Ejemplo n.º 1
0
 def test_shape(self, input_param, input_shape, expected_shape):
     device = "cuda" if torch.cuda.is_available() else "cpu"
     print(input_param)
     net = BasicUNet(**input_param).to(device)
     with eval_mode(net):
         result = net(torch.randn(input_shape).to(device))
     self.assertEqual(result.shape, expected_shape)
Ejemplo n.º 2
0
def get_network(network, channels, dimensions):
    if network == 'unet':
        if channels == 16:
            features = (16, 32, 64, 128, 256)
        elif channels == 32:
            features = (32, 64, 128, 256, 512)
        else:
            features = (64, 128, 256, 512, 1024)
        logging.info('Using Unet with features: {}'.format(features))
        network = UNet(dimensions=dimensions,
                       in_channels=3,
                       out_channels=1,
                       channels=features,
                       strides=[2, 2, 2, 2],
                       norm=Norm.BATCH)
    else:
        if channels == 16:
            features = (16, 32, 64, 128, 256, 16)
        elif channels == 32:
            features = (32, 64, 128, 256, 512, 32)
        else:
            features = (64, 128, 256, 512, 1024, 64)
        logging.info('Using BasicUnet with features: {}'.format(features))
        network = BasicUNet(dimensions=dimensions,
                            in_channels=3,
                            out_channels=1,
                            features=features)
    return network
Ejemplo n.º 3
0
    def init(self, name: str, model_dir: str, conf: Dict[str, str],
             planner: Any, **kwargs):
        super().init(name, model_dir, conf, planner, **kwargs)

        # Labels
        self.labels = ["Nuclei"]
        self.label_colors = {"Nuclei": (0, 255, 255)}

        # Model Files
        self.path = [
            os.path.join(self.model_dir,
                         f"pretrained_{name}.pt"),  # pretrained
            os.path.join(self.model_dir, f"{name}.pt"),  # published
        ]

        # Download PreTrained Model
        if strtobool(self.conf.get("use_pretrained_model", "true")):
            url = f"{self.PRE_TRAINED_PATH}/pathology_deepedit_nuclei.pt"
            download_file(url, self.path[0])

        # Network
        self.network = BasicUNet(
            spatial_dims=2,
            in_channels=5,
            out_channels=1,
            features=(32, 64, 128, 256, 512, 32),
        )
Ejemplo n.º 4
0
    def init(self, name: str, model_dir: str, conf: Dict[str, str],
             planner: Any, **kwargs):
        super().init(name, model_dir, conf, planner, **kwargs)

        # Labels
        self.labels = [
            "spleen",
            "right kidney",
            "left kidney",
            "gallbladder",
            "esophagus",
            "liver",
            "stomach",
            "aorta",
            "inferior vena cava",
            "portal vein and splenic vein",
            "pancreas",
            "right adrenal gland",
            "left adrenal gland",
        ]

        # Model Files
        self.path = [
            os.path.join(self.model_dir,
                         f"pretrained_{name}.pt"),  # pretrained
            os.path.join(self.model_dir, f"{name}.pt"),  # published
        ]

        # Download PreTrained Model
        if strtobool(self.conf.get("use_pretrained_model", "true")):
            url = f"{self.NGC_PATH}/clara_pt_deepgrow_3d_annotation/versions/1/files/models/model.pt"
            download_file(url, self.path[0])

        # Network
        self.network = BasicUNet(
            spatial_dims=3,
            in_channels=3,
            out_channels=1,
            features=(32, 64, 128, 256, 512, 32),
        )
Ejemplo n.º 5
0
    def init(self, name: str, model_dir: str, conf: Dict[str, str],
             planner: Any, **kwargs):
        super().init(name, model_dir, conf, planner, **kwargs)

        # Labels
        self.labels = {
            "Neoplastic cells": 1,
            "Inflammatory": 2,
            "Connective/Soft tissue cells": 3,
            "Dead Cells": 4,
            "Epithelial": 5,
        }
        self.label_colors = {
            "Neoplastic cells": (255, 0, 0),
            "Inflammatory": (255, 255, 0),
            "Connective/Soft tissue cells": (0, 255, 0),
            "Dead Cells": (0, 0, 0),
            "Epithelial": (0, 0, 255),
        }

        # Model Files
        self.path = [
            os.path.join(self.model_dir,
                         f"pretrained_{name}.pt"),  # pretrained
            os.path.join(self.model_dir, f"{name}.pt"),  # published
        ]

        # Download PreTrained Model
        if strtobool(self.conf.get("use_pretrained_model", "true")):
            url = f"{self.PRE_TRAINED_PATH}/pathology_segmentation_nuclei.pt"
            download_file(url, self.path[0])

        # Network
        self.network = BasicUNet(
            spatial_dims=2,
            in_channels=3,
            out_channels=6,
            features=(32, 64, 128, 256, 512, 32),
        )
def run_test(net_name="basicunet",
             batch_size=64,
             train_steps=100,
             device="cuda:0"):
    class _TestBatch(Dataset):
        def __getitem__(self, _unused_id):
            im, seg = create_test_image_2d(128,
                                           128,
                                           noise_max=1,
                                           num_objs=4,
                                           num_seg_classes=1)
            return im[None], seg[None].astype(np.float32)

        def __len__(self):
            return train_steps

    if net_name == "basicunet":
        net = BasicUNet(spatial_dims=2,
                        in_channels=1,
                        out_channels=1,
                        features=(4, 8, 8, 16, 16, 32))
    elif net_name == "unet":
        net = UNet(spatial_dims=2,
                   in_channels=1,
                   out_channels=1,
                   channels=(4, 8, 16, 32),
                   strides=(2, 2, 2),
                   num_res_units=2)
    net.to(device)

    loss = DiceLoss(sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-4)
    src = DataLoader(_TestBatch(), batch_size=batch_size)

    trainer = create_supervised_trainer(net, opt, loss, device, False)

    trainer.run(src, 1)
    loss = trainer.state.output
    return loss
 def test_script(self):
     net = BasicUNet(spatial_dims=2, in_channels=1, out_channels=3)
     test_data = torch.randn(16, 1, 32, 32)
     test_script_save(net, test_data)
Ejemplo n.º 8
0
 def test_script(self):
     net = BasicUNet(dimensions=2, in_channels=1, out_channels=3)
     test_data = torch.randn(16, 1, 32, 32)
     out_orig, out_reloaded = test_script_save(net, test_data)
     assert torch.allclose(out_orig, out_reloaded)