def train_model(self, ensembler=False):
     params = {}
     if ensembler:
         params = get_model_params(ensembler, 'catboost')
     else:
         params = get_model_params()
     self.model = CatBoostClassifier(iterations=params['iterations'],
                                     learning_rate=params['learning_rate'],
                                     depth=params['depth'],
                                     l2_leaf_reg=params['l2_leaf_reg'],
                                     od_type="Iter",
                                     verbose=0)
     if not (ensembler):
         self.model.fit(self.X, self.y)
     return self.model
Ejemplo n.º 2
0
 def train_model(self, ensembler):
     params = {}
     if ensembler:
         params = get_model_params(ensembler, 'rfa')
     else:
         params = get_model_params()
     self.model = RandomForestClassifier(
         n_estimators=params['n_estimators'],
         criterion=params['criterion'],
         max_features=params['max_features'],
         max_depth=params['max_depth'],
         n_jobs=-1,
         random_state=42,
         class_weight=params['class_weight'])
     self.model.fit(self.X, self.y)
     return self.model
Ejemplo n.º 3
0
 def start_preprocessing(self):
     print('\nCleaning up columns...')
     model_params = get_model_params()
     self.remake_date_cols()
     self.remake_states_lga()
     self.find_missing_val_replacements()
     self.clean_gender_col(self.preproc_args['missing']['gender'])
     self.clean_age_col(int(self.preproc_args['missing']['age']),
                        self.preproc_args['missing']['age_map'])
     self.clean_color_col(self.preproc_args['missing']['color'])
     self.clean_carmake_col(self.preproc_args['missing']['make'])
     self.clean_carcat_col(self.preproc_args['missing']['category'])
     #self.clean_car_product(self.preproc_args['missing']['product'])
     #self.clean_state_col(self.preproc_args['missing']['state'])
     #self.clean_LGA_col(self.preproc_args['missing']['lga'])
     self.clean_date_col()
     #self.remake_nopol_col()
     print('\nPlotting distribution...')
     self.plot_graph()
     print('\nApplying label encoder...')
     #self.find_feature_correlation(self.preproc_args['correlation_LB'],self.preproc_args['correlation_UB'])
     self.select_best_features(model_params['feature_k'])
     self.drop_skip_columns()
     self.encode_labels()
     return self.apply_oversampling()
Ejemplo n.º 4
0
    def train_model(self, ensembler = False):
        params = {}
        if ensembler:
            params = get_model_params(ensembler, 'lgbm')
        else:
            params = get_model_params()

        #self.X = self.X.rename(columns = lambda x: re.sub('[^A-Za-z0-9_]+','',x))
        self.model = LGBMClassifier(random_state = 42,
                class_weight=params['class_weight'],
                n_estimators = params['n_estimators'],
                learning_rate = params['learning_rate'],
                min_split_gain = params['min_split_loss'],
                num_leaves = params['num_leaves'],
                min_child_samples = params['min_child_samples'],
                min_child_weight = params['min_child_weight'])
        if not(ensembler):
            self.model.fit(self.X, self.y)
        return self.model
Ejemplo n.º 5
0
    def train_model(self):
        params = get_model_params()
        if params['kernel'] != 'linear':
            self.model = SVC(C=params['C'],
                    kernel=params['kernel'],
                    degree=params['degree'],
                    gamma=params['gamma'],
                    tol=params['tol'],
                    class_weight=params['class_weight'],
                    max_iter=-1,
                    random_state = 42)
        else:
            self.model = LinearSVC(C=params['C'],
                    loss=params['loss'],
                    penalty=params['penalty'],
                    class_weight=params['class_weight'],
                    random_state = 42,
                    max_iter = params['max_iter'],
                    dual = params['dual']
                    )

        self.model = self.model.fit(self.X,self.y)
        return self.model
Ejemplo n.º 6
0
 def __init__(self, X, y):
     self.X = X
     self.y = y
     self.model_params = get_model_params()
Ejemplo n.º 7
0
def read_args():
    args = get_model_params()
    val_args = get_validation_params()
    main(args, val_args)
Ejemplo n.º 8
0
 def setup_voting_classifier(self, models):
     params = get_model_params()
     model = VotingClassifier(estimators=models,
                              voting=params['voting_type'])
     model.fit(self.X, self.y)
     return model