Ejemplo n.º 1
0
 def test_random_shape(self, input_param, input_shape, expected_shape):
     for im_type in TEST_NDARRAYS_ALL:
         with self.subTest(im_type=im_type):
             cropper = RandSpatialCrop(**input_param)
             cropper.set_random_state(seed=123)
             input_data = im_type(np.random.randint(0, 2, input_shape))
             result = cropper(input_data)
             self.assertTupleEqual(result.shape, expected_shape)
def run_test(batch_size=64, train_steps=200, device=torch.device("cuda:0")):
    class _TestBatch(Dataset):
        def __init__(self, transforms):
            self.transforms = transforms

        def __getitem__(self, _unused_id):
            im, seg = create_test_image_2d(128,
                                           128,
                                           noise_max=1,
                                           num_objs=4,
                                           num_seg_classes=1)
            seed = np.random.randint(2147483647)
            self.transforms.set_random_state(seed=seed)
            im = self.transforms(im)
            self.transforms.set_random_state(seed=seed)
            seg = self.transforms(seg)
            return im, seg

        def __len__(self):
            return train_steps

    net = UNet(
        dimensions=2,
        in_channels=1,
        out_channels=1,
        channels=(4, 8, 16, 32),
        strides=(2, 2, 2),
        num_res_units=2,
    ).to(device)

    loss = DiceLoss(do_sigmoid=True)
    opt = torch.optim.Adam(net.parameters(), 1e-2)
    train_transforms = Compose([
        AddChannel(),
        ScaleIntensity(),
        RandSpatialCrop((96, 96), random_size=False),
        RandRotate90(),
        ToTensor()
    ])

    src = DataLoader(_TestBatch(train_transforms),
                     batch_size=batch_size,
                     shuffle=True)

    net.train()
    epoch_loss = 0
    step = 0
    for img, seg in src:
        step += 1
        opt.zero_grad()
        output = net(img.to(device))
        step_loss = loss(output, seg.to(device))
        step_loss.backward()
        opt.step()
        epoch_loss += step_loss.item()
    epoch_loss /= step

    return epoch_loss, step
 def test_value(self, input_param, input_data):
     for p in TEST_NDARRAYS:
         cropper = RandSpatialCrop(**input_param)
         result = cropper(p(input_data))
         roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]
         assert_allclose(result,
                         input_data[:, roi[0][0]:roi[0][1],
                                    roi[1][0]:roi[1][1]],
                         type_test=False)
Ejemplo n.º 4
0
 def test_value(self, input_param, input_data):
     for im_type in TEST_NDARRAYS_ALL:
         with self.subTest(im_type=im_type):
             cropper = RandSpatialCrop(**input_param)
             result = cropper(im_type(input_data))
             roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]
             assert_allclose(result,
                             input_data[:, roi[0][0]:roi[0][1],
                                        roi[1][0]:roi[1][1]],
                             type_test="tensor")
Ejemplo n.º 5
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_2d(128, 128, num_seg_classes=1)
        Image.fromarray(im.astype("uint8")).save(
            os.path.join(tempdir, f"img{i:d}.png"))
        Image.fromarray(seg.astype("uint8")).save(
            os.path.join(tempdir, f"seg{i:d}.png"))

    images = sorted(glob(os.path.join(tempdir, "img*.png")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.png")))
    train_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[:20], segs[:20])]
    val_files = [{
        "img": img,
        "seg": seg
    } for img, seg in zip(images[-20:], segs[-20:])]

    # define transforms for image and segmentation
    train_imtrans = Compose([
        LoadImage(image_only=True),
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
        ToTensor(),
    ])
    train_segtrans = Compose([
        LoadImage(image_only=True),
        AddChannel(),
        RandSpatialCrop((96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 1)),
        ToTensor(),
    ])
    val_imtrans = Compose([
        LoadImage(image_only=True),
        ScaleIntensity(),
        AddChannel(),
        ToTensor()
    ])
    val_segtrans = Compose(
        [LoadImage(image_only=True),
         AddChannel(), ToTensor()])

    # define array dataset, data loader
    check_ds = ArrayDataset(images, train_imtrans, segs, train_segtrans)
    check_loader = DataLoader(check_ds,
                              batch_size=10,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = ArrayDataset(images[:20], train_imtrans, segs[:20],
                            train_segtrans)
    train_loader = DataLoader(train_ds,
                              batch_size=4,
                              shuffle=True,
                              num_workers=8,
                              pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = ArrayDataset(images[-20:], val_imtrans, segs[-20:], val_segtrans)
    val_loader = DataLoader(val_ds,
                            batch_size=1,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())
    dice_metric = DiceMetric(include_background=True, reduction="mean")
    post_trans = Compose(
        [Activations(sigmoid=True),
         AsDiscrete(threshold_values=True)])
    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = monai.networks.nets.UNet(
        dimensions=2,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(10):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{10}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                metric_sum = 0.0
                metric_count = 0
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    roi_size = (96, 96)
                    sw_batch_size = 4
                    val_outputs = sliding_window_inference(
                        val_images, roi_size, sw_batch_size, model)
                    val_outputs = post_trans(val_outputs)
                    value, _ = dice_metric(y_pred=val_outputs, y=val_labels)
                    metric_count += len(value)
                    metric_sum += value.item() * len(value)
                metric = metric_sum / metric_count
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               "best_metric_model_segmentation2d_array.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}"
                    .format(epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar("val_mean_dice", metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="image")
                plot_2d_or_3d_image(val_labels,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="label")
                plot_2d_or_3d_image(val_outputs,
                                    epoch + 1,
                                    writer,
                                    index=0,
                                    tag="output")

    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
Ejemplo n.º 6
0
    TESTS.append((dict, pad_collate,
                  RandSpatialCropd("image", roi_size=[8, 7],
                                   random_size=True)))
    TESTS.append((dict, pad_collate,
                  RandRotated("image", prob=1, range_x=np.pi,
                              keep_size=False)))
    TESTS.append((dict, pad_collate,
                  RandZoomd("image",
                            prob=1,
                            min_zoom=1.1,
                            max_zoom=2.0,
                            keep_size=False)))
    TESTS.append((dict, pad_collate, RandRotate90d("image", prob=1, max_k=2)))

    TESTS.append(
        (list, pad_collate, RandSpatialCrop(roi_size=[8, 7],
                                            random_size=True)))
    TESTS.append(
        (list, pad_collate, RandRotate(prob=1, range_x=np.pi,
                                       keep_size=False)))
    TESTS.append((list, pad_collate,
                  RandZoom(prob=1, min_zoom=1.1, max_zoom=2.0,
                           keep_size=False)))
    TESTS.append((list, pad_collate, RandRotate90(prob=1, max_k=2)))


class _Dataset(torch.utils.data.Dataset):
    def __init__(self, images, labels, transforms):
        self.images = images
        self.labels = labels
        self.transforms = transforms
Ejemplo n.º 7
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print('generating synthetic data to {} (this may take a while)'.format(tempdir))
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

    images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
    segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        ToTensor()
    ])
    train_segtrans = Compose([
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        ToTensor()
    ])
    val_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        Resize((96, 96, 96)),
        ToTensor()
    ])
    val_segtrans = Compose([
        AddChannel(),
        Resize((96, 96, 96)),
        ToTensor()
    ])

    # define nifti dataset, data loader
    check_ds = NiftiDataset(images, segs, transform=train_imtrans, seg_transform=train_segtrans)
    check_loader = DataLoader(check_ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = NiftiDataset(images[:20], segs[:20], transform=train_imtrans, seg_transform=train_segtrans)
    train_loader = DataLoader(train_ds, batch_size=5, shuffle=True, num_workers=8, pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = NiftiDataset(images[-20:], segs[-20:], transform=val_imtrans, seg_transform=val_segtrans)
    val_loader = DataLoader(val_ds, batch_size=5, num_workers=8, pin_memory=torch.cuda.is_available())

    # create UNet, DiceLoss and Adam optimizer
    net = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    )
    loss = monai.losses.DiceLoss(do_sigmoid=True)
    lr = 1e-3
    opt = torch.optim.Adam(net.parameters(), lr)
    device = torch.device('cuda:0')

    # ignite trainer expects batch=(img, seg) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    trainer = create_supervised_trainer(net, opt, loss, device, False)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint('./runs/', 'net', n_saved=10, require_empty=False)
    trainer.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                              handler=checkpoint_handler,
                              to_save={'net': net, 'opt': opt})

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not a loss value
    train_stats_handler = StatsHandler(name='trainer')
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler()
    train_tensorboard_stats_handler.attach(trainer)

    validation_every_n_epochs = 1
    # Set parameters for validation
    metric_name = 'Mean_Dice'
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: MeanDice(add_sigmoid=True, to_onehot_y=False)}

    # ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(net, val_metrics, device, True)


    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)


    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(patience=4,
                                  score_function=stopping_fn_from_metric(metric_name),
                                  trainer=trainer)
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=early_stopper)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name='evaluator',
        output_transform=lambda x: None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch)  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every validation epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x: None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch)  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add handler to draw the first image and the corresponding label and model output in the last batch
    # here we draw the 3D output as GIF format along Depth axis, at every validation epoch
    val_tensorboard_image_handler = TensorBoardImageHandler(
        batch_transform=lambda batch: (batch[0], batch[1]),
        output_transform=lambda output: predict_segmentation(output[0]),
        global_iter_transform=lambda x: trainer.state.epoch
    )
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED, handler=val_tensorboard_image_handler)

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
    shutil.rmtree(tempdir)
 def test_random_shape(self, input_param, input_data, expected_shape):
     cropper = RandSpatialCrop(**input_param)
     cropper.set_random_state(seed=123)
     result = cropper(input_data)
     self.assertTupleEqual(result.shape, expected_shape)
 def test_shape(self, input_param, input_data, expected_shape):
     result = RandSpatialCrop(**input_param)(input_data)
     self.assertTupleEqual(result.shape, expected_shape)
Ejemplo n.º 10
0
    def _define_training_transforms(self):
        """Define and initialize all training data transforms.

          * training set images transform
          * training set masks transform
          * validation set images transform
          * validation set masks transform
          * validation set images post-transform
          * test set images transform
          * test set masks transform
          * test set images post-transform
          * prediction set images transform
          * prediction set images post-transform

        @return True if data transforms could be instantiated, False otherwise.
        """

        if self._mask_type == MaskType.UNKNOWN:
            raise Exception("The mask type is unknown. Cannot continue!")

        # Depending on the mask type, we will need to adapt the Mask Loader
        # and Transform. We start by initializing the most common types.
        MaskLoader = LoadMask(self._mask_type)
        MaskTransform = Identity

        # Adapt the transform for the LABEL types
        if self._mask_type == MaskType.TIFF_LABELS or self._mask_type == MaskType.NUMPY_LABELS:
            MaskTransform = ToOneHot(num_classes=self._out_channels)

        # The H5_ONE_HOT type requires a different loader
        if self._mask_type == MaskType.H5_ONE_HOT:
            # MaskLoader: still missing
            raise Exception("HDF5 one-hot masks are not supported yet!")

        # Define transforms for training
        self._train_image_transforms = Compose(
            [
                LoadImage(image_only=True),
                ScaleIntensity(),
                AddChannel(),
                RandSpatialCrop(self._roi_size, random_size=False),
                RandRotate90(prob=0.5, spatial_axes=(0, 1)),
                ToTensor()
            ]
        )
        self._train_mask_transforms = Compose(
            [
                MaskLoader,
                MaskTransform,
                RandSpatialCrop(self._roi_size, random_size=False),
                RandRotate90(prob=0.5, spatial_axes=(0, 1)),
                ToTensor()
            ]
        )

        # Define transforms for validation
        self._validation_image_transforms = Compose(
            [
                LoadImage(image_only=True),
                ScaleIntensity(),
                AddChannel(),
                ToTensor()
            ]
        )
        self._validation_mask_transforms = Compose(
            [
                MaskLoader,
                MaskTransform,
                ToTensor()
            ]
        )

        # Define transforms for testing
        self._test_image_transforms = Compose(
            [
                LoadImage(image_only=True),
                ScaleIntensity(),
                AddChannel(),
                ToTensor()
            ]
        )
        self._test_mask_transforms = Compose(
            [
                MaskLoader,
                MaskTransform,
                ToTensor()
            ]
        )

        # Post transforms
        self._validation_post_transforms = Compose(
            [
                Activations(softmax=True),
                AsDiscrete(threshold_values=True)
            ]
        )

        self._test_post_transforms = Compose(
            [
                Activations(softmax=True),
                AsDiscrete(threshold_values=True)
            ]
        )
Ejemplo n.º 11
0
 def test_value(self, input_param, input_data):
     cropper = RandSpatialCrop(**input_param)
     result = cropper(input_data)
     roi = [(2 - i // 2, 2 + i - i // 2) for i in cropper._size]
     np.testing.assert_allclose(
         result, input_data[:, roi[0][0]:roi[0][1], roi[1][0]:roi[1][1]])
Ejemplo n.º 12
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask paris
    tempdir = tempfile.mkdtemp()
    print('generating synthetic data to {} (this may take a while)'.format(tempdir))
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'im%i.nii.gz' % i))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, 'seg%i.nii.gz' % i))

    images = sorted(glob(os.path.join(tempdir, 'im*.nii.gz')))
    segs = sorted(glob(os.path.join(tempdir, 'seg*.nii.gz')))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 2)),
        ToTensor()
    ])
    train_segtrans = Compose([
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        RandRotate90(prob=0.5, spatial_axes=(0, 2)),
        ToTensor()
    ])
    val_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        ToTensor()
    ])
    val_segtrans = Compose([
        AddChannel(),
        ToTensor()
    ])

    # define nifti dataset, data loader
    check_ds = NiftiDataset(images, segs, transform=train_imtrans, seg_transform=train_segtrans)
    check_loader = DataLoader(check_ds, batch_size=10, num_workers=2, pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = NiftiDataset(images[:20], segs[:20], transform=train_imtrans, seg_transform=train_segtrans)
    train_loader = DataLoader(train_ds, batch_size=4, shuffle=True, num_workers=8, pin_memory=torch.cuda.is_available())
    # create a validation data loader
    val_ds = NiftiDataset(images[-20:], segs[-20:], transform=val_imtrans, seg_transform=val_segtrans)
    val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, pin_memory=torch.cuda.is_available())

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device('cuda:0')
    model = monai.networks.nets.UNet(
        dimensions=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss_function = monai.losses.DiceLoss(do_sigmoid=True)
    optimizer = torch.optim.Adam(model.parameters(), 1e-3)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    writer = SummaryWriter()
    for epoch in range(5):
        print('-' * 10)
        print('epoch {}/{}'.format(epoch + 1, 5))
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print('{}/{}, train_loss: {:.4f}'.format(step, epoch_len, loss.item()))
            writer.add_scalar('train_loss', loss.item(), epoch_len * epoch + step)
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print('epoch {} average loss: {:.4f}'.format(epoch + 1, epoch_loss))

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                metric_sum = 0.
                metric_count = 0
                val_images = None
                val_labels = None
                val_outputs = None
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
                    roi_size = (96, 96, 96)
                    sw_batch_size = 4
                    val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
                    value = compute_meandice(y_pred=val_outputs, y=val_labels, include_background=True,
                                             to_onehot_y=False, add_sigmoid=True)
                    metric_count += len(value)
                    metric_sum += value.sum().item()
                metric = metric_sum / metric_count
                metric_values.append(metric)
                if metric > best_metric:
                    best_metric = metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(), 'best_metric_model.pth')
                    print('saved new best metric model')
                print('current epoch: {} current mean dice: {:.4f} best mean dice: {:.4f} at epoch {}'.format(
                    epoch + 1, metric, best_metric, best_metric_epoch))
                writer.add_scalar('val_mean_dice', metric, epoch + 1)
                # plot the last model output as GIF image in TensorBoard with the corresponding image and label
                plot_2d_or_3d_image(val_images, epoch + 1, writer, index=0, tag='image')
                plot_2d_or_3d_image(val_labels, epoch + 1, writer, index=0, tag='label')
                plot_2d_or_3d_image(val_outputs, epoch + 1, writer, index=0, tag='output')
    shutil.rmtree(tempdir)
    print('train completed, best_metric: {:.4f} at epoch: {}'.format(best_metric, best_metric_epoch))
    writer.close()
import monai
from monai.data import ArrayDataset, create_test_image_2d
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import Activations, AddChannel, AsDiscrete, Compose, LoadImage, RandRotate90, RandSpatialCrop, ScaleIntensity, ToTensor, LoadNumpy, LoadNifti
from monai.visualize import plot_2d_or_3d_image

from torch.utils.data import Dataset, DataLoader
from tutils import *

tconfig.set_print_info(True)

train_imtrans = Compose([
    ToTensor(),
    AddChannel(),
    RandSpatialCrop((96, 96), random_size=False),
])
#  RandRotate90(prob=0.5, spatial_axes=(0, 1)),
# AddChannel(),
# ToTensor(),
# ScaleIntensity(),
# AddChannel(),
# RandSpatialCrop((96, 96), random_size=False),
# LoadNifti(),
train_segtrans = Compose([
    LoadNifti(),
    AddChannel(),
    RandRotate90(prob=0.5, spatial_axes=(0, 1)),
    ToTensor(),
])
# For testing
Ejemplo n.º 14
0
TESTS.append((dict, RandSpatialCropd("image",
                                     roi_size=[8, 7],
                                     random_size=True)))
TESTS.append((dict, RandRotated("image",
                                prob=1,
                                range_x=np.pi,
                                keep_size=False)))
TESTS.append((dict,
              RandZoomd("image",
                        prob=1,
                        min_zoom=1.1,
                        max_zoom=2.0,
                        keep_size=False)))
TESTS.append((dict, RandRotate90d("image", prob=1, max_k=2)))

TESTS.append((list, RandSpatialCrop(roi_size=[8, 7], random_size=True)))
TESTS.append((list, RandRotate(prob=1, range_x=np.pi, keep_size=False)))
TESTS.append(
    (list, RandZoom(prob=1, min_zoom=1.1, max_zoom=2.0, keep_size=False)))
TESTS.append((list, RandRotate90(prob=1, max_k=2)))


class _Dataset(torch.utils.data.Dataset):
    def __init__(self, images, labels, transforms):
        self.images = images
        self.labels = labels
        self.transforms = transforms

    def __len__(self):
        return len(self.images)
Ejemplo n.º 15
0
    def _define_transforms(self):
        """Define and initialize all data transforms.

          * training set images transform
          * training set targets transform
          * validation set images transform
          * validation set targets transform
          * validation set images post-transform
          * test set images transform
          * test set targets transform
          * test set images post-transform
          * prediction set images transform
          * prediction set images post-transform

        @return True if data transforms could be instantiated, False otherwise.
        """
        # Define transforms for training
        self._train_image_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            RandSpatialCrop(self._roi_size, random_size=False),
            RandRotate90(prob=0.5, spatial_axes=(0, 1)),
            ToTensor()
        ])
        self._train_target_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            RandSpatialCrop(self._roi_size, random_size=False),
            RandRotate90(prob=0.5, spatial_axes=(0, 1)),
            ToTensor()
        ])

        # Define transforms for validation
        self._validation_image_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            ToTensor()
        ])
        self._validation_target_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            ToTensor()
        ])

        # Define transforms for testing
        self._test_image_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            ToTensor()
        ])
        self._test_target_transforms = Compose([
            LoadImage(image_only=True),
            ScaleIntensityRange(0, 65535, 0.0, 1.0, clip=False),
            AddChannel(),
            ToTensor()
        ])

        # Define transforms for prediction
        self._prediction_image_transforms = Compose(
            [LoadImage(image_only=True),
             AddChannel(),
             ToTensor()])

        # Post transforms
        self._validation_post_transforms = Compose([Identity()])

        self._test_post_transforms = Compose(
            [ToNumpy(), ScaleIntensity(0, 65535)])

        self._prediction_post_transforms = Compose(
            [ToNumpy(), ScaleIntensity(0, 65535)])
Ejemplo n.º 16
0
def main(tempdir):
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # create a temporary directory and 40 random image, mask pairs
    print(f"generating synthetic data to {tempdir} (this may take a while)")
    for i in range(40):
        im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

        n = nib.Nifti1Image(im, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

        n = nib.Nifti1Image(seg, np.eye(4))
        nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

    images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
    segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

    # define transforms for image and segmentation
    train_imtrans = Compose([
        ScaleIntensity(),
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        EnsureType(),
    ])
    train_segtrans = Compose([
        AddChannel(),
        RandSpatialCrop((96, 96, 96), random_size=False),
        EnsureType()
    ])
    val_imtrans = Compose(
        [ScaleIntensity(),
         AddChannel(),
         Resize((96, 96, 96)),
         EnsureType()])
    val_segtrans = Compose([AddChannel(), Resize((96, 96, 96)), EnsureType()])

    # define image dataset, data loader
    check_ds = ImageDataset(images,
                            segs,
                            transform=train_imtrans,
                            seg_transform=train_segtrans)
    check_loader = DataLoader(check_ds,
                              batch_size=10,
                              num_workers=2,
                              pin_memory=torch.cuda.is_available())
    im, seg = monai.utils.misc.first(check_loader)
    print(im.shape, seg.shape)

    # create a training data loader
    train_ds = ImageDataset(images[:20],
                            segs[:20],
                            transform=train_imtrans,
                            seg_transform=train_segtrans)
    train_loader = DataLoader(
        train_ds,
        batch_size=5,
        shuffle=True,
        num_workers=8,
        pin_memory=torch.cuda.is_available(),
    )
    # create a validation data loader
    val_ds = ImageDataset(images[-20:],
                          segs[-20:],
                          transform=val_imtrans,
                          seg_transform=val_segtrans)
    val_loader = DataLoader(val_ds,
                            batch_size=5,
                            num_workers=8,
                            pin_memory=torch.cuda.is_available())

    # create UNet, DiceLoss and Adam optimizer
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    net = monai.networks.nets.UNet(
        spatial_dims=3,
        in_channels=1,
        out_channels=1,
        channels=(16, 32, 64, 128, 256),
        strides=(2, 2, 2, 2),
        num_res_units=2,
    ).to(device)
    loss = monai.losses.DiceLoss(sigmoid=True)
    lr = 1e-3
    opt = torch.optim.Adam(net.parameters(), lr)

    # Ignite trainer expects batch=(img, seg) and returns output=loss at every iteration,
    # user can add output_transform to return other values, like: y_pred, y, etc.
    trainer = create_supervised_trainer(net, opt, loss, device, False)

    # adding checkpoint handler to save models (network params and optimizer stats) during training
    checkpoint_handler = ModelCheckpoint("./runs_array/",
                                         "net",
                                         n_saved=10,
                                         require_empty=False)
    trainer.add_event_handler(
        event_name=Events.EPOCH_COMPLETED,
        handler=checkpoint_handler,
        to_save={
            "net": net,
            "opt": opt
        },
    )

    # StatsHandler prints loss at every iteration and print metrics at every epoch,
    # we don't set metrics for trainer here, so just print loss, user can also customize print functions
    # and can use output_transform to convert engine.state.output if it's not a loss value
    train_stats_handler = StatsHandler(name="trainer",
                                       output_transform=lambda x: x)
    train_stats_handler.attach(trainer)

    # TensorBoardStatsHandler plots loss at every iteration and plots metrics at every epoch, same as StatsHandler
    train_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x: x)
    train_tensorboard_stats_handler.attach(trainer)

    validation_every_n_epochs = 1
    # Set parameters for validation
    metric_name = "Mean_Dice"
    # add evaluation metric to the evaluator engine
    val_metrics = {metric_name: MeanDice()}

    post_pred = Compose(
        [EnsureType(),
         Activations(sigmoid=True),
         AsDiscrete(threshold=0.5)])
    post_label = Compose([EnsureType(), AsDiscrete(threshold=0.5)])

    # Ignite evaluator expects batch=(img, seg) and returns output=(y_pred, y) at every iteration,
    # user can add output_transform to return other values
    evaluator = create_supervised_evaluator(
        net,
        val_metrics,
        device,
        True,
        output_transform=lambda x, y, y_pred:
        ([post_pred(i) for i in decollate_batch(y_pred)],
         [post_label(i) for i in decollate_batch(y)]),
    )

    @trainer.on(Events.EPOCH_COMPLETED(every=validation_every_n_epochs))
    def run_validation(engine):
        evaluator.run(val_loader)

    # add early stopping handler to evaluator
    early_stopper = EarlyStopping(
        patience=4,
        score_function=stopping_fn_from_metric(metric_name),
        trainer=trainer)
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                                handler=early_stopper)

    # add stats event handler to print validation stats via evaluator
    val_stats_handler = StatsHandler(
        name="evaluator",
        output_transform=lambda x:
        None,  # no need to print loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_stats_handler.attach(evaluator)

    # add handler to record metrics to TensorBoard at every validation epoch
    val_tensorboard_stats_handler = TensorBoardStatsHandler(
        output_transform=lambda x:
        None,  # no need to plot loss value, so disable per iteration output
        global_epoch_transform=lambda x: trainer.state.epoch,
    )  # fetch global epoch number from trainer
    val_tensorboard_stats_handler.attach(evaluator)

    # add handler to draw the first image and the corresponding label and model output in the last batch
    # here we draw the 3D output as GIF format along Depth axis, at every validation epoch
    val_tensorboard_image_handler = TensorBoardImageHandler(
        batch_transform=lambda batch: (batch[0], batch[1]),
        output_transform=lambda output: output[0],
        global_iter_transform=lambda x: trainer.state.epoch,
    )
    evaluator.add_event_handler(event_name=Events.EPOCH_COMPLETED,
                                handler=val_tensorboard_image_handler)

    train_epochs = 30
    state = trainer.run(train_loader, train_epochs)
    print(state)