Ejemplo n.º 1
0
def train():

    # build dataset
    batch_size = 64
    data = Mnist(batch_size=batch_size, train_valid_test_ratio=[5, 1, 1])

    # build model
    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=28 * 28, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    decay_batch = int(data.train.X.shape[0] * 2 / batch_size)
    learning_method = SGD(learning_rate=0.1,
                          momentum=0.9,
                          lr_decay_factor=0.9,
                          decay_batch=decay_batch)

    # Build Logger
    log = Log(
        experiment_name='MLP',
        description='This is a tutorial',
        save_outputs=True,  # log all the outputs from the screen
        save_model=True,  # save the best model
        save_epoch_error=True,  # log error at every epoch
        save_to_database={
            'name': 'Example.sqlite3',
            'records': {
                'Batch_Size': batch_size,
                'Learning_Rate': learning_method.learning_rate,
                'Momentum': learning_method.momentum
            }
        })  # end log

    # put everything into the train object
    train_object = TrainObject(model=model,
                               log=log,
                               dataset=data,
                               train_cost=mse,
                               valid_cost=error,
                               learning_method=learning_method,
                               stop_criteria={
                                   'max_epoch': 100,
                                   'epoch_look_back': 5,
                                   'percent_decrease': 0.01
                               })
    # finally run the code
    train_object.setup()
    train_object.run()

    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print('test accuracy:', accuracy)
Ejemplo n.º 2
0
def train():

    data = Cifar10(batch_size=32, train_valid_test_ratio=[4,1,1])

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(Convolution2D(input_channels=3, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=8, filters=16, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(4, 4), stride=(4,4), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(16*8*8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # Build Logger
    log = Log(experiment_name = 'cifar10_cnn',
              description = 'This is a tutorial',
              save_outputs = True, # log all the outputs from the screen
              save_model = True, # save the best model
              save_epoch_error = True, # log error at every epoch
              save_to_database = {'name': 'hyperparam.sqlite3',
                                  'records': {'Batch_Size': data.batch_size,
                                              'Learning_Rate': learning_method.learning_rate,
                                              'Momentum': learning_method.momentum}}
             ) # end log

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = log,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 30,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 3
0
def train():
    batch_size = 128
    data = Cifar10(batch_size=batch_size, train_valid_test_ratio=[4,1,1])
    _, c, h, w = data.train.X.shape

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(Convolution2D(input_channels=c, filters=8, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    h, w = full(h, w, kernel=3, stride=1)
    model.add(RELU())
    model.add(Convolution2D(input_channels=8, filters=16, kernel_size=(3,3), stride=(1,1), border_mode='valid'))
    h, w = valid(h, w, kernel=3, stride=1)
    model.add(RELU())
    model.add(Pooling2D(poolsize=(4, 4), stride=(4,4), mode='max'))
    h, w = valid(h, w, kernel=4, stride=4)
    model.add(Flatten())
    model.add(Linear(16*h*w, 512))
    model.add(BatchNormalization((512,), short_memory=0.9))
    model.add(RELU())

    model.add(Linear(512, 10))
    model.add(Softmax())

    learning_method = RMSprop(learning_rate=0.01)

    # Build Logger
    log = Log(experiment_name = 'cifar10_cnn_example',
              description = 'This is a tutorial',
              save_outputs = True, # log all the outputs from the screen
              save_model = True, # save the best model
              save_epoch_error = True, # log error at every epoch
              save_to_database = {'name': 'hyperparam.sqlite3',
                                  'records': {'Batch_Size': batch_size,
                                              'Learning_Rate': learning_method.learning_rate}}
             ) # end log

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = log,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 30,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 4
0
def train():

    # build dataset
    batch_size = 64
    data = Mnist(batch_size=batch_size, train_valid_test_ratio=[5,1,1])

    # build model
    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=28*28, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    decay_batch = int(data.train.X.shape[0] * 2 / batch_size)
    learning_method = SGD(learning_rate=0.1, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=decay_batch)

    # Build Logger
    log = Log(experiment_name = 'MLP',
              description = 'This is a tutorial',
              save_outputs = True, # log all the outputs from the screen
              save_model = True, # save the best model
              save_epoch_error = True, # log error at every epoch
              save_to_database = {'name': 'Example.sqlite3',
                                  'records': {'Batch_Size': batch_size,
                                              'Learning_Rate': learning_method.learning_rate,
                                              'Momentum': learning_method.momentum}}
             ) # end log

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = log,
                               dataset = data,
                               train_cost = mse,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 100,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 5
0
def train():

    data = Cifar10(batch_size=32, train_valid_test_ratio=[4,1,1])

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(Convolution2D(input_channels=3, filters=32, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=32, filters=32, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Convolution2D(input_channels=32, filters=64, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=64, filters=64, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(64*8*8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 6
0
def train():

    # build dataset
    data = Mnist(batch_size=64, train_valid_test_ratio=[5,1,1])

    # build model
    model = Sequential()
    model.add(Linear(prev_dim=28*28, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    learning_method = AdaGrad(learning_rate=0.1, momentum=0.9,
                              lr_decay_factor=0.9, decay_batch=10000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = mse,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    print 'test accuracy:', accuracy_score(y, ypred)
Ejemplo n.º 7
0
def train():
    # create a fake dataset
    X1 = np.random.rand(100000, 1000)
    y1 = np.random.rand(100000, 10)
    with open('X1.npy', 'wb') as xin, open('y1.npy', 'wb') as yin:
        np.save(xin, X1)
        np.save(yin, y1)

    X2 = np.random.rand(100000, 1000)
    y2 = np.random.rand(100000, 10)
    with open('X2.npy', 'wb') as xin, open('y2.npy', 'wb') as yin:
        np.save(xin, X2)
        np.save(yin, y2)

    X3 = np.random.rand(100000, 1000)
    y3 = np.random.rand(100000, 10)
    with open('X3.npy', 'wb') as xin, open('y3.npy', 'wb') as yin:
        np.save(xin, X3)
        np.save(yin, y3)

    # now we can create the data by putting the paths
    # ('X1.npy', 'y1.npy') and ('X2.npy', 'y2.npy') into DataBlocks
    data = DataBlocks(data_paths=[('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy'), ('X3.npy', 'y3.npy')],
                      batch_size=100, train_valid_test_ratio=[3,2,0], allow_preload=False)


    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=1000, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    for X_path, y_path in [('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy')]:
        with open(X_path) as Xin, open(y_path) as yin:
            # test the model on test set
            ypred = model.fprop(np.load(Xin))
            ypred = np.argmax(ypred, axis=1)
            y = np.argmax(np.load(yin), axis=1)
            accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
            print('combined accuracy for blk %s:'%X_path, accuracy)
Ejemplo n.º 8
0
def train():
    batch_size = 256
    short_memory = 0.9
    learning_rate = 0.005
    data = Cifar10(batch_size=batch_size, train_valid_test_ratio=[4, 1, 1])
    _, c, h, w = data.train.X.shape

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(
        Convolution2D(input_channels=c,
                      filters=8,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      border_mode='full'))
    h, w = full(h, w, kernel=3, stride=1)
    model.add(
        BatchNormalization(dim=8, layer_type='conv',
                           short_memory=short_memory))
    model.add(RELU())
    model.add(
        Convolution2D(input_channels=8,
                      filters=16,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      border_mode='valid'))
    h, w = valid(h, w, kernel=3, stride=1)
    model.add(
        BatchNormalization(dim=16,
                           layer_type='conv',
                           short_memory=short_memory))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(4, 4), stride=(4, 4), mode='max'))
    h, w = valid(h, w, kernel=4, stride=4)
    model.add(Flatten())
    model.add(Linear(16 * h * w, 512))
    model.add(
        BatchNormalization(dim=512, layer_type='fc',
                           short_memory=short_memory))
    model.add(RELU())

    model.add(Linear(512, 10))
    model.add(Softmax())

    # learning_method = RMSprop(learning_rate=learning_rate)
    learning_method = Adam(learning_rate=learning_rate)
    # learning_method = SGD(learning_rate=0.001)

    # Build Logger
    log = Log(
        experiment_name='cifar10_cnn_tutorial',
        description='This is a tutorial',
        save_outputs=True,  # log all the outputs from the screen
        save_model=True,  # save the best model
        save_epoch_error=True,  # log error at every epoch
        save_to_database={
            'name': 'hyperparam.sqlite3',
            'records': {
                'Batch_Size': batch_size,
                'Learning_Rate': learning_method.learning_rate
            }
        })  # end log

    # put everything into the train object
    train_object = TrainObject(model=model,
                               log=log,
                               dataset=data,
                               train_cost=entropy,
                               valid_cost=error,
                               learning_method=learning_method,
                               stop_criteria={
                                   'max_epoch': 100,
                                   'epoch_look_back': 10,
                                   'percent_decrease': 0.01
                               })
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 9
0
def train():
    # create a fake dataset
    X1 = np.random.rand(100000, 1000)
    y1 = np.random.rand(100000, 10)
    with open('X1.npy', 'wb') as xin, open('y1.npy', 'wb') as yin:
        np.save(xin, X1)
        np.save(yin, y1)

    X2 = np.random.rand(100000, 1000)
    y2 = np.random.rand(100000, 10)
    with open('X2.npy', 'wb') as xin, open('y2.npy', 'wb') as yin:
        np.save(xin, X2)
        np.save(yin, y2)

    X3 = np.random.rand(100000, 1000)
    y3 = np.random.rand(100000, 10)
    with open('X3.npy', 'wb') as xin, open('y3.npy', 'wb') as yin:
        np.save(xin, X3)
        np.save(yin, y3)

    # now we can create the data by putting the paths
    # ('X1.npy', 'y1.npy') and ('X2.npy', 'y2.npy') into DataBlocks
    data = DataBlocks(data_paths=[('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy'), ('X3.npy', 'y3.npy')],
                      batch_size=100, train_valid_test_ratio=[3,2,0])


    model = Sequential(input_var=T.matrix(), output_var=T.matrix())
    model.add(Linear(prev_dim=1000, this_dim=200))
    model.add(RELU())
    model.add(Linear(prev_dim=200, this_dim=100))
    model.add(RELU())
    model.add(Dropout(0.5))
    model.add(Linear(prev_dim=100, this_dim=10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    for X_path, y_path in [('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy')]:
        with open(X_path) as Xin, open(y_path) as yin:
            # test the model on test set
            ypred = model.fprop(np.load(Xin))
            ypred = np.argmax(ypred, axis=1)
            y = np.argmax(np.load(yin), axis=1)
            accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
            print 'combined accuracy for blk %s:'%X_path, accuracy
Ejemplo n.º 10
0
def train():

    data = Cifar10(batch_size=32, train_valid_test_ratio=[4, 1, 1])

    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(
        Convolution2D(input_channels=3,
                      filters=8,
                      kernel_size=(3, 3),
                      stride=(1, 1),
                      border_mode='full'))
    model.add(RELU())
    model.add(
        Convolution2D(input_channels=8,
                      filters=16,
                      kernel_size=(3, 3),
                      stride=(1, 1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(4, 4), stride=(4, 4), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(16 * 8 * 8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01,
                          momentum=0.9,
                          lr_decay_factor=0.9,
                          decay_batch=5000)

    # Build Logger
    log = Log(
        experiment_name='cifar10_cnn',
        description='This is a tutorial',
        save_outputs=True,  # log all the outputs from the screen
        save_model=True,  # save the best model
        save_epoch_error=True,  # log error at every epoch
        save_to_database={
            'name': 'hyperparam.sqlite3',
            'records': {
                'Batch_Size': data.batch_size,
                'Learning_Rate': learning_method.learning_rate,
                'Momentum': learning_method.momentum
            }
        })  # end log

    # put everything into the train object
    train_object = TrainObject(model=model,
                               log=log,
                               dataset=data,
                               train_cost=entropy,
                               valid_cost=error,
                               learning_method=learning_method,
                               stop_criteria={
                                   'max_epoch': 30,
                                   'epoch_look_back': 5,
                                   'percent_decrease': 0.01
                               })
    # finally run the code
    train_object.setup()
    train_object.run()

    # test the model on test set
    ypred = model.fprop(data.get_test().X)
    ypred = np.argmax(ypred, axis=1)
    y = np.argmax(data.get_test().y, axis=1)
    accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
    print 'test accuracy:', accuracy
Ejemplo n.º 11
0
def train():
    X1 = np.random.rand(1000, 3, 32, 32)
    y1 = np.random.rand(1000, 10)
    with open('X1.npy', 'wb') as xin, open('y1.npy', 'wb') as yin:
        np.save(xin, X1)
        np.save(yin, y1)

    X2 = np.random.rand(1000, 3, 32, 32)
    y2 = np.random.rand(1000, 10)
    with open('X2.npy', 'wb') as xin, open('y2.npy', 'wb') as yin:
        np.save(xin, X1)
        np.save(yin, y1)

    # now we can create the data by putting the paths
    # ('X1.npy', 'y1.npy') and ('X2.npy', 'y2.npy') into DataBlocks
    data = DataBlocks(data_paths=[('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy')],
                      batch_size=100, train_valid_test_ratio=[3,1,1])


    model = Sequential(input_var=T.tensor4(), output_var=T.matrix())
    model.add(Convolution2D(input_channels=3, filters=32, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=32, filters=32, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Convolution2D(input_channels=32, filters=64, kernel_size=(3,3), stride=(1,1), border_mode='full'))
    model.add(RELU())
    model.add(Convolution2D(input_channels=64, filters=64, kernel_size=(3,3), stride=(1,1)))
    model.add(RELU())
    model.add(Pooling2D(poolsize=(2, 2), mode='max'))
    model.add(Dropout(0.25))

    model.add(Flatten())
    model.add(Linear(64*8*8, 512))
    model.add(RELU())
    model.add(Dropout(0.5))

    model.add(Linear(512, 10))
    model.add(Softmax())

    # build learning method
    learning_method = SGD(learning_rate=0.01, momentum=0.9,
                          lr_decay_factor=0.9, decay_batch=5000)

    # put everything into the train object
    train_object = TrainObject(model = model,
                               log = None,
                               dataset = data,
                               train_cost = entropy,
                               valid_cost = error,
                               learning_method = learning_method,
                               stop_criteria = {'max_epoch' : 10,
                                                'epoch_look_back' : 5,
                                                'percent_decrease' : 0.01}
                               )
    # finally run the code
    train_object.setup()
    train_object.run()

    for X_path, y_path in [('X1.npy', 'y1.npy'), ('X2.npy', 'y2.npy')]:
        with open(X_path) as Xin, open(y_path) as yin:
            # test the model on test set
            ypred = model.fprop(np.load(Xin))
            ypred = np.argmax(ypred, axis=1)
            y = np.argmax(np.load(yin), axis=1)
            accuracy = np.equal(ypred, y).astype('f4').sum() / len(y)
            print 'combined accuracy for blk %s:'%X_path, accuracy