Ejemplo n.º 1
0
    def test_interface_returns_same_as_cpp(self):
        """Test that the /gp/ei endpoint does the same thing as the C++ interface."""
        tolerance = 1.0e-11
        for test_case in self.gp_test_environments:
            python_domain, python_gp = test_case
            python_cov, historical_data = python_gp.get_core_data_copy()

            cpp_cov = SquareExponential(python_cov.hyperparameters)
            cpp_gp = GaussianProcess(cpp_cov, historical_data)

            points_to_evaluate = python_domain.generate_uniform_random_points_in_domain(10)

            # EI from C++
            expected_improvement_evaluator = ExpectedImprovement(cpp_gp, None)
            # TODO(GH-99): Change test case to have the right shape:
            # (num_to_evaluate, num_to_sample, dim)
            # Here we assume the shape is (num_to_evaluate, dim) so we insert an axis, making num_to_sample = 1.
            # Also might be worth testing more num_to_sample values (will require manipulating C++ RNG state).
            cpp_expected_improvement = expected_improvement_evaluator.evaluate_at_point_list(
                points_to_evaluate[:, numpy.newaxis, :]
            )

            # EI from REST
            json_payload = self._build_json_payload(
                python_domain, python_cov, historical_data, points_to_evaluate.tolist()
            )
            resp = self.testapp.post(self.endpoint, json_payload)
            resp_schema = GpEiResponse()
            resp_dict = resp_schema.deserialize(json.loads(resp.body))
            rest_expected_improvement = numpy.asarray(resp_dict.get("expected_improvement"))

            self.assert_vector_within_relative(rest_expected_improvement, cpp_expected_improvement, tolerance)
Ejemplo n.º 2
0
def gen_sample_from_qei(gp,search_domain,sgd_params,num_samples, num_mc=1e4, lhc_iter=2e4):
        
    qEI = ExpectedImprovement(gaussian_process=gp, num_mc_iterations=int(num_mc))
    optimizer = cGDOpt(search_domain, qEI, sgd_params, int(lhc_iter))
    points_to_sample = meio(optimizer, None, num_samples, use_gpu=False, which_gpu=0,
                            max_num_threads=8)
    qEI.set_current_point(points_to_sample[0])
            
    return points_to_sample, qEI.compute_expected_improvement()
Ejemplo n.º 3
0
    def gp_ei_view(self):
        """Endpoint for gp_ei POST requests.

        .. http:post:: /gp/ei

           Calculates the Expected Improvement (EI) of a set of points, given historical data.

           :input: :class:`moe.views.schemas.GpEiRequest`
           :output: :class:`moe.views.schemas.GpEiResponse`

           :status 201: returns a response
           :status 500: server error

        """
        params = self.get_params_from_request()

        # TODO(GH-99): Change REST interface to give points_to_evaluate with shape
        # (num_to_evaluate, num_to_sample, dim)
        # Here we assume the shape is (num_to_evaluate, dim) so we insert an axis, making num_to_sample = 1.
        points_to_evaluate = numpy.array(params.get('points_to_evaluate'))[:, numpy.newaxis, :]
        points_being_sampled = numpy.array(params.get('points_being_sampled'))
        num_mc_iterations = params.get('mc_iterations')
        max_num_threads = params.get('max_num_threads')
        gaussian_process = _make_gp_from_params(params)

        expected_improvement_evaluator = ExpectedImprovement(
                gaussian_process,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
                )

        with timing_context(EI_COMPUTATION_TIMING_LABEL):
            expected_improvement = expected_improvement_evaluator.evaluate_at_point_list(
                points_to_evaluate,
                max_num_threads=max_num_threads,
            )

        return self.form_response({
                'endpoint': self._route_name,
                'expected_improvement': expected_improvement.tolist(),
                })
Ejemplo n.º 4
0
    def gp_ei_view(self):
        """Endpoint for gp_ei POST requests.

        .. http:post:: /gp/ei

           Calculates the Expected Improvement (EI) of a set of points, given historical data.

           :input: :class:`moe.views.schemas.rest.GpEiRequest`
           :output: :class:`moe.views.schemas.rest.GpEiResponse`

           :status 200: returns a response
           :status 500: server error

        """
        params = self.get_params_from_request()

        # TODO(GH-99): Change REST interface to give points_to_evaluate with shape
        # (num_to_evaluate, num_to_sample, dim)
        # Here we assume the shape is (num_to_evaluate, dim) so we insert an axis, making num_to_sample = 1.
        points_to_evaluate = numpy.array(params.get('points_to_evaluate'))[:, numpy.newaxis, :]
        points_being_sampled = numpy.array(params.get('points_being_sampled'))
        num_mc_iterations = params.get('mc_iterations')
        max_num_threads = params.get('max_num_threads')
        gaussian_process = _make_gp_from_params(params)

        expected_improvement_evaluator = ExpectedImprovement(
                gaussian_process,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
                )

        with timing_context(EI_COMPUTATION_TIMING_LABEL):
            expected_improvement = expected_improvement_evaluator.evaluate_at_point_list(
                points_to_evaluate,
                max_num_threads=max_num_threads,
            )

        return self.form_response({
                'endpoint': self._route_name,
                'expected_improvement': expected_improvement.tolist(),
                })
Ejemplo n.º 5
0
    def test_interface_returns_same_as_cpp(self):
        """Test that the /gp/ei endpoint does the same thing as the C++ interface."""
        tolerance = 1.0e-11
        for test_case in self.gp_test_environments:
            python_domain, python_gp = test_case
            python_cov, historical_data = python_gp.get_core_data_copy()

            cpp_cov = SquareExponential(python_cov.hyperparameters)
            cpp_gp = GaussianProcess(cpp_cov, historical_data)

            points_to_evaluate = python_domain.generate_uniform_random_points_in_domain(
                10)

            # EI from C++
            expected_improvement_evaluator = ExpectedImprovement(
                cpp_gp,
                None,
            )
            # TODO(GH-99): Change test case to have the right shape:
            # (num_to_evaluate, num_to_sample, dim)
            # Here we assume the shape is (num_to_evaluate, dim) so we insert an axis, making num_to_sample = 1.
            # Also might be worth testing more num_to_sample values (will require manipulating C++ RNG state).
            cpp_expected_improvement = expected_improvement_evaluator.evaluate_at_point_list(
                points_to_evaluate[:, numpy.newaxis, :], )

            # EI from REST
            json_payload = self._build_json_payload(
                python_domain, python_cov, historical_data,
                points_to_evaluate.tolist())
            resp = self.testapp.post(self.endpoint, json_payload)
            resp_schema = GpEiResponse()
            resp_dict = resp_schema.deserialize(json.loads(resp.body))
            rest_expected_improvement = numpy.asarray(
                resp_dict.get('expected_improvement'))

            self.assert_vector_within_relative(
                rest_expected_improvement,
                cpp_expected_improvement,
                tolerance,
            )
Ejemplo n.º 6
0
    def compute_next_points_to_sample_response(self, params, optimizer_method_name, route_name, *args, **kwargs):
        """Compute the next points to sample (and their expected improvement) using optimizer_method_name from params in the request.

        .. Warning:: Attempting to find ``num_to_sample`` optimal points with
          ``num_sampled < num_to_sample`` historical points sampled can cause matrix issues under
          some conditions. Try requesting ``num_to_sample < num_sampled`` points for better
          performance. To bootstrap more points try sampling at random, or from a grid.

        :param request_params: the deserialized REST request, containing ei_optimizer_parameters and gp_historical_info
        :type request_params: a deserialized self.request_schema object as a dict
        :param optimizer_method_name: the optimization method to use
        :type optimizer_method_name: string in :const:`moe.views.constant.NEXT_POINTS_OPTIMIZER_METHOD_NAMES`
        :param route_name: name of the route being called
        :type route_name: string in :const:`moe.views.constant.ALL_REST_ROUTES_ROUTE_NAME_TO_ENDPOINT`
        :param ``*args``: extra args to be passed to optimization method
        :param ``**kwargs``: extra kwargs to be passed to optimization method

        """
        points_being_sampled = numpy.array(params.get('points_being_sampled'))
        num_to_sample = params.get('num_to_sample')
        num_mc_iterations = params.get('mc_iterations')
        max_num_threads = params.get('max_num_threads')

        gaussian_process = _make_gp_from_params(params)

        expected_improvement_evaluator = ExpectedImprovement(
                gaussian_process,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
                )

        ei_opt_status = {}
        # TODO(GH-89): Make the optimal_learning library handle this case 'organically' with
        # reasonable default behavior and remove hacks like this one.
        if gaussian_process.num_sampled == 0:
            # If there is no initial data we bootstrap with random points
            py_domain = _make_domain_from_params(params, python_version=True)
            next_points = py_domain.generate_uniform_random_points_in_domain(num_to_sample)
            ei_opt_status['found_update'] = True
        else:
            # Calculate the next best points to sample given the historical data
            domain = _make_domain_from_params(params)

            optimizer_class, optimizer_parameters, num_random_samples = _make_optimizer_parameters_from_params(params)

            expected_improvement_optimizer = optimizer_class(
                    domain,
                    expected_improvement_evaluator,
                    optimizer_parameters,
                    num_random_samples=num_random_samples,
                    )

            opt_method = getattr(moe.optimal_learning.python.cpp_wrappers.expected_improvement, optimizer_method_name)

            with timing_context(EPI_OPTIMIZATION_TIMING_LABEL):
                next_points = opt_method(
                    expected_improvement_optimizer,
                    optimizer_parameters.num_multistarts,
                    num_to_sample,
                    max_num_threads=max_num_threads,
                    status=ei_opt_status,
                    *args,
                    **kwargs
                )

        # TODO(GH-285): Use analytic q-EI here
        # TODO(GH-314): Need to resolve poential issue with NaNs before using q-EI here
        # It may be sufficient to check found_update == False in ei_opt_status
        # and then use q-EI, else set EI = 0.
        expected_improvement_evaluator.current_point = next_points
        # The C++ may fail to compute EI with some ``next_points`` inputs (e.g.,
        # ``points_to_sample`` and ``points_begin_sampled`` are too close
        # together or too close to ``points_sampled``). We catch the exception when this happens
        # and attempt a more numerically robust option.
        try:
            expected_improvement = expected_improvement_evaluator.compute_expected_improvement()
        except Exception as exception:
            self.log.info('EI computation failed, probably b/c GP-variance matrix is singular. Error: {0:s}'.format(exception))

            # ``_compute_expected_improvement_monte_carlo`` in
            # :class:`moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement`
            # has a more reliable (but very expensive) way to deal with singular variance matrices.
            python_ei_eval = PythonExpectedImprovement(
                expected_improvement_evaluator._gaussian_process,
                points_to_sample=next_points,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
            )
            expected_improvement = python_ei_eval.compute_expected_improvement(force_monte_carlo=True)

        return self.form_response({
                'endpoint': route_name,
                'points_to_sample': next_points.tolist(),
                'status': {
                    'expected_improvement': expected_improvement,
                    'optimizer_success': ei_opt_status,
                    },
                })
Ejemplo n.º 7
0
    def compute_next_points_to_sample_response(self, params,
                                               optimizer_method_name,
                                               route_name, *args, **kwargs):
        """Compute the next points to sample (and their expected improvement) using optimizer_method_name from params in the request.

        .. Warning:: Attempting to find ``num_to_sample`` optimal points with
          ``num_sampled < num_to_sample`` historical points sampled can cause matrix issues under
          some conditions. Try requesting ``num_to_sample < num_sampled`` points for better
          performance. To bootstrap more points try sampling at random, or from a grid.

        :param request_params: the deserialized REST request, containing ei_optimizer_parameters and gp_historical_info
        :type request_params: a deserialized self.request_schema object as a dict
        :param optimizer_method_name: the optimization method to use
        :type optimizer_method_name: string in :const:`moe.views.constant.NEXT_POINTS_OPTIMIZER_METHOD_NAMES`
        :param route_name: name of the route being called
        :type route_name: string in :const:`moe.views.constant.ALL_REST_ROUTES_ROUTE_NAME_TO_ENDPOINT`
        :param ``*args``: extra args to be passed to optimization method
        :param ``**kwargs``: extra kwargs to be passed to optimization method

        """
        points_being_sampled = numpy.array(params.get('points_being_sampled'))
        num_to_sample = params.get('num_to_sample')
        num_mc_iterations = params.get('mc_iterations')
        max_num_threads = params.get('max_num_threads')

        gaussian_process = _make_gp_from_params(params)

        ei_opt_status = {}
        # TODO(GH-89): Make the optimal_learning library handle this case 'organically' with
        # reasonable default behavior and remove hacks like this one.
        if gaussian_process.num_sampled == 0:
            # If there is no initial data we bootstrap with random points
            py_domain = _make_domain_from_params(params, python_version=True)
            next_points = py_domain.generate_uniform_random_points_in_domain(
                num_to_sample)
            ei_opt_status['found_update'] = True
            expected_improvement_evaluator = PythonExpectedImprovement(
                gaussian_process,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
            )
        else:
            # Calculate the next best points to sample given the historical data

            optimizer_class, optimizer_parameters, num_random_samples = _make_optimizer_parameters_from_params(
                params)

            if optimizer_class == python_optimization.LBFGSBOptimizer:
                domain = RepeatedDomain(
                    num_to_sample,
                    _make_domain_from_params(params, python_version=True))
                expected_improvement_evaluator = PythonExpectedImprovement(
                    gaussian_process,
                    points_being_sampled=points_being_sampled,
                    num_mc_iterations=num_mc_iterations,
                    mvndst_parameters=_make_mvndst_parameters_from_params(
                        params))

                opt_method = getattr(
                    moe.optimal_learning.python.python_version.
                    expected_improvement, optimizer_method_name)
            else:
                domain = _make_domain_from_params(params, python_version=False)
                expected_improvement_evaluator = ExpectedImprovement(
                    gaussian_process,
                    points_being_sampled=points_being_sampled,
                    num_mc_iterations=num_mc_iterations,
                )

                opt_method = getattr(
                    moe.optimal_learning.python.cpp_wrappers.
                    expected_improvement, optimizer_method_name)

            expected_improvement_optimizer = optimizer_class(
                domain,
                expected_improvement_evaluator,
                optimizer_parameters,
                num_random_samples=num_random_samples,
            )

            with timing_context(EPI_OPTIMIZATION_TIMING_LABEL):
                next_points = opt_method(
                    expected_improvement_optimizer,
                    params.get('optimizer_info')
                    ['num_multistarts'],  # optimizer_parameters.num_multistarts,
                    num_to_sample,
                    max_num_threads=max_num_threads,
                    status=ei_opt_status,
                    *args,
                    **kwargs)

        # TODO(GH-285): Use analytic q-EI here
        # TODO(GH-314): Need to resolve poential issue with NaNs before using q-EI here
        # It may be sufficient to check found_update == False in ei_opt_status
        # and then use q-EI, else set EI = 0.
        expected_improvement_evaluator.current_point = next_points
        # The C++ may fail to compute EI with some ``next_points`` inputs (e.g.,
        # ``points_to_sample`` and ``points_begin_sampled`` are too close
        # together or too close to ``points_sampled``). We catch the exception when this happens
        # and attempt a more numerically robust option.
        try:
            expected_improvement = expected_improvement_evaluator.compute_expected_improvement(
            )
        except Exception as exception:
            self.log.info(
                'EI computation failed, probably b/c GP-variance matrix is singular. Error: {0:s}'
                .format(exception))

            # ``_compute_expected_improvement_monte_carlo`` in
            # :class:`moe.optimal_learning.python.python_version.expected_improvement.ExpectedImprovement`
            # has a more reliable (but very expensive) way to deal with singular variance matrices.
            python_ei_eval = PythonExpectedImprovement(
                expected_improvement_evaluator._gaussian_process,
                points_to_sample=next_points,
                points_being_sampled=points_being_sampled,
                num_mc_iterations=num_mc_iterations,
            )
            expected_improvement = python_ei_eval.compute_expected_improvement(
                force_monte_carlo=True)

        return self.form_response({
            'endpoint': route_name,
            'points_to_sample': next_points.tolist(),
            'status': {
                'expected_improvement': expected_improvement,
                'optimizer_success': ei_opt_status,
            },
        })