s" % (simulationParams['encounterDistance']))

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams,
                                "EncounterSimulation")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })
Ejemplo n.º 3
0
def stats_vs_Nb(polymerParams, simulationParams, x_Nb, x_g):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_StatsVsNb' + '.csv'

    first_time = True

    with open('results/' + filename, 'w') as csvfile:

        for i, Nb in enumerate(x_Nb):

            print("Simulation for Nb = %s breaks " % Nb)
            simulationParams['Nb'] = Nb

            for j, g in enumerate(x_g):

                simulationParams['genomicDistance'] = g
                print("and g = %s . " % g)

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}

                mc = Experiment(p0, results, simulationParams,
                                "EncounterSimulation")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + "_" + str(j)
                    },
                    **mc.results
                })
Ejemplo n.º 4
0
def trackAlpha_v_gNc(polymerParams, simulationParams, x_g, x_Nc):
    date = strftime("%Y_%m_%d_%H_%M")
    filename = date + '_trackMSD' + '.csv'

    first_time = True
    N = polymerParams['numMonomers']

    with open('results/' + filename, 'w') as csvfile:

        for i, g in enumerate(x_g):

            print("Simulation for g = %s " % g)
            simulationParams['genomicDistance'] = g

            for j, nc in enumerate(x_Nc):
                print("Simulation for Nc = %s " % nc)
                polymerParams['Nc'] = nc

                p0 = RCLPolymer(**polymerParams)

                simulationParams['waitingSteps'] = np.ceil(
                    p0.relaxTime(simulationParams['diffusionConstant']) /
                    simulationParams['dt_relax']).astype(int)

                results = {**polymerParams, **simulationParams}
                mc = Experiment(p0, results, simulationParams, "trackMSD")

                if first_time:
                    fieldnames = ['experimentSetID'] + list(mc.results)
                    writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
                    writer.writeheader()
                    first_time = False
                writer.writerow({
                    **{
                        'experimentSetID': str(i) + '_' + str(j)
                    },
                    **mc.results
                })