Ejemplo n.º 1
0
    def tstep(self):
        """
        takes a time step in the simulation
        """

        # check destinations if active
        # define motion vectors if destinations active and not everybody is at destination
        active_dests = len(
            self.population[self.population[:, 11] != 0]
        )  # look op this only once

        if active_dests > 0 and len(self.population[self.population[:, 12] == 0]) > 0:
            self.population = set_destination(self.population, self.destinations)
            self.population = check_at_destination(
                self.population,
                self.destinations,
                wander_factor=self.Config.wander_factor_dest,
                speed=self.Config.speed,
            )

        if active_dests > 0 and len(self.population[self.population[:, 12] == 1]) > 0:
            # keep them at destination
            self.population = keep_at_destination(
                self.population, self.destinations, self.Config.wander_factor
            )

        # out of bounds
        # define bounds arrays, excluding those who are marked as having a custom destination
        if len(self.population[:, 11] == 0) > 0:
            _xbounds = np.array(
                [[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]]
                * len(self.population[self.population[:, 11] == 0])
            )
            _ybounds = np.array(
                [[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]]
                * len(self.population[self.population[:, 11] == 0])
            )
            self.population[self.population[:, 11] == 0] = out_of_bounds(
                self.population[self.population[:, 11] == 0], _xbounds, _ybounds
            )

        # set randoms
        if self.Config.lockdown:
            if len(self.pop_tracker.infectious) == 0:
                mx = 0
            else:
                mx = np.max(self.pop_tracker.infectious)

            if len(self.population[self.population[:, 6] == 1]) >= len(
                self.population
            ) * self.Config.lockdown_percentage or mx >= (
                len(self.population) * self.Config.lockdown_percentage
            ):
                # reduce speed of all members of society
                self.population[:, 5] = np.clip(
                    self.population[:, 5], a_min=None, a_max=0.001
                )
                # set speeds of complying people to 0
                self.population[:, 5][self.Config.lockdown_vector == 0] = 0
            else:
                # update randoms
                self.population = update_randoms(
                    self.population, self.Config.pop_size, self.Config.speed
                )
        else:
            # update randoms
            self.population = update_randoms(
                self.population, self.Config.pop_size, self.Config.speed
            )

        # for dead ones: set speed and heading to 0
        self.population[:, 3:5][self.population[:, 6] == 3] = 0

        # update positions
        self.population = update_positions(self.population)

        # find new infections
        self.population, self.destinations = infect(
            self.population,
            self.Config,
            self.frame,
            send_to_location=self.Config.self_isolate,
            location_bounds=self.Config.isolation_bounds,
            destinations=self.destinations,
            location_no=1,
            location_odds=self.Config.self_isolate_proportion,
        )

        # recover and die
        self.population = recover_or_die(self.population, self.frame, self.Config)

        # send cured back to population if self isolation active
        # perhaps put in recover or die class
        # send cured back to population
        self.population[:, 11][self.population[:, 6] == 2] = 0

        # update population statistics
        self.pop_tracker.update_counts(self.population)

        # visualise
        if self.Config.visualise:
            draw_tstep(
                self.Config,
                self.population,
                self.pop_tracker,
                self.frame,
                self.fig,
                self.spec,
                self.ax1,
                self.ax2,
            )

        # report stuff to console
        sys.stdout.write("\r")
        sys.stdout.write(
            "%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \
dead: %i, of total: %i"
            % (
                self.frame,
                self.pop_tracker.susceptible[-1],
                self.pop_tracker.infectious[-1],
                self.pop_tracker.recovered[-1],
                len(self.population[self.population[:, 10] == 1]),
                self.pop_tracker.fatalities[-1],
                self.Config.pop_size,
            )
        )

        # save popdata if required
        if self.Config.save_pop and (self.frame % self.Config.save_pop_freq) == 0:
            save_population(self.population, self.frame, self.Config.save_pop_folder)
        # run callback
        self.callback()

        # update frame
        self.frame += 1
Ejemplo n.º 2
0
def update(frame, population, destinations, configuration):

    # #add one infection to jumpstart
    if frame == 10:
        population[0,6] = 1

    #update out of bounds
    #define bounds arrays
    _xbounds = np.array([[configuration.xbounds[0] + 0.02, configuration.xbounds[1] - 0.02]] * len(population))
    _ybounds = np.array([[configuration.ybounds[0] + 0.02, configuration.ybounds[1] - 0.02]] * len(population))
    population = out_of_bounds(population, _xbounds, _ybounds)

    #update randoms
    population = update_randoms(population, pop_size)

    #for dead ones: set speed and heading to 0
    population[:,3:5][population[:,6] == 3] = 0

    #update positions
    population = update_positions(population)

    #find new infections
    population = infect(population, configuration, frame)
    infected_plot.append(len(population[population[:,6] == 1]))

    #recover and die
    population = recover_or_die(population, frame, configuration)

    fatalities_plot.append(len(population[population[:,6] == 3]))

    if configuration.visualise:
        #construct plot and visualise
        spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5,2])
        ax1.clear()
        ax2.clear()

        ax1.set_xlim(configuration.xbounds[0], configuration.xbounds[1])
        ax1.set_ylim(configuration.ybounds[0], configuration.ybounds[1])

        healthy = population[population[:,6] == 0][:,1:3]
        ax1.scatter(healthy[:,0], healthy[:,1], color='gray', s = 2, label='healthy')

        infected = population[population[:,6] == 1][:,1:3]
        ax1.scatter(infected[:,0], infected[:,1], color='red', s = 2, label='infected')

        immune = population[population[:,6] == 2][:,1:3]
        ax1.scatter(immune[:,0], immune[:,1], color='green', s = 2, label='immune')

        fatalities = population[population[:,6] == 3][:,1:3]
        ax1.scatter(fatalities[:,0], fatalities[:,1], color='black', s = 2, label='fatalities')


        #add text descriptors
        ax1.text(configuration.xbounds[0],
                 configuration.ybounds[1] + ((configuration.ybounds[1] - configuration.ybounds[0]) / 100),
                 'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i' %(frame,
                                                                                              len(population),
                                                                                              len(healthy),
                                                                                              len(infected),
                                                                                              len(immune),
                                                                                              len(fatalities)),
                 fontsize=6)

        ax2.set_title('number of infected')
        ax2.text(0, configuration.pop_size * 0.05,
                 'https://github.com/paulvangentcom/python-corona-simulation',
                 fontsize=6, alpha=0.5)
        ax2.set_xlim(0, simulation_steps)
        ax2.set_ylim(0, configuration.pop_size + 100)
        ax2.plot(infected_plot, color='gray')
        ax2.plot(fatalities_plot, color='black', label='fatalities')

        if treatment_dependent_risk:
            #ax2.plot([healthcare_capacity for x in range(simulation_steps)], color='red',
            #         label='healthcare capacity')

            infected_arr = np.asarray(infected_plot)
            indices = np.argwhere(infected_arr >= healthcare_capacity)

            ax2.plot(indices, infected_arr[infected_arr >= healthcare_capacity],
                     color='red')

            #ax2.legend(loc = 1, fontsize = 6)

        #plt.savefig('render/%i.png' %frame)

    return population
Ejemplo n.º 3
0
    def tstep(self):
        '''
        takes a time step in the simulation
        '''
        start = time.time()  # start clock
        #======================================================================================#
        #check destinations if active
        #define motion vectors if destinations active and not everybody is at destination
        active_dests = len(self.population[
            self.population[:, 11] != 0])  # look op this only once

        if active_dests > 0 and len(
                self.population[self.population[:, 12] == 0]) > 0:
            self.population = set_destination(self.population,
                                              self.destinations)
            self.population = check_at_destination(
                self.population,
                self.destinations,
                wander_factor=self.Config.wander_factor_dest)

        if active_dests > 0 and len(
                self.population[self.population[:, 12] == 1]) > 0:
            #keep them at destination
            self.population = keep_at_destination(self.population,
                                                  self.Config.isolation_bounds)

        #======================================================================================#
        #gravity wells
        if self.Config.gravity_strength > 0:
            [self.population, self.last_step_change] = update_gravity_forces(
                self.population, self.time, self.last_step_change,
                self.Config.wander_step_size, self.Config.gravity_strength,
                self.Config.wander_step_duration)

        #======================================================================================#
        #activate social distancing above a certain infection threshold
        if not self.above_act_thresh and self.Config.social_distance_threshold_on > 0:
            # If not previously above infection threshold activate when threshold reached
            if self.Config.thresh_type == 'hospitalized':
                self.above_act_thresh = sum(
                    self.population[:, 11] ==
                    1) >= self.Config.social_distance_threshold_on
            elif self.Config.thresh_type == 'infected':
                self.above_act_thresh = sum(
                    self.population[:, 6] ==
                    1) >= self.Config.social_distance_threshold_on
        elif self.Config.social_distance_threshold_on == 0:
            self.above_act_thresh = True

        #deactivate social distancing after infection drops below threshold after using social distancing
        if self.above_act_thresh and not self.above_deact_thresh and self.Config.social_distance_threshold_off > 0:
            # If previously went above infection threshold deactivate when threshold reached
            self.above_deact_thresh = sum(self.population[:,6][self.population[:,11] == 0] == 1) <= \
                                       self.Config.social_distance_threshold_off

        # activate social distancing at the onset of infection
        if not self.Config.SD_act_onset:
            act_social_distancing = self.above_act_thresh and not self.above_deact_thresh and sum(
                self.population[:, 6] == 1) > 0
        # activate social distancing from start of simulation
        elif self.Config.SD_act_onset:
            act_social_distancing = self.above_act_thresh and not self.above_deact_thresh

        #activate social distancing only for compliant individuals
        if self.Config.social_distance_factor > 0 and act_social_distancing:
            self.population[(self.population[:,17] == 0) &\
                            (self.population[:,11] == 0)] = update_repulsive_forces(self.population[(self.population[:,17] == 0) &\
                                                                                                    (self.population[:,11] == 0)], self.Config.social_distance_factor)
        #======================================================================================#
        #out of bounds
        #define bounds arrays, excluding those who are marked as having a custom destination
        if len(self.population[:, 11] == 0) > 0:
            buffer = 0.0
            _xbounds = np.array([[
                self.Config.xbounds[0] + buffer,
                self.Config.xbounds[1] - buffer
            ]] * len(self.population[self.population[:, 11] == 0]))
            _ybounds = np.array([[
                self.Config.ybounds[0] + buffer,
                self.Config.ybounds[1] - buffer
            ]] * len(self.population[self.population[:, 11] == 0]))

            self.population[self.population[:, 11] == 0] = update_wall_forces(
                self.population[self.population[:, 11] == 0], _xbounds,
                _ybounds)

        #======================================================================================#
        #update velocities
        self.population[(self.population[:,11] == 0) |\
                        (self.population[:,12] == 1)] = update_velocities(self.population[(self.population[:,11] == 0) |\
                                                                                          (self.population[:,12] == 1)],
                                                                                          self.Config.max_speed,self.Config.dt)

        #for dead ones: set velocity and social distancing to 0 for dead ones
        self.population[:, 3:5][self.population[:, 6] == 3] = 0
        self.population[:, 17][self.population[:, 6] == 3] = 1

        #update positions
        self.population = update_positions(self.population, self.Config.dt)

        #======================================================================================#
        #find new infections

        if not self.above_test_thresh and self.Config.testing_threshold_on > 0:
            # If not previously above infection threshold activate when threshold reached
            self.above_test_thresh = sum(
                self.population[:, 6] == 1) >= self.Config.testing_threshold_on
            # self.above_test_thresh = sum(self.population[:,6] == 1) >= self.Config.social_distance_threshold_on
        elif self.Config.testing_threshold_on == 0:
            self.above_test_thresh = True

        act_testing = self.above_test_thresh and sum(
            self.population[:, 6] == 1) > 0

        self.population, self.destinations = infect(
            self.population,
            self.Config,
            self.frame,
            send_to_location=self.Config.self_isolate,
            location_bounds=self.Config.isolation_bounds,
            destinations=self.destinations,
            location_no=1,
            location_odds=self.Config.self_isolate_proportion,
            test_flag=act_testing)

        #recover and die
        self.population = recover_or_die(self.population, self.frame,
                                         self.Config)

        #======================================================================================#
        #send cured back to population if self isolation active
        #perhaps put in recover or die class
        #send cured back to population
        self.population[:, 11][self.population[:, 6] == 2] = 0

        #======================================================================================#
        #update population statistics
        self.pop_tracker.update_counts(self.population, self.frame)

        #======================================================================================#
        #visualise
        if self.Config.visualise and (
                self.frame % self.Config.visualise_every_n_frame) == 0:
            draw_tstep(self.Config, self.population, self.pop_tracker,
                       self.frame, self.fig, self.spec, self.ax1, self.ax2,
                       self.tight_bbox)

        #report stuff to console
        if (self.Config.verbose) and ((self.frame % self.Config.report_freq)
                                      == 0):
            end = time.time()
            time_elapsed = end - start  # elapsed time

            sys.stdout.write('\r')
            sys.stdout.write(
                '%i: S: %i, I: %i, R: %i, in treatment: %i, F: %i, of total: %i, D: %.5f, GC: %.5f, time: %.5f'
                % (self.frame, self.pop_tracker.susceptible[-1],
                   self.pop_tracker.infectious[-1],
                   self.pop_tracker.recovered[-1],
                   len(self.population[self.population[:, 10] == 1]),
                   self.pop_tracker.fatalities[-1], self.Config.pop_size,
                   self.pop_tracker.distance_travelled[-1],
                   self.pop_tracker.mean_perentage_covered[-1], time_elapsed))

        #save popdata if required
        if self.Config.save_pop and (self.frame %
                                     self.Config.save_pop_freq) == 0:
            save_population(self.population, self.frame,
                            self.Config.save_pop_folder)
        #run callback
        self.callback()

        #======================================================================================#
        #update frame
        self.frame += 1
        self.time += self.Config.dt
Ejemplo n.º 4
0
def tstep(config, vir, pop, pop_tracker, soc, fig, spec, ax1, ax2):
    '''
    takes a time step in the simulation
    '''

    #check destinations if active
    #define motion vectors if destinations active and not everybody is at destination
    active_dests = len(
        pop.population[pop.population[:, 11] != 0])  # look op this only once

    if active_dests > 0 and len(pop.population[pop.population[:,
                                                              12] == 0]) > 0:
        pop.population = pop.set_destination()
        pop.population = pop.check_at_destination()

    if active_dests > 0 and len(pop.population[pop.population[:,
                                                              12] == 1]) > 0:
        #keep them at destination
        pop.population = pop.keep_at_destination()

    #out of bounds
    #define bounds arrays, excluding those who are marked as having a custom destination
    if len(pop.population[:, 11] == 0) > 0:
        _xbounds = np.array(
            [[config.xbounds[0] + 0.02, config.xbounds[1] - 0.02]] *
            len(pop.population[pop.population[:, 11] == 0]))
        _ybounds = np.array(
            [[config.ybounds[0] + 0.02, config.ybounds[1] - 0.02]] *
            len(pop.population[pop.population[:, 11] == 0]))
        pop.population[pop.population[:, 11] == 0] = out_of_bounds(
            pop.population[pop.population[:, 11] == 0], _xbounds, _ybounds)

    #set randoms
    if soc.lockdown:
        if len(pop_tracker.infectious) == 0:
            mx = 0
        else:
            #mx = np.max(pop_tracker.infectious)
            mx = pop_tracker.infectious[-1]

        if len(pop.population[pop.population[:,6] == 1]) >= len(pop.population) * soc.lockdown_percentage or\
           mx >= (len(pop.population) * soc.lockdown_percentage) or soc.lockdown_act:
            soc.lockdown_act = True
            #reduce speed of all members of society
            pop.population[:, 5] = np.clip(pop.population[:, 5],
                                           a_min=None,
                                           a_max=0.00001)
            #set speeds of complying people to 0
            pop.population[:, 5][soc.lockdown_vector == 0] = 0
            if len(pop.population[pop.population[:, 6] == 1]) <= len(
                    pop.population) * soc.lockdown_percentage / 2:
                soc.lockdown_act = False
        else:
            #update randoms
            pop.population = update_randoms(pop.population, pop.pop_size,
                                            pop.speed)
    else:
        #update randoms
        pop.population = update_randoms(pop.population, pop.pop_size,
                                        pop.speed)

    #for dead ones: set speed and heading to 0
    pop.population[:, 3:5][pop.population[:, 6] == 3] = 0

    #update positions
    pop.population = update_positions(pop.population)

    #find new infections
    pop.population, pop.destinations = vir.infect(
        pop,
        soc,
        config,
        send_to_location=soc.self_isolate,
        location_bounds=soc.isolation_bounds,
        destinations=pop.destinations,
        location_no=1,
        location_odds=soc.self_isolate_proportion)

    #recover and die
    pop.population = vir.recover_or_die(pop, soc, config)

    #send cured back to population if self isolation active
    #perhaps put in recover or die class
    #send cured back to population
    pop.population[:, 11][pop.population[:, 6] == 2] = 0

    #update population statistics
    pop_tracker.update_counts(pop.population)

    #visualise
    if config.visualise:
        draw_tstep(config, soc, pop.pop_size, pop.population, pop_tracker,
                   config.frame, fig, spec, ax1, ax2)

    #report stuff to console
    sys.stdout.write('\r')
    sys.stdout.write(
        '%i: healthy: %i, infected: %i, immune: %i, in treatment: %i, \
dead: %i, of total: %i' %
        (config.frame, pop_tracker.susceptible[-1], pop_tracker.infectious[-1],
         pop_tracker.recovered[-1],
         len(pop.population[pop.population[:, 10] == 1]),
         pop_tracker.fatalities[-1], pop.pop_size))

    #save popdata if required
    if config.save_pop and (config.frame % config.save_pop_freq) == 0:
        pop.save_population(pop.population, config.frame,
                            config.save_pop_folder)
    #run callback
    callback(pop, config)

    #update frame
    config.frame += 1
Ejemplo n.º 5
0
def update(
    frame,
    population,
    destinations,
    pop_size,
    infection_range=0.01,
    infection_chance=0.03,
    recovery_duration=(200, 500),
    mortality_chance=0.02,
    xbounds=[0.02, 0.98],
    ybounds=[0.02, 0.98],
    wander_range_x=0.05,
    wander_range_y=0.05,
    risk_age=55,
    critical_age=75,
    critical_mortality_chance=0.1,
    risk_increase="quadratic",
    no_treatment_factor=3,
    treatment_factor=0.5,
    healthcare_capacity=250,
    age_dependent_risk=True,
    treatment_dependent_risk=True,
    visualise=True,
    verbose=True,
):

    # add one infection to jumpstart
    if frame == 100:
        # make C
        # first leg
        destinations[:, 0][0:100] = 0.05
        destinations[:, 1][0:100] = 0.7
        population[:, 13][0:100] = 0.01
        population[:, 14][0:100] = 0.05

        # Top
        destinations[:, 0][100:200] = 0.1
        destinations[:, 1][100:200] = 0.75
        population[:, 13][100:200] = 0.05
        population[:, 14][100:200] = 0.01

        # Bottom
        destinations[:, 0][200:300] = 0.1
        destinations[:, 1][200:300] = 0.65
        population[:, 13][200:300] = 0.05
        population[:, 14][200:300] = 0.01

        # make O
        # first leg
        destinations[:, 0][300:400] = 0.2
        destinations[:, 1][300:400] = 0.7
        population[:, 13][300:400] = 0.01
        population[:, 14][300:400] = 0.05

        # Top
        destinations[:, 0][400:500] = 0.25
        destinations[:, 1][400:500] = 0.75
        population[:, 13][400:500] = 0.05
        population[:, 14][400:500] = 0.01

        # Bottom
        destinations[:, 0][500:600] = 0.25
        destinations[:, 1][500:600] = 0.65
        population[:, 13][500:600] = 0.05
        population[:, 14][500:600] = 0.01

        # second leg
        destinations[:, 0][600:700] = 0.3
        destinations[:, 1][600:700] = 0.7
        population[:, 13][600:700] = 0.01
        population[:, 14][600:700] = 0.05

        # make V
        # First leg
        destinations[:, 0][700:800] = 0.35
        destinations[:, 1][700:800] = 0.7
        population[:, 13][700:800] = 0.01
        population[:, 14][700:800] = 0.05

        # Bottom
        destinations[:, 0][800:900] = 0.4
        destinations[:, 1][800:900] = 0.65
        population[:, 13][800:900] = 0.05
        population[:, 14][800:900] = 0.01

        # second leg
        destinations[:, 0][900:1000] = 0.45
        destinations[:, 1][900:1000] = 0.7
        population[:, 13][900:1000] = 0.01
        population[:, 14][900:1000] = 0.05

        # Make I
        # leg
        destinations[:, 0][1000:1100] = 0.5
        destinations[:, 1][1000:1100] = 0.7
        population[:, 13][1000:1100] = 0.01
        population[:, 14][1000:1100] = 0.05

        # I dot
        destinations[:, 0][1100:1200] = 0.5
        destinations[:, 1][1100:1200] = 0.8
        population[:, 13][1100:1200] = 0.01
        population[:, 14][1100:1200] = 0.01

        # make D
        # first leg
        destinations[:, 0][1200:1300] = 0.55
        destinations[:, 1][1200:1300] = 0.67
        population[:, 13][1200:1300] = 0.01
        population[:, 14][1200:1300] = 0.03

        # Top
        destinations[:, 0][1300:1400] = 0.6
        destinations[:, 1][1300:1400] = 0.75
        population[:, 13][1300:1400] = 0.05
        population[:, 14][1300:1400] = 0.01

        # Bottom
        destinations[:, 0][1400:1500] = 0.6
        destinations[:, 1][1400:1500] = 0.65
        population[:, 13][1400:1500] = 0.05
        population[:, 14][1400:1500] = 0.01

        # second leg
        destinations[:, 0][1500:1600] = 0.65
        destinations[:, 1][1500:1600] = 0.7
        population[:, 13][1500:1600] = 0.01
        population[:, 14][1500:1600] = 0.05

        # dash
        destinations[:, 0][1600:1700] = 0.725
        destinations[:, 1][1600:1700] = 0.7
        population[:, 13][1600:1700] = 0.03
        population[:, 14][1600:1700] = 0.01

        # Make 1
        destinations[:, 0][1700:1800] = 0.8
        destinations[:, 1][1700:1800] = 0.7
        population[:, 13][1700:1800] = 0.01
        population[:, 14][1700:1800] = 0.05

        # Make 9
        # right leg
        destinations[:, 0][1800:1900] = 0.91
        destinations[:, 1][1800:1900] = 0.675
        population[:, 13][1800:1900] = 0.01
        population[:, 14][1800:1900] = 0.08

        # roof
        destinations[:, 0][1900:2000] = 0.88
        destinations[:, 1][1900:2000] = 0.75
        population[:, 13][1900:2000] = 0.035
        population[:, 14][1900:2000] = 0.01

        # middle
        destinations[:, 0][2000:2100] = 0.88
        destinations[:, 1][2000:2100] = 0.7
        population[:, 13][2000:2100] = 0.035
        population[:, 14][2000:2100] = 0.01

        # left vertical leg
        destinations[:, 0][2100:2200] = 0.86
        destinations[:, 1][2100:2200] = 0.72
        population[:, 13][2100:2200] = 0.01
        population[:, 14][2100:2200] = 0.01

        ###################
        ##### ROW TWO #####
        ###################

        # S
        # first leg
        destinations[:, 0][2200:2300] = 0.115
        destinations[:, 1][2200:2300] = 0.5
        population[:, 13][2200:2300] = 0.01
        population[:, 14][2200:2300] = 0.03

        # Top
        destinations[:, 0][2300:2400] = 0.15
        destinations[:, 1][2300:2400] = 0.55
        population[:, 13][2300:2400] = 0.05
        population[:, 14][2300:2400] = 0.01

        # second leg
        destinations[:, 0][2400:2500] = 0.2
        destinations[:, 1][2400:2500] = 0.45
        population[:, 13][2400:2500] = 0.01
        population[:, 14][2400:2500] = 0.03

        # middle
        destinations[:, 0][2500:2600] = 0.15
        destinations[:, 1][2500:2600] = 0.48
        population[:, 13][2500:2600] = 0.05
        population[:, 14][2500:2600] = 0.01

        # bottom
        destinations[:, 0][2600:2700] = 0.15
        destinations[:, 1][2600:2700] = 0.41
        population[:, 13][2600:2700] = 0.05
        population[:, 14][2600:2700] = 0.01

        # Make I
        # leg
        destinations[:, 0][2700:2800] = 0.25
        destinations[:, 1][2700:2800] = 0.45
        population[:, 13][2700:2800] = 0.01
        population[:, 14][2700:2800] = 0.05

        # I dot
        destinations[:, 0][2800:2900] = 0.25
        destinations[:, 1][2800:2900] = 0.55
        population[:, 13][2800:2900] = 0.01
        population[:, 14][2800:2900] = 0.01

        # M
        # Top
        destinations[:, 0][2900:3000] = 0.37
        destinations[:, 1][2900:3000] = 0.5
        population[:, 13][2900:3000] = 0.07
        population[:, 14][2900:3000] = 0.01

        # Left leg
        destinations[:, 0][3000:3100] = 0.31
        destinations[:, 1][3000:3100] = 0.45
        population[:, 13][3000:3100] = 0.01
        population[:, 14][3000:3100] = 0.05

        # Middle leg
        destinations[:, 0][3100:3200] = 0.37
        destinations[:, 1][3100:3200] = 0.45
        population[:, 13][3100:3200] = 0.01
        population[:, 14][3100:3200] = 0.05

        # Right leg
        destinations[:, 0][3200:3300] = 0.43
        destinations[:, 1][3200:3300] = 0.45
        population[:, 13][3200:3300] = 0.01
        population[:, 14][3200:3300] = 0.05

        # set all destinations active
        population[:, 11] = 1

    elif frame == 400:
        population[:, 11] = 0
        population[:, 12] = 0
        population = update_randoms(population, pop_size, 1, 1)

    # define motion vectors if destinations active and not everybody is at destination
    active_dests = len(
        population[population[:, 11] != 0])  # look op this only once

    if active_dests > 0 and len(population[population[:, 12] == 0]) > 0:
        population = set_destination(population, destinations)
        population = check_at_destination(population, destinations)

    if active_dests > 0 and len(population[population[:, 12] == 1]) > 0:
        # keep them at destination
        population = keep_at_destination(population,
                                         destinations,
                                         wander_factor=1)

    # update out of bounds
    # define bounds arrays
    _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] *
                        len(population))
    _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] *
                        len(population))
    population = out_of_bounds(population, _xbounds, _ybounds)

    # update randoms
    population = update_randoms(population, pop_size)

    # for dead ones: set speed and heading to 0
    population[:, 3:5][population[:, 6] == 3] = 0

    # update positions
    population = update_positions(population)

    # find new infections
    population = infect(
        population,
        pop_size,
        infection_range,
        infection_chance,
        frame,
        healthcare_capacity,
        verbose,
    )
    infected_plot.append(len(population[population[:, 6] == 1]))

    # recover and die
    population = recover_or_die(
        population,
        frame,
        recovery_duration,
        mortality_chance,
        risk_age,
        critical_age,
        critical_mortality_chance,
        risk_increase,
        no_treatment_factor,
        age_dependent_risk,
        treatment_dependent_risk,
        treatment_factor,
        verbose,
    )

    fatalities_plot.append(len(population[population[:, 6] == 3]))

    if visualise:
        # construct plot and visualise
        spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2])
        ax1.clear()
        ax2.clear()

        ax1.set_xlim(xbounds[0], xbounds[1])
        ax1.set_ylim(ybounds[0], ybounds[1])

        healthy = population[population[:, 6] == 0][:, 1:3]
        ax1.scatter(healthy[:, 0],
                    healthy[:, 1],
                    color="gray",
                    s=2,
                    label="healthy")

        infected = population[population[:, 6] == 1][:, 1:3]
        ax1.scatter(infected[:, 0],
                    infected[:, 1],
                    color="red",
                    s=2,
                    label="infected")

        immune = population[population[:, 6] == 2][:, 1:3]
        ax1.scatter(immune[:, 0],
                    immune[:, 1],
                    color="green",
                    s=2,
                    label="immune")

        fatalities = population[population[:, 6] == 3][:, 1:3]
        ax1.scatter(fatalities[:, 0],
                    fatalities[:, 1],
                    color="black",
                    s=2,
                    label="fatalities")

        # add text descriptors
        ax1.text(
            xbounds[0],
            ybounds[1] + ((ybounds[1] - ybounds[0]) / 100),
            "timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i"
            % (
                frame,
                len(population),
                len(healthy),
                len(infected),
                len(immune),
                len(fatalities),
            ),
            fontsize=6,
        )

        ax2.set_title("number of infected")
        ax2.text(
            0,
            pop_size * 0.05,
            "https://github.com/paulvangentcom/python-corona-simulation",
            fontsize=6,
            alpha=0.5,
        )
        ax2.set_xlim(0, simulation_steps)
        ax2.set_ylim(0, pop_size + 100)
        ax2.plot(infected_plot, color="gray")
        ax2.plot(fatalities_plot, color="black", label="fatalities")

        if treatment_dependent_risk:
            # ax2.plot([healthcare_capacity for x in range(simulation_steps)], color='red',
            #         label='healthcare capacity')

            infected_arr = np.asarray(infected_plot)
            indices = np.argwhere(infected_arr >= healthcare_capacity)

            ax2.plot(indices,
                     infected_arr[infected_arr >= healthcare_capacity],
                     color="red")

            # ax2.legend(loc = 1, fontsize = 6)

        # plt.savefig('render/%i.png' %frame)

    return population
def update(frame,
           population,
           destinations,
           pop_size,
           infection_range=0.01,
           infection_chance=0.03,
           speed=0.01,
           recovery_duration=(200, 500),
           mortality_chance=0.02,
           xbounds=[0.02, 0.98],
           ybounds=[0.02, 0.98],
           x_plot=[0, 1],
           y_plot=[0, 1],
           wander_range=0.05,
           risk_age=55,
           critical_age=75,
           critical_mortality_chance=0.1,
           risk_increase='quadratic',
           no_treatment_factor=3,
           treatment_factor=0.5,
           healthcare_capacity=250,
           age_dependent_risk=False,
           treatment_dependent_risk=False,
           visualise=False,
           verbose=False,
           self_isolate=True,
           self_isolate_proportion=0.6,
           isolation_bounds=[0, 0, 0.1, 0.1],
           traveling_infects=False,
           lockdown=False,
           lockdown_percentage=0.1,
           lockdown_vector=[],
           plot_style='default'):

    #add one infection to jumpstart
    if frame == 50:
        population[0][6] = 1
        population[0][8] = 75
        population[0][10] = 1

    #define motion vectors if destinations active and not everybody is at destination
    active_dests = len(
        population[population[:, 11] != 0])  # look op this only once

    if active_dests > 0 and len(population[population[:, 12] == 0]) > 0:
        population = set_destination(population, destinations)
        population = check_at_destination(population,
                                          destinations,
                                          wander_factor=1.5)

    if active_dests > 0 and len(population[population[:, 12] == 1]) > 0:
        #keep them at destination
        population = keep_at_destination(population,
                                         destinations,
                                         wander_factor=1)

    #update out of bounds
    #define bounds arrays, excluding those who are marked as having a custom destination
    if len(population[:, 11] == 0) > 0:
        _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] *
                            len(population[population[:, 11] == 0]))
        _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] *
                            len(population[population[:, 11] == 0]))
        population[population[:, 11] == 0] = out_of_bounds(
            population[population[:, 11] == 0], _xbounds, _ybounds)

    if lockdown:
        if len(infected_plot) == 0:
            mx = 0
        else:
            mx = np.max(infected_plot)

        if len(population[population[:,6] == 1]) >= len(population) * lockdown_percentage or\
           mx >= (len(population) * lockdown_percentage):
            #reduce speed of all members of society
            population[:, 5] = np.clip(population[:, 5],
                                       a_min=None,
                                       a_max=0.001)
            #set speeds of complying people to 0
            population[:, 5][lockdown_vector == 0] = 0
        else:
            #update randoms
            population = update_randoms(population, pop_size, speed=speed)
    else:
        #update randoms
        population = update_randoms(population, pop_size, speed=speed)

    #for dead ones: set speed and heading to 0
    population[:, 3:5][population[:, 6] == 3] = 0

    #update positions
    population = update_positions(population)

    #find new infections
    population, destinations = infect(population,
                                      pop_size,
                                      infection_range,
                                      infection_chance,
                                      frame,
                                      healthcare_capacity,
                                      verbose,
                                      send_to_location=self_isolate,
                                      location_bounds=isolation_bounds,
                                      destinations=destinations,
                                      location_no=1,
                                      location_odds=self_isolate_proportion,
                                      traveling_infects=traveling_infects)

    infected_plot.append(len(population[population[:, 6] == 1]))

    #recover and die
    population = recover_or_die(population, frame, recovery_duration,
                                mortality_chance, risk_age, critical_age,
                                critical_mortality_chance, risk_increase,
                                no_treatment_factor, age_dependent_risk,
                                treatment_dependent_risk, treatment_factor,
                                verbose)

    #send cured back to population
    population[:, 11][population[:, 6] == 2] = 0

    fatalities_plot.append(len(population[population[:, 6] == 3]))

    if visualise:
        #construct plot and visualise
        spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2])
        ax1.clear()
        ax2.clear()

        ax1.set_xlim(x_plot[0], x_plot[1])
        ax1.set_ylim(y_plot[0], y_plot[1])

        if self_isolate and isolation_bounds != None:
            build_hospital(isolation_bounds[0],
                           isolation_bounds[2],
                           isolation_bounds[1],
                           isolation_bounds[3],
                           ax1,
                           addcross=False)

        #plot population segments
        healthy = population[population[:, 6] == 0][:, 1:3]
        ax1.scatter(healthy[:, 0],
                    healthy[:, 1],
                    color='gray',
                    s=2,
                    label='healthy')

        infected = population[population[:, 6] == 1][:, 1:3]
        ax1.scatter(infected[:, 0],
                    infected[:, 1],
                    color='red',
                    s=2,
                    label='infected')

        immune = population[population[:, 6] == 2][:, 1:3]
        ax1.scatter(immune[:, 0],
                    immune[:, 1],
                    color='green',
                    s=2,
                    label='immune')

        fatalities = population[population[:, 6] == 3][:, 1:3]
        ax1.scatter(fatalities[:, 0],
                    fatalities[:, 1],
                    color='black',
                    s=2,
                    label='dead')

        #add text descriptors
        ax1.text(
            x_plot[0],
            y_plot[1] + ((y_plot[1] - y_plot[0]) / 100),
            'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i'
            % (frame, len(population), len(healthy), len(infected),
               len(immune), len(fatalities)),
            fontsize=6)

        ax2.set_title('number of infected')
        ax2.text(0,
                 pop_size * 0.05,
                 'https://github.com/paulvangentcom/python-corona-simulation',
                 fontsize=6,
                 alpha=0.5)
        #ax2.set_xlim(0, simulation_steps)
        ax2.set_ylim(0, pop_size + 200)

        if treatment_dependent_risk:
            infected_arr = np.asarray(infected_plot)
            indices = np.argwhere(infected_arr >= healthcare_capacity)

            ax2.plot([healthcare_capacity for x in range(len(infected_plot))],
                     color='red',
                     label='healthcare capacity')

            ax2.plot(infected_plot, color='gray')
            ax2.plot(fatalities_plot, color='black', label='fatalities')

        if treatment_dependent_risk:
            ax2.plot(indices,
                     infected_arr[infected_arr >= healthcare_capacity],
                     color='red')

        ax2.legend(loc='best', fontsize=6)
        #plt.savefig('render/%i.png' %frame)

    return population
Ejemplo n.º 7
0
    def tstep(self):

        if self.frame == 0:
            self.fig, self.spec, self.ax1, self.ax2 = build_fig(self.Config)

        xbounds = np.array(
            [[self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] - 0.02]] *
            self.Config.pop_size)
        ybounds = np.array(
            [[self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] - 0.02]] *
            self.Config.pop_size)
        self.population = out_of_bounds(self.population, xbounds, ybounds)

        if self.Config.is_lockdown and self.Config.lockdown == False:
            if len(self.population[(self.population[:, 6] == 1)]
                   ) >= self.Config.lockdown_percentage * self.Config.pop_size:
                self.Config.lockdown = True
                print("\nLockdown Started")

        left_range = [
            self.Config.xbounds[0] + 0.02, self.Config.xbounds[1] / 3 - 0.02
        ]
        mid_range = [
            self.Config.xbounds[1] / 3 + 0.02,
            2 * self.Config.xbounds[1] / 3 - 0.02
        ]
        right_range = [
            2 * self.Config.xbounds[1] / 3 + 0.02,
            self.Config.xbounds[1] - 0.02
        ]

        bottom_range = [
            self.Config.ybounds[0] + 0.02, self.Config.ybounds[1] / 2 - 0.02
        ]
        top_range = [
            self.Config.ybounds[1] / 2 + 0.02, self.Config.ybounds[1] - 0.02
        ]

        left_condition = (self.population[:, 1] <= self.Config.xbounds[1] / 3)
        mid_condition = (
            self.population[:, 1] > self.Config.xbounds[1] / 3) & (
                self.population[:, 1] <= 2 * self.Config.xbounds[1] / 3)
        right_condition = (self.population[:, 1] >
                           2 * self.Config.xbounds[1] / 3)

        bottom_condition = (self.population[:, 2] <=
                            self.Config.ybounds[1] / 2)
        top_condition = (self.population[:, 2] > self.Config.ybounds[1] / 2)

        if self.Config.lockdown:

            x_left_bottom = np.array(
                [left_range] *
                len(self.population[left_condition & bottom_condition]))
            y_left_bottom = np.array(
                [bottom_range] *
                len(self.population[left_condition & bottom_condition]))
            self.population[left_condition & bottom_condition] = out_of_bounds(
                self.population[left_condition & bottom_condition],
                x_left_bottom, y_left_bottom)

            x_left_top = np.array(
                [left_range] *
                len(self.population[left_condition & top_condition]))
            y_left_top = np.array(
                [top_range] *
                len(self.population[left_condition & top_condition]))
            self.population[left_condition & top_condition] = out_of_bounds(
                self.population[left_condition & top_condition], x_left_top,
                y_left_top)

            x_mid_bottom = np.array(
                [mid_range] *
                len(self.population[mid_condition & bottom_condition]))
            y_mid_bottom = np.array(
                [bottom_range] *
                len(self.population[mid_condition & bottom_condition]))
            self.population[mid_condition & bottom_condition] = out_of_bounds(
                self.population[mid_condition & bottom_condition],
                x_mid_bottom, y_mid_bottom)

            x_mid_top = np.array(
                [mid_range] *
                len(self.population[mid_condition & top_condition]))
            y_mid_top = np.array(
                [top_range] *
                len(self.population[mid_condition & top_condition]))
            self.population[mid_condition & top_condition] = out_of_bounds(
                self.population[mid_condition & top_condition], x_mid_top,
                y_mid_top)

            x_right_bottom = np.array(
                [right_range] *
                len(self.population[right_condition & bottom_condition]))
            y_right_bottom = np.array(
                [bottom_range] *
                len(self.population[right_condition & bottom_condition]))
            self.population[right_condition
                            & bottom_condition] = out_of_bounds(
                                self.population[right_condition
                                                & bottom_condition],
                                x_right_bottom, y_right_bottom)

            x_right_top = np.array(
                [right_range] *
                len(self.population[right_condition & top_condition]))
            y_right_top = np.array(
                [top_range] *
                len(self.population[right_condition & top_condition]))
            self.population[right_condition & top_condition] = out_of_bounds(
                self.population[right_condition & top_condition], x_right_top,
                y_right_top)

        self.population = update_randoms(self.population, self.Config.pop_size,
                                         self.Config.speed)

        self.population[:, 5][self.population[:, 6] == 3] = 0

        self.population = update_positions(self.population)

        self.population = infect(self.population, self.Config, self.frame)

        self.population = recover_or_die(self.population, self.frame,
                                         self.Config)

        self.pop_tracker.update_counts(self.population)

        draw_tstep(self.Config, self.population, self.pop_tracker, self.frame,
                   self.fig, self.spec, self.ax1, self.ax2)

        self.peak_infections = max(
            self.peak_infections,
            len(self.population[self.population[:, 6] == 1]))

        if self.frame == 50:
            print('\ninfecting patient zero')
            self.population[0][6] = 1

        self.frame += 1
Ejemplo n.º 8
0
def update(frame,
           population,
           destinations,
           pop_size,
           infection_range=0.01,
           infection_chance=0.03,
           recovery_duration=(200, 500),
           mortality_chance=0.02,
           xbounds=[0.02, 0.98],
           ybounds=[0.02, 0.98],
           x_plot=[-0.1, 1],
           y_plot=[-0.1, 1],
           wander_range_x=0.05,
           wander_range_y=0.05,
           risk_age=55,
           critical_age=75,
           critical_mortality_chance=0.1,
           risk_increase='quadratic',
           no_treatment_factor=3,
           treatment_factor=0.5,
           healthcare_capacity=250,
           age_dependent_risk=True,
           treatment_dependent_risk=True,
           visualise=True,
           verbose=True,
           healthcare_workers=50,
           hospital_bounds=None,
           healthcare_worker_risk=0):

    #add one infection to jumpstart
    if frame == 1:
        population[healthcare_workers + 1][6] = 1

    #define motion vectors if destinations active and not everybody is at destination
    active_dests = len(
        population[population[:, 11] != 0])  # look op this only once

    if active_dests > 0 and len(population[population[:, 12] == 0]) > 0:
        population = set_destination(population, destinations)
        population = check_at_destination(population,
                                          destinations,
                                          wander_factor=1)

    if active_dests > 0 and len(population[population[:, 12] == 1]) > 0:
        #keep them at destination
        population = keep_at_destination(population,
                                         destinations,
                                         wander_factor=1)

    #update out of bounds
    #define bounds arrays
    if len(population[:, 11] == 0) > 0:
        _xbounds = np.array([[xbounds[0] + 0.02, xbounds[1] - 0.02]] *
                            len(population[population[:, 11] == 0]))
        _ybounds = np.array([[ybounds[0] + 0.02, ybounds[1] - 0.02]] *
                            len(population[population[:, 11] == 0]))
        population[population[:, 11] == 0] = out_of_bounds(
            population[population[:, 11] == 0], _xbounds, _ybounds)

    #update randoms
    population = update_randoms(population, pop_size)

    #for dead ones: set speed and heading to 0
    population[:, 3:5][population[:, 6] == 3] = 0

    #update positions
    population = update_positions(population)

    #find new infections
    population, destinations = infect(population,
                                      pop_size,
                                      infection_range,
                                      infection_chance,
                                      frame,
                                      healthcare_capacity,
                                      verbose,
                                      send_to_location=True,
                                      location_bounds=hospital_bounds,
                                      destinations=destinations,
                                      location_no=1)
    #apply risk factor to healthcare worker pool
    if healthcare_worker_risk != 0:  #if risk is not zero, affect workers
        workers = population[0:healthcare_workers]
        workers = healthcare_infection_correction(workers,
                                                  healthcare_worker_risk)
        population[0:healthcare_workers] = workers

    infected_plot.append(len(population[population[:, 6] == 1]))

    #recover and die
    population = recover_or_die(population, frame, recovery_duration,
                                mortality_chance, risk_age, critical_age,
                                critical_mortality_chance, risk_increase,
                                no_treatment_factor, age_dependent_risk,
                                treatment_dependent_risk, treatment_factor,
                                verbose)

    #send cured back to population
    population[:, 11][population[:, 6] == 2] = 0

    fatalities_plot.append(len(population[population[:, 6] == 3]))

    if visualise:
        #construct plot and visualise
        spec = fig.add_gridspec(ncols=1, nrows=2, height_ratios=[5, 2])
        ax1.clear()
        ax2.clear()

        ax1.set_xlim(x_plot[0], x_plot[1])
        ax1.set_ylim(y_plot[0], y_plot[1])

        if hospital_bounds != None:
            build_hospital(hospital_bounds[0], hospital_bounds[2],
                           hospital_bounds[1], hospital_bounds[3], ax1)

        healthy = population[population[:, 6] == 0][:, 1:3]
        ax1.scatter(healthy[:healthcare_workers][:, 0],
                    healthy[:healthcare_workers][:, 1],
                    marker='P',
                    s=2,
                    color='green',
                    label='healthy')

        ax1.scatter(healthy[healthcare_workers:][:, 0],
                    healthy[healthcare_workers:][:, 1],
                    color='gray',
                    s=2,
                    label='healthy')

        infected = population[population[:, 6] == 1][:, 1:3]
        ax1.scatter(infected[:, 0],
                    infected[:, 1],
                    color='red',
                    s=2,
                    label='infected')

        immune = population[population[:, 6] == 2][:, 1:3]
        ax1.scatter(immune[:, 0],
                    immune[:, 1],
                    color='green',
                    s=2,
                    label='immune')

        fatalities = population[population[:, 6] == 3][:, 1:3]
        ax1.scatter(fatalities[:, 0],
                    fatalities[:, 1],
                    color='black',
                    s=2,
                    label='dead')

        #add text descriptors
        ax1.text(
            x_plot[0],
            y_plot[1] + ((y_plot[1] - y_plot[0]) / 8),
            'timestep: %i, total: %i, healthy: %i infected: %i immune: %i fatalities: %i'
            % (frame, len(population), len(healthy), len(infected),
               len(immune), len(fatalities)),
            fontsize=6)

        ax2.set_title('number of infected')
        ax2.text(0,
                 pop_size * 0.05,
                 'https://github.com/paulvangentcom/python-corona-simulation',
                 fontsize=6,
                 alpha=0.5)
        #ax2.set_xlim(0, simulation_steps)
        ax2.set_ylim(0, pop_size + 100)

        if treatment_dependent_risk:
            infected_arr = np.asarray(infected_plot)
            indices = np.argwhere(infected_arr >= healthcare_capacity)

            ax2.plot([healthcare_capacity for x in range(len(infected_plot))],
                     color='red',
                     label='healthcare capacity')

        ax2.plot(infected_plot, color='gray')
        ax2.plot(fatalities_plot, color='black', label='fatalities')
        ax2.legend(loc=1, fontsize=6)

        if treatment_dependent_risk:
            ax2.plot(indices,
                     infected_arr[infected_arr >= healthcare_capacity],
                     color='red')

        #plt.savefig('render/%i.png' %frame)

    return population