def calculate_list_of_independent_viper_run_indices_used_for_outlier_elimination(no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options, masterdir, rviper_iter, criterion_name): from utilities import combinations_of_n_taken_by_k # generate all possible combinations of (no_of_viper_runs_analyzed_together - 1) taken (3 - 1) at a time import itertools number_of_additional_combinations_for_this_viper_iteration = combinations_of_n_taken_by_k(no_of_viper_runs_analyzed_together - 1, no_of_viper_runs_analyzed_together_from_user_options - 1) criterion_measure = [0.0] * number_of_additional_combinations_for_this_viper_iteration all_n_minus_1_combinations_taken_k_minus_1_at_a_time = list(itertools.combinations(range(no_of_viper_runs_analyzed_together - 1), no_of_viper_runs_analyzed_together_from_user_options - 1)) no_of_processors = mpi_comm_size(MPI_COMM_WORLD) my_rank = mpi_comm_rank(MPI_COMM_WORLD) for idx, tuple_of_projection_indices in enumerate(all_n_minus_1_combinations_taken_k_minus_1_at_a_time): if (my_rank == idx % no_of_processors): list_of_viper_run_indices = list(tuple_of_projection_indices) + [no_of_viper_runs_analyzed_together - 1] criterion_measure[idx] = measure_for_outlier_criterion(criterion_name, masterdir, rviper_iter, list_of_viper_run_indices) plot_errors_between_any_number_of_projections(masterdir, rviper_iter, list_of_viper_run_indices, criterion_measure[idx]) criterion_measure = mpi_reduce(criterion_measure, number_of_additional_combinations_for_this_viper_iteration, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) if (my_rank == 0): index_of_sorted_criterion_measure_list = [i[0] for i in sorted(enumerate(criterion_measure), reverse=False, key=lambda x: x[1])] list_of_viper_run_indices_for_the_current_rrr_viper_iteration = list(all_n_minus_1_combinations_taken_k_minus_1_at_a_time[index_of_sorted_criterion_measure_list[0]]) + \ [no_of_viper_runs_analyzed_together - 1] mainoutputdir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ("%03d" + DIR_DELIM) % (rviper_iter) if criterion_measure[index_of_sorted_criterion_measure_list[0]] == TRIPLET_WITH_ANGLE_ERROR_LESS_THAN_THRESHOLD_HAS_BEEN_FOUND: list_of_viper_run_indices_for_the_current_rrr_viper_iteration.insert(0,MUST_END_PROGRAM_THIS_ITERATION) else: list_of_viper_run_indices_for_the_current_rrr_viper_iteration.insert(0,DUMMY_INDEX_USED_AS_BUFFER) if criterion_name == "80th percentile": pass_criterion = criterion_measure[index_of_sorted_criterion_measure_list[0]] < PERCENT_THRESHOLD_Y elif criterion_name == "fastest increase in the last quartile": pass_criterion = criterion_measure[index_of_sorted_criterion_measure_list[-1]] > PERCENT_THRESHOLD_Y else: pass_criterion = False if not pass_criterion: list_of_viper_run_indices_for_the_current_rrr_viper_iteration = [EMPTY_VIPER_RUN_INDICES_LIST] import json; f = open(mainoutputdir + "list_of_viper_runs_included_in_outlier_elimination.json", 'w') json.dump(list_of_viper_run_indices_for_the_current_rrr_viper_iteration[1:],f); f.close() mpi_barrier(MPI_COMM_WORLD) return list_of_viper_run_indices_for_the_current_rrr_viper_iteration mpi_barrier(MPI_COMM_WORLD) return [EMPTY_VIPER_RUN_INDICES_LIST]
def prepare_recons(data, symmetry, myid, main_node_half, half_start, step, index, finfo=None, npad = 4): from random import randint from utilities import reduce_EMData_to_root from mpi import mpi_barrier, MPI_COMM_WORLD nx = data[0].get_xsize() # from memorymonitor import MemoryMonitor # memory_mon = MemoryMonitor('rjhall') fftvol_half = EMData() weight_half = EMData() half_params = {"size":nx, "npad":npad, "symmetry":symmetry, "fftvol":fftvol_half, "weight":weight_half} half = Reconstructors.get( "nn4", half_params ) # print memory_mon.usage() half.setup() # print memory_mon.usage() group = -1 for i in xrange(half_start, len(data), step): if(index >-1 ): group = data[i].get_attr('group') if(group == index): if( data[i].get_attr_default('active',1) == 1): xform_proj = data[i].get_attr( "xform.projection" ) half.insert_slice(data[i], xform_proj ) if not(finfo is None): finfo.write( "begin reduce half\n" ) finfo.flush() reduce_EMData_to_root(fftvol_half, myid, main_node_half) reduce_EMData_to_root(weight_half, myid, main_node_half) if not(finfo is None): finfo.write( "after reduce half\n" ) finfo.flush() if myid == main_node_half: tmpid = randint(0, 1000000) fftvol_half_file = ("fftvol_half%d.hdf" % tmpid) weight_half_file = ("weight_half%d.hdf" % tmpid) fftvol_half.write_image(fftvol_half_file) weight_half.write_image(weight_half_file) mpi_barrier(MPI_COMM_WORLD) fftvol_half = None weight_half = None if myid == main_node_half: return fftvol_half_file, weight_half_file return None, None
def prepare_recons_ctf(nx, data, snr, symmetry, myid, main_node_half, half_start, step, finfo=None, npad = 4): from random import randint from utilities import reduce_EMData_to_root from mpi import mpi_barrier, MPI_COMM_WORLD fftvol_half = EMData() weight_half = EMData() half_params = {"size":nx, "npad":npad, "snr":snr, "sign":1, "symmetry":symmetry, "fftvol":fftvol_half, "weight":weight_half} half = Reconstructors.get( "nn4_ctf", half_params ) half.setup() for i in xrange(half_start, len(data), step): if( data[i].get_attr_default('active',1) == 1): xform_proj = data[i].get_attr( "xform.projection" ) half.insert_slice(data[i], xform_proj ) if not(finfo is None): finfo.write( "begin reduce half\n" ) finfo.flush() reduce_EMData_to_root(fftvol_half, myid, main_node_half) reduce_EMData_to_root(weight_half, myid, main_node_half) if not(finfo is None): finfo.write( "after reduce half\n" ) finfo.flush() if myid == main_node_half: tmpid = randint(0, 1000000) fftvol_half_file = ("fftvol_half%d.hdf" % tmpid) weight_half_file = ("weight_half%d.hdf" % tmpid) fftvol_half.write_image(fftvol_half_file) weight_half.write_image(weight_half_file) mpi_barrier(MPI_COMM_WORLD) fftvol_half = None weight_half = None if myid == main_node_half: return fftvol_half_file, weight_half_file return None,None
def cml_find_structure2(Prj, Ori, Rot, outdir, outname, maxit, first_zero, flag_weights, myid, main_node, number_of_proc): from projection import cml_export_progress, cml_disc, cml_export_txtagls import time, sys from random import shuffle,random from mpi import MPI_FLOAT, MPI_INT, MPI_SUM, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier # global vars global g_i_prj, g_n_prj, g_n_anglst, g_anglst, g_d_psi, g_debug, g_n_lines, g_seq # list of free orientation ocp = [-1] * g_n_anglst if first_zero: listprj = range(1, g_n_prj) ocp[0] = 0 else: listprj = range(g_n_prj) # to stop when the solution oscillates period_disc = [0, 0, 0] period_ct = 0 period_th = 2 #if not flag_weights: weights = [1.0] * g_n_lines # iteration loop for ite in xrange(maxit): #print ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ite = ", ite, " myid = ", myid t_start = time.time() # loop over i prj change = False tlistprj = listprj[:] shuffle(tlistprj) nnn = len(tlistprj) tlistprj = mpi_bcast(tlistprj, nnn, MPI_INT, main_node, MPI_COMM_WORLD) tlistprj = map(int, tlistprj) """ if(ite>1 and ite%5 == 0 and ite<140): if(myid == main_node): for i in xrange(0,len(tlistprj),5): ind = 4*i Ori[ind] = 360.*random() Ori[ind+1] = 180.*random() Ori[ind+2] = 360.*random() Ori[ind+3] = -1 for i in xrange(len(tlistprj)): ind = 4*i Ori[ind+3] = float(Ori[ind+3]) nnn = len(Ori) Ori = mpi_bcast(Ori, nnn, MPI_FLOAT, main_node, MPI_COMM_WORLD) Ori = map(float, Ori) for i in xrange(len(tlistprj)): ind = 4*i Ori[ind+3] = int(Ori[ind+3]) """ for iprj in tlistprj: #print "********************************** iprj = ", iprj, g_n_anglst # Store current the current orientation ind = 4*iprj store_phi = Ori[ind] store_theta = Ori[ind+1] store_psi = Ori[ind+2] cur_agl = Ori[ind+3] if cur_agl != -1: ocp[cur_agl] = -1 # prepare active index of cml for weighting in order to earn time later iw = [0] * (g_n_prj - 1) c = 0 ct = 0 for i in xrange(g_n_prj): for j in xrange(i+1, g_n_prj): if i == iprj or j == iprj: iw[ct] = c ct += 1 c += 1 # loop over all angles best_disc_list = [0]*g_n_anglst best_psi_list = [0]*g_n_anglst for iagl in xrange(myid, g_n_anglst, number_of_proc): # if orientation is free if ocp[iagl] == -1: # assign new orientation Ori[ind] = g_anglst[iagl][0] Ori[ind+1] = g_anglst[iagl][1] Rot = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind+1], 0.0) # weights if flag_weights: cml = Util.cml_line_in3d(Ori, g_seq, g_n_prj, g_n_lines) weights = Util.cml_weights(cml) mw = max(weights) for i in xrange(g_n_lines): weights[i] = mw - weights[i] sw = sum(weights) if sw == 0: weights = [6.28 / float(g_n_lines)] * g_n_lines else: for i in xrange(g_n_lines): weights[i] /= sw weights[i] *= weights[i] # spin all psi com = Util.cml_line_insino(Rot, iprj, g_n_prj) if flag_weights: res = Util.cml_spin_psi(Prj, com, weights, iprj, iw, g_n_psi, g_d_psi, g_n_prj) else: res = Util.cml_spin_psi_now(Prj, com, iprj, iw, g_n_psi, g_d_psi, g_n_prj) # select the best best_disc_list[iagl] = res[0] best_psi_list[iagl] = res[1] if g_debug: cml_export_progress(outdir, ite, iprj, iagl, res[1], res[0], 'progress') else: if g_debug: cml_export_progress(outdir, ite, iprj, iagl, -1, -1, 'progress') best_disc_list = mpi_reduce(best_disc_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) best_psi_list = mpi_reduce(best_psi_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) best_psi = -1 best_iagl = -1 if myid == main_node: best_disc = 1.0e20 for iagl in xrange(g_n_anglst): if best_disc_list[iagl] > 0.0 and best_disc_list[iagl] < best_disc: best_disc = best_disc_list[iagl] best_psi = best_psi_list[iagl] best_iagl = iagl best_psi = mpi_bcast(best_psi, 1, MPI_FLOAT, main_node, MPI_COMM_WORLD) best_iagl = mpi_bcast(best_iagl, 1, MPI_INT, main_node, MPI_COMM_WORLD) best_psi = float(best_psi[0]) best_iagl = int(best_iagl[0]) #print "xxxxx myid = ", myid, " best_psi = ", best_psi, " best_ialg = ", best_iagl # if change, assign if best_iagl != cur_agl: ocp[best_iagl] = iprj Ori[ind] = g_anglst[best_iagl][0] # phi Ori[ind+1] = g_anglst[best_iagl][1] # theta Ori[ind+2] = best_psi * g_d_psi # psi Ori[ind+3] = best_iagl # index change = True else: if cur_agl != -1: ocp[cur_agl] = iprj Ori[ind] = store_phi Ori[ind+1] = store_theta Ori[ind+2] = store_psi Ori[ind+3] = cur_agl Rot = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind+1], Ori[ind+2]) if g_debug: cml_export_progress(outdir, ite, iprj, best_iagl, best_psi * g_d_psi, best_disc, 'choose') # if one change, compute new full disc disc = cml_disc(Prj, Ori, Rot, flag_weights) # display in the progress file if myid == main_node: cml_export_txtagls(outdir, outname, Ori, disc, 'Ite: %03i' % (ite + 1)) if not change: break # to stop when the solution oscillates period_disc.pop(0) period_disc.append(disc) if period_disc[0] == period_disc[2]: period_ct += 1 if period_ct >= period_th and min(period_disc) == disc and myid == main_node: angfile = open(outdir + '/' + outname, 'a') angfile.write('\nSTOP SOLUTION UNSTABLE\n') angfile.write('Discrepancy period: %s\n' % period_disc) angfile.close() break else: period_ct = 0 mpi_barrier(MPI_COMM_WORLD) return Ori, disc, ite
t1a = time.time() if (myid == 0): print "\n\nsolution=", b[1:5], "\n\n" if (myid == 0): b = numpy.ones(nrow, 'd') for i in range(0, nrow): b[i] = i * 2 option = 2 ##### option=2 => do a solve changing only the right hand ##### side. reuse the previously factored matrix t2b = time.time() b = mpi.par_slu(values, rowptr, colptr, b, nrow, nnz, nrhs, option) t2a = time.time() if (myid == 0): print "\n\nsolution=", b[1:5], "\n\n" mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ##### option=3 => clean up the memory allocated by option=1. ##### this should be done before calling with a ##### new matrix option = 3 if (myid == 0): print "doing option 3" t3b = time.time() b = mpi.par_slu(values, rowptr, colptr, b, nrow, nnz, nrhs, option) t3a = time.time() print myid, "done with 3" ##### redo with a scaled "values" option = 1 values = values * 0.5 if (myid == 0): b = numpy.ones(nrow, 'd')
def cml_find_structure2(Prj, Ori, Rot, outdir, outname, maxit, first_zero, flag_weights, myid, main_node, number_of_proc): from projection import cml_export_progress, cml_disc, cml_export_txtagls import time, sys from random import shuffle, random from mpi import MPI_FLOAT, MPI_INT, MPI_SUM, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier # global vars global g_i_prj, g_n_prj, g_n_anglst, g_anglst, g_d_psi, g_debug, g_n_lines, g_seq # list of free orientation ocp = [-1] * g_n_anglst if first_zero: listprj = range(1, g_n_prj) ocp[0] = 0 else: listprj = range(g_n_prj) # to stop when the solution oscillates period_disc = [0, 0, 0] period_ct = 0 period_th = 2 #if not flag_weights: weights = [1.0] * g_n_lines # iteration loop for ite in xrange(maxit): #print ">>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ite = ", ite, " myid = ", myid t_start = time.time() # loop over i prj change = False tlistprj = listprj[:] shuffle(tlistprj) nnn = len(tlistprj) tlistprj = mpi_bcast(tlistprj, nnn, MPI_INT, main_node, MPI_COMM_WORLD) tlistprj = map(int, tlistprj) """ if(ite>1 and ite%5 == 0 and ite<140): if(myid == main_node): for i in xrange(0,len(tlistprj),5): ind = 4*i Ori[ind] = 360.*random() Ori[ind+1] = 180.*random() Ori[ind+2] = 360.*random() Ori[ind+3] = -1 for i in xrange(len(tlistprj)): ind = 4*i Ori[ind+3] = float(Ori[ind+3]) nnn = len(Ori) Ori = mpi_bcast(Ori, nnn, MPI_FLOAT, main_node, MPI_COMM_WORLD) Ori = map(float, Ori) for i in xrange(len(tlistprj)): ind = 4*i Ori[ind+3] = int(Ori[ind+3]) """ for iprj in tlistprj: #print "********************************** iprj = ", iprj, g_n_anglst # Store current the current orientation ind = 4 * iprj store_phi = Ori[ind] store_theta = Ori[ind + 1] store_psi = Ori[ind + 2] cur_agl = Ori[ind + 3] if cur_agl != -1: ocp[cur_agl] = -1 # prepare active index of cml for weighting in order to earn time later iw = [0] * (g_n_prj - 1) c = 0 ct = 0 for i in xrange(g_n_prj): for j in xrange(i + 1, g_n_prj): if i == iprj or j == iprj: iw[ct] = c ct += 1 c += 1 # loop over all angles best_disc_list = [0] * g_n_anglst best_psi_list = [0] * g_n_anglst for iagl in xrange(myid, g_n_anglst, number_of_proc): # if orientation is free if ocp[iagl] == -1: # assign new orientation Ori[ind] = g_anglst[iagl][0] Ori[ind + 1] = g_anglst[iagl][1] Rot = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind + 1], 0.0) # weights if flag_weights: cml = Util.cml_line_in3d(Ori, g_seq, g_n_prj, g_n_lines) weights = Util.cml_weights(cml) mw = max(weights) for i in xrange(g_n_lines): weights[i] = mw - weights[i] sw = sum(weights) if sw == 0: weights = [6.28 / float(g_n_lines)] * g_n_lines else: for i in xrange(g_n_lines): weights[i] /= sw weights[i] *= weights[i] # spin all psi com = Util.cml_line_insino(Rot, iprj, g_n_prj) if flag_weights: res = Util.cml_spin_psi(Prj, com, weights, iprj, iw, g_n_psi, g_d_psi, g_n_prj) else: res = Util.cml_spin_psi_now(Prj, com, iprj, iw, g_n_psi, g_d_psi, g_n_prj) # select the best best_disc_list[iagl] = res[0] best_psi_list[iagl] = res[1] if g_debug: cml_export_progress(outdir, ite, iprj, iagl, res[1], res[0], 'progress') else: if g_debug: cml_export_progress(outdir, ite, iprj, iagl, -1, -1, 'progress') best_disc_list = mpi_reduce(best_disc_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) best_psi_list = mpi_reduce(best_psi_list, g_n_anglst, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) best_psi = -1 best_iagl = -1 if myid == main_node: best_disc = 1.0e20 for iagl in xrange(g_n_anglst): if best_disc_list[iagl] > 0.0 and best_disc_list[ iagl] < best_disc: best_disc = best_disc_list[iagl] best_psi = best_psi_list[iagl] best_iagl = iagl best_psi = mpi_bcast(best_psi, 1, MPI_FLOAT, main_node, MPI_COMM_WORLD) best_iagl = mpi_bcast(best_iagl, 1, MPI_INT, main_node, MPI_COMM_WORLD) best_psi = float(best_psi[0]) best_iagl = int(best_iagl[0]) #print "xxxxx myid = ", myid, " best_psi = ", best_psi, " best_ialg = ", best_iagl # if change, assign if best_iagl != cur_agl: ocp[best_iagl] = iprj Ori[ind] = g_anglst[best_iagl][0] # phi Ori[ind + 1] = g_anglst[best_iagl][1] # theta Ori[ind + 2] = best_psi * g_d_psi # psi Ori[ind + 3] = best_iagl # index change = True else: if cur_agl != -1: ocp[cur_agl] = iprj Ori[ind] = store_phi Ori[ind + 1] = store_theta Ori[ind + 2] = store_psi Ori[ind + 3] = cur_agl Rot = Util.cml_update_rot(Rot, iprj, Ori[ind], Ori[ind + 1], Ori[ind + 2]) if g_debug: cml_export_progress(outdir, ite, iprj, best_iagl, best_psi * g_d_psi, best_disc, 'choose') # if one change, compute new full disc disc = cml_disc(Prj, Ori, Rot, flag_weights) # display in the progress file if myid == main_node: cml_export_txtagls(outdir, outname, Ori, disc, 'Ite: %03i' % (ite + 1)) if not change: break # to stop when the solution oscillates period_disc.pop(0) period_disc.append(disc) if period_disc[0] == period_disc[2]: period_ct += 1 if period_ct >= period_th and min( period_disc) == disc and myid == main_node: angfile = open(outdir + '/' + outname, 'a') angfile.write('\nSTOP SOLUTION UNSTABLE\n') angfile.write('Discrepancy period: %s\n' % period_disc) angfile.close() break else: period_ct = 0 mpi_barrier(MPI_COMM_WORLD) return Ori, disc, ite
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group",type="int" , default=100 , help="number of images per group" ) parser.add_option("--radius", type="int" , default=-1 , help="radius for alignment" ) parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--iter", type="int" , default=30, help="number of iterations within alignment (default = 30)" ) parser.add_option("--num_ali", type="int" , default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--thld_err", type="float" , default=1.0, help="threshold of pixel error (default = 1.732)" ) parser.add_option("--grouping" , type="string" , default="GRP", help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size") parser.add_option("--delta", type="float" , default=-1.0, help="angular step for reference projections (required for GEV method)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") (options,args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx/2-2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ",myid," ",len(proj_list_all),time()-st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima/img_per_grp-1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i%number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ",myid," ",time()-st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin: img_end] del refproj ref_ang = [0.0]*(len(refprojdir)*2) for i in xrange(len(refprojdir)): ref_ang[i*2] = refprojdir[0][0] ref_ang[i*2+1] = refprojdir[0][1]+i*0.1 print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ",myid," ",time()-st proj_ang = [0.0]*(nima*2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i*2] = dp["phi"] proj_ang[i*2+1] = dp["theta"] print " C ",myid," ",time()-st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp]) del asi print " D ",myid," ",time()-st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ",myid," ",time()-st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ",myid," ",time()-st from utilities import nearest_proj proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end)) refprojdir = proj_params[img_begin: img_end] del proj_params, mirror_list print " D ",myid," ",time()-st else: ERROR("Incorrect projection grouping option","sxproj_stability",1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx,ny)]*len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0,0.0,-1.0]]*len(proj_list) for i in xrange(len(proj_list)): print " E ",myid," ",time()-st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend( [alpha, sx, sy, mirror] ) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1) #print " H ",myid," ",time()-st if(len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj(class_data[j]) if( theta > 90.0): phi = (phi+540.0)%360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi*phi vtht += theta*theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l>1 : l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l*aphi*aphi)/l vtht = (vtht - l*atht*atht)/l from math import sqrt refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ",i, refprojdir[i] aveList[i].set_attr('members',[-1]) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(args): from utilities import if_error_then_all_processes_exit_program, write_text_row, drop_image, model_gauss_noise, get_im, set_params_proj, wrap_mpi_bcast, model_circle, bcast_number_to_all from logger import Logger, BaseLogger_Files from mpi import mpi_init, mpi_finalize, MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_barrier import user_functions import sys import os from applications import MPI_start_end from optparse import OptionParser, SUPPRESS_HELP from global_def import SPARXVERSION from EMAN2 import EMData from multi_shc import multi_shc progname = os.path.basename(sys.argv[0]) usage = progname + " stack [output_directory] --ir=inner_radius --rs=ring_step --xr=x_range --yr=y_range --ts=translational_search_step --delta=angular_step --center=center_type --maxit1=max_iter1 --maxit2=max_iter2 --L2threshold=0.1 --ref_a=S --sym=c1" usage += """ stack 2D images in a stack file: (default required string) directory output directory name: into which the results will be written (if it does not exist, it will be created, if it does exist, the results will be written possibly overwriting previous results) (default required string) """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--radius", type="int", default=29, help= "radius of the particle: has to be less than < int(nx/2)-1 (default 29)" ) parser.add_option( "--xr", type="string", default='0', help= "range for translation search in x direction: search is +/xr in pixels (default '0')" ) parser.add_option( "--yr", type="string", default='0', help= "range for translation search in y direction: if omitted will be set to xr, search is +/yr in pixels (default '0')" ) parser.add_option("--mask3D", type="string", default=None, help="3D mask file: (default sphere)") parser.add_option( "--moon_elimination", type="string", default='', help= "elimination of disconnected pieces: two arguments: mass in KDa and pixel size in px/A separated by comma, no space (default none)" ) parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational search: > 0 (default 1)") # 'radius' and 'ou' are the same as per Pawel's request; 'ou' is hidden from the user # the 'ou' variable is not changed to 'radius' in the 'sparx' program. This change is at interface level only for sxviper. ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--ou", type="int", default=-1, help=SUPPRESS_HELP) parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational search: >0 (default 1)") parser.add_option( "--ts", type="string", default='1.0', help= "step size of the translation search in x-y directions: search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default '1.0')" ) parser.add_option( "--delta", type="string", default='2.0', help="angular step of reference projections: (default '2.0')") parser.add_option( "--center", type="float", default=-1.0, help= "centering of 3D template: average shift method; 0: no centering; 1: center of gravity (default -1.0)" ) parser.add_option( "--maxit1", type="int", default=400, help= "maximum number of iterations performed for the GA part: (default 400)" ) parser.add_option( "--maxit2", type="int", default=50, help= "maximum number of iterations performed for the finishing up part: (default 50)" ) parser.add_option( "--L2threshold", type="float", default=0.03, help= "stopping criterion of GA: given as a maximum relative dispersion of volumes' L2 norms: (default 0.03)" ) parser.add_option( "--ref_a", type="string", default='S', help= "method for generating the quasi-uniformly distributed projection directions: (default S)" ) parser.add_option( "--sym", type="string", default='c1', help="point-group symmetry of the structure: (default c1)") # parser.add_option("--function", type="string", default="ref_ali3d", help="name of the reference preparation function (ref_ali3d by default)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--function", type="string", default="ref_ali3d", help=SUPPRESS_HELP) parser.add_option( "--nruns", type="int", default=6, help= "GA population: aka number of quasi-independent volumes (default 6)") parser.add_option( "--doga", type="float", default=0.1, help= "do GA when fraction of orientation changes less than 1.0 degrees is at least doga: (default 0.1)" ) ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--npad", type="int", default=2, help="padding size for 3D reconstruction (default=2)") parser.add_option( "--fl", type="float", default=0.25, help= "cut-off frequency applied to the template volume: using a hyperbolic tangent low-pass filter (default 0.25)" ) parser.add_option( "--aa", type="float", default=0.1, help="fall-off of hyperbolic tangent low-pass filter: (default 0.1)") parser.add_option( "--pwreference", type="string", default='', help="text file with a reference power spectrum: (default none)") parser.add_option("--debug", action="store_true", default=False, help="debug info printout: (default False)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--return_options", action="store_true", dest="return_options", default=False, help=SUPPRESS_HELP) #parser.add_option("--an", type="string", default= "-1", help="NOT USED angular neighborhood for local searches (phi and theta)") #parser.add_option("--CTF", action="store_true", default=False, help="NOT USED Consider CTF correction during the alignment ") #parser.add_option("--snr", type="float", default= 1.0, help="NOT USED Signal-to-Noise Ratio of the data (default 1.0)") # (options, args) = parser.parse_args(sys.argv[1:]) required_option_list = ['radius'] (options, args) = parser.parse_args(args) # option_dict = vars(options) # print parser if options.return_options: return parser if options.moon_elimination == "": options.moon_elimination = [] else: options.moon_elimination = list( map(float, options.moon_elimination.split(","))) # Making sure all required options appeared. for required_option in required_option_list: if not options.__dict__[required_option]: print("\n ==%s== mandatory option is missing.\n" % required_option) print("Please run '" + progname + " -h' for detailed options") return 1 if len(args) < 2 or len(args) > 3: print("usage: " + usage) print("Please run '" + progname + " -h' for detailed options") return 1 mpi_init(0, []) log = Logger(BaseLogger_Files()) # 'radius' and 'ou' are the same as per Pawel's request; 'ou' is hidden from the user # the 'ou' variable is not changed to 'radius' in the 'sparx' program. This change is at interface level only for sxviper. options.ou = options.radius runs_count = options.nruns mpi_rank = mpi_comm_rank(MPI_COMM_WORLD) mpi_size = mpi_comm_size( MPI_COMM_WORLD) # Total number of processes, passed by --np option. if mpi_rank == 0: all_projs = EMData.read_images(args[0]) subset = list(range(len(all_projs))) # if mpi_size > len(all_projs): # ERROR('Number of processes supplied by --np needs to be less than or equal to %d (total number of images) ' % len(all_projs), 'sxviper', 1) # mpi_finalize() # return else: all_projs = None subset = None outdir = args[1] error = 0 if mpi_rank == 0: if mpi_size % options.nruns != 0: ERROR( 'Number of processes needs to be a multiple of total number of runs. Total runs by default are 3, you can change it by specifying --nruns option.', 'sxviper', 0) error = 1 if os.path.exists(outdir): ERROR( 'Output directory %s exists, please change the name and restart the program' % outdir, "sxviper", 0) error = 1 import global_def global_def.LOGFILE = os.path.join(outdir, global_def.LOGFILE) mpi_barrier(MPI_COMM_WORLD) error = bcast_number_to_all(error, source_node=0, mpi_comm=MPI_COMM_WORLD) if error == 1: mpi_finalize() return if mpi_rank == 0: os.mkdir(outdir) if outdir[-1] != "/": outdir += "/" log.prefix = outdir # if len(args) > 2: # ref_vol = get_im(args[2]) # else: #ref_vol = None options.user_func = user_functions.factory[options.function] options.CTF = False options.snr = 1.0 options.an = -1.0 from multi_shc import multi_shc out_params, out_vol, out_peaks = multi_shc(all_projs, subset, runs_count, options, mpi_comm=MPI_COMM_WORLD, log=log) mpi_finalize()
def main(): from EMAN2 import EMData from utilities import write_text_file from mpi import mpi_init, mpi_finalize, MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_comm_split, mpi_barrier from logger import Logger, BaseLogger_Files from air import air import sys import os import user_functions from optparse import OptionParser from global_def import SPARXVERSION progname = os.path.basename(sys.argv[0]) usage = progname + " projections minimal_subset_size target_threshold output_directory --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --yr=y_range --ts=translational_search_step --delta=angular_step --an=angular_neighborhood --center=center_type --maxit=max_iter --CTF --snr=SNR --ref_a=S --sym=c1 --function=user_function --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option( "--ou", type="int", default=-1, help= "outer radius for rotational correlation < int(nx/2)-1 (set to the radius of the particle)" ) parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default="0", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option("--delta", type="string", default="2", help="angular step of reference projections") parser.add_option( "--an", type="string", default="-1", help="angular neighborhood for local searches (phi and theta)") parser.add_option( "--center", type="float", default=-1, help= "-1: average shift method; 0: no centering; 1: center of gravity (default=-1)" ) parser.add_option( "--maxit", type="float", default=50, help= "maximum number of iterations performed for each angular step (set to 50) " ) parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--snr", type="float", default=1.0, help="Signal-to-Noise Ratio of the data") parser.add_option( "--ref_a", type="string", default="S", help= "method for generating the quasi-uniformly distributed projection directions (default S)" ) parser.add_option("--sym", type="string", default="c1", help="symmetry of the refined structure") parser.add_option( "--function", type="string", default="ref_ali3d", help="name of the reference preparation function (ref_ali3d by default)" ) parser.add_option("--npad", type="int", default=2, help="padding size for 3D reconstruction (default=2)") parser.add_option( "--MPI", action="store_true", default=True, help="whether to use MPI version - this is always set to True") parser.add_option( "--proc_mshc", type="int", default=3, help="number of MPI processes per multiSHC, 3 is minimum (default=3)") (options, args) = parser.parse_args(sys.argv[1:]) if len(args) < 4: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" return 1 mpi_init(0, []) mpi_size = mpi_comm_size(MPI_COMM_WORLD) mpi_rank = mpi_comm_rank(MPI_COMM_WORLD) proc_per_mshc = int(options.proc_mshc) if mpi_size < proc_per_mshc: print "Number of processes can't be smaller than value given as the parameter --proc_mshc" mpi_finalize() return log = Logger(BaseLogger_Files()) projs = EMData.read_images(args[0]) minimal_subset_size = int(args[1]) target_threshold = float(args[2]) outdir = args[3] if mpi_rank == 0: if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "sxmulti_shc", 1) mpi_finalize() return os.mkdir(outdir) import global_def global_def.LOGFILE = os.path.join(outdir, global_def.LOGFILE) mpi_barrier(MPI_COMM_WORLD) if outdir[-1] != "/": outdir += "/" log.prefix = outdir me = wrap_mpi_split(MPI_COMM_WORLD, mpi_size / proc_per_mshc) options.user_func = user_functions.factory[options.function] new_subset, new_threshold = air(projs, minimal_subset_size, target_threshold, options, number_of_runs=6, number_of_winners=3, mpi_env=me, log=log) if mpi_rank == 0: log.add("Output threshold =", new_threshold) log.add("Output subset: ", len(new_subset), new_subset) write_text_file(new_subset, log.prefix + "final_subset.txt") mpi_finalize()
def ali3d_MPI(stack, ref_vol, outdir, maskfile=None, ir=1, ou=-1, rs=1, xr="4 2 2 1", yr="-1", ts="1 1 0.5 0.25", delta="10 6 4 4", an="-1", center=0, maxit=5, term=95, CTF=False, fourvar=False, snr=1.0, ref_a="S", sym="c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="0.0 50.0", full_output=False, compare_repro=False, compare_ref_free="-1", ref_free_cutoff="-1 -1 -1 -1", wcmask=None, debug=False, recon_pad=4, olmask=75): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ", myid, " waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d" % myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else: yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff) < lstp: for i in xrange(len(pix_cutoff), lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count(ref_vol) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count(maskfile) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im = EMData.read_images(stack, [0]) bx = im[0].get_xsize() if bx != nx: print_msg( "Error: Stack box size (%i) differs from initial model (%i)\n" % (bx, nx)) sys.exit() del im, bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane = 5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2 * nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp = [0] * nrefs dphi = [0] * nrefs vdp = [0] * nrefs vdphi = [0] * nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir, "hpar%02d.spi" % (iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref * 2]), float(hpars[(iref * 2) + 1])] dp[iref], dphi[iref], vdp[iref], vdphi[iref] = createHpar( hpar, proto[iref], params, vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx / 2) - 2: last_ring = int(nx / 2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n" % (stack)) print_msg("Reference volume : %s\n" % (ref_vol)) print_msg("Output directory : %s\n" % (outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n" % (maskfile, nmasks)) print_msg("Inner radius : %i\n" % (first_ring)) print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %s\n" % (xrng)) print_msg("Y search range : %s\n" % (yrng)) print_msg("Translational step : %s\n" % (step)) print_msg("Angular step : %s\n" % (delta)) print_msg("Angular search range : %s\n" % (an)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("Center type : %i\n" % (center)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Reference projection method : %s\n" % (ref_a)) print_msg("Symmetry group : %s\n" % (sym)) print_msg("Fourier padding for 3D : %i\n" % (recon_pad)) print_msg("Number of reference models : %i\n" % (nrefs)) print_msg("Sort images between models : %s\n" % (sort)) print_msg("Allow images to jump : %s\n" % (mjump)) print_msg("CC cutoff standard dev : %f\n" % (cutoff)) print_msg("Two tail cutoff : %s\n" % (two_tail)) print_msg("Termination pix error : %f\n" % (term)) print_msg("Pixel error cutoff : %s\n" % (pix_cutoff)) print_msg("Restart : %s\n" % (restart)) print_msg("Full output : %s\n" % (full_output)) print_msg("Compare reprojections : %s\n" % (compare_repro)) print_msg("Compare ref free class avgs : %s\n" % (compare_ref_free)) print_msg("Use cutoff from ref free : %s\n" % (ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n" % (proto)) print_msg("Using helical search range : %s\n" % hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n" % hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n" % vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100): print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring, nx, nx) - model_circle(first_ring, nx, nx) fscmask = model_circle(last_ring, nx, nx, nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node=main_node) if myid != main_node: list_of_particles = [-1] * total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node=main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start:image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" % (image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({ "type": "spider", "phi": 0, "theta": 0, "psi": 0, "tx": 0, "ty": 0 }) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref, im in ((iref, im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i" % iref) except: data[im].set_attr("eulers_txty.%i" % iref, t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf = os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data, olmask, lmask, ilmask, cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask = [] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg( "Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign=-1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx, apix, ou, lmask, h_angle) data[im] *= bmask del bmask if debug: finfo.write('%d loaded \n' % nima) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [mask3D, max(center, 0), None, None, None, None] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if (im == main_node): disps.append(0) disps_score.append(0) else: disps.append(disps[im - 1] + recvcount[im - 1]) disps_score.append(disps_score[im - 1] + recvcount_score[im - 1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append(ie - ib) recvcount_score.append((ie - ib) * nrefs) pixer = [0.0] * nima cs = [0.0] * 3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % itout), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % itout), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % itout), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while (Iter < max_iter - 1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" % (delta[N_step], Iter) if myid == main_node: print_msg( "ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n" % (N_step, Iter, delta[N_step], an[N_step], xrng[N_step], yrng[N_step], step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft, kb = prep_vol(vol[iref]) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90 - oplane theta2 = 90 + oplane refrings = prepare_refrings(volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi="Minus", initial_theta=theta1, delta_theta=theta2) del volft, kb if myid == main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() for im in xrange(nima): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], finfo) else: t1, peak, pixer[im] = proj_ali_incore_local( data[im], refrings, numr, xrng[N_step], yrng[N_step], step[N_step], an[N_step], finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i" % iref, t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1, t2, numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti, []) pixelmultisend = sum(pixelmulti, []) tmp = mpi_gatherv(scoremultisend, len(scoremultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend, len(pixelmultisend), MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node, MPI_COMM_WORLD) tmp = mpi_bcast(tmp, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1, (total_nima * nrefs), MPI_FLOAT, 0, MPI_COMM_WORLD) tmp = map(float, tmp) tmp1 = map(float, tmp1) score = array(tmp).reshape(-1, nrefs) pixelerror = array(tmp1).reshape(-1, nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if (myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if (region[0] < 0.0): region[0] = 0.0 print_msg( "Histogram of pixel errors\n ERROR number of particles\n" ) for lhx in xrange(lhist): print_msg(" %10.3f %7d\n" % (region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if (region[lhx] > 1.0): break im += histo[lhx] print_msg("Percent of particles with pixel error < 1: %f\n\n" % (im / float(total_nima) * 100)) term_cond = float(term) / 100 if (im / float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if (sort == False): data[im].set_attr('group', 999) elif (mjump[N_step] == 1): data[im].set_attr('group', int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step] == 1 and (terminate == 1 or Iter == max_iter - 1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score', int(777)) if (score_local[im][int(res_max[im])] < cut[int( res_max[im])]) or (two_tail and score_local[im][int( res_max[im])] > cut2[int(res_max[im])]): data[im].set_attr('group', int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if (pix_run == 777): data[im].set_attr('group', int(777)) minus_pix[int( res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group', int(666)) minus_ref[int( res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref, nrefs, MPI_FLOAT, MPI_SUM, 0, MPI_COMM_WORLD) if (myid == main_node): if (sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n" % (res * 1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n" % (afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n" % (afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n" % (afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if (center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy = EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI( data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if (sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection', transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection', transmulti[im][iref]) if (nrefs == 1): modout = "" else: modout = "_model_%02d" % (iref) fscfile = os.path.join(outdir, "fsc_%s%s" % (itout, modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF( data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf" % (itout)) ssnr_file = os.path.join(outdir, "ssnr_%s" % (itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg( "Time to calculate 3D Fourier variance for model %i: %s\n" % (iref, legibleTime(time() - start_time))) start_time = time() varf = 1.0 / varf varf.write_image(outvar, -1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep = None if vertstep is not None: vstep = (vdp[iref], vdphi[iref]) print_msg( "Old rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) hvals = processHelicalVol(vol[iref], voleve[iref], volodd[iref], iref, outdir, itout, dp[iref], dphi[iref], apix, hsearch, findseam, vstep, wcmask) (vol[iref], voleve[iref], volodd[iref], dp[iref], dphi[iref], vdp[iref], vdphi[iref]) = hvals print_msg( "New rise and twist for model %i : %8.3f, %8.3f\n" % (iref, dp[iref], dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask(volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg( "Time to search and apply helical symmetry for model %i: %s\n\n" % (iref, legibleTime(time() - start_time))) start_time = time() else: vol[iref].write_image( os.path.join(outdir, "vol_%s.hdf" % (itout)), -1) if save_half is True: volodd[iref].write_image( os.path.join(outdir, "volodd_%s.hdf" % (itout)), -1) voleve[iref].write_image( os.path.join(outdir, "voleve_%s.hdf" % (itout)), -1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs, fl = ref_ali3d(ref_data) vol[iref].write_image( os.path.join(outdir, "volf_%s.hdf" % (itout)), -1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join( outdir, "ref_free_%s%s" % (itout, modout)) rejects = compare(compare_ref_free, outfile_repro, ref_free_output, yrng[N_step], xrng[N_step], rstep, nx, apix, ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection', 'ID', 'group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i' % iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision=2) print_msg("%s%s\n\n" % (res_msg, ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s" % itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack, im, True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" % ( pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"], g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def main(): from time import sleep from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while( i < len(sys.argv) ): if sys.argv[i]=='-p4pg': i = i+2 elif sys.argv[i]=='-p4wd': i = i+2 else: arglist.append( sys.argv[i] ) i = i+1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--focus", type="string", default=None, help="3D mask for focused clustering ") parser.add_option("--ir", type= "int", default= 1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option("--radius", type= "int", default=-1, help="outer radius for rotational correlation <nx-1 (set to the radius of the particle)") parser.add_option("--maxit", type= "int", default=50, help="maximum number of iteration") parser.add_option("--rs", type= "int", default=1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option("--yr", type="string", default='-1', help="range for translation search in y direction, search is +/-yr (default = same as xr)") parser.add_option("--ts", type="string", default='0.25', help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ") parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option("--center", type="int", default=0, help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)") parser.add_option("--nassign", type="int", default=1, help="number of reassignment iterations performed for each angular step (set to 3) ") parser.add_option("--nrefine", type="int", default=0, help="number of alignment iterations performed for each angular step (set to 1) ") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default= 3, help="number of independent run") parser.add_option("--number_of_images_per_group", type='int', default=1000, help="number of images per groups") parser.add_option("--low_pass_filter", type="float", default=-1.0, help="absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting" ) parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option("--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group" ) parser.add_option("--previous_run1", type="string", default='', help="two previous runs" ) parser.add_option("--previous_run2", type="string", default='', help="two previous runs" ) parser.add_option("--group_size_for_unaccounted", type="int", default=500, help="size for unaccounted particles" ) parser.add_option("--chunkdir", type="string", default='', help="chunkdir for computing margin of error") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--PWadjustment", type="string", default='', help="1-D power spectrum of PDB file used for EM volume power spectrum correction") parser.add_option("--protein_shape", type="string", default='g', help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ") parser.add_option("--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option("--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options, trl and 4nn") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args)>2: mask_file = args[2] else: mask_file = None orgstack =args[0] masterdir =args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size( mpi.MPI_COMM_WORLD ) myid = mpi.mpi_comm_rank( mpi.MPI_COMM_WORLD ) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # Create the main log file from sp_logger import Logger,BaseLogger_Files if myid ==main_node: log_main=Logger(BaseLogger_Files()) log_main.prefix=masterdir+"/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants ={} Constants["stack"] =args[0] Constants["masterdir"] =masterdir Constants["mask3D"] =mask_file Constants["focus3Dmask"] =options.focus Constants["indep_runs"] =options.independent Constants["stoprnct"] =options.stoprnct Constants["number_of_images_per_group"] =options.number_of_images_per_group Constants["CTF"] =options.CTF Constants["maxit"] =options.maxit Constants["ir"] =options.ir Constants["radius"] =options.radius Constants["nassign"] =options.nassign Constants["rs"] =options.rs Constants["xr"] =options.xr Constants["yr"] =options.yr Constants["ts"] =options.ts Constants["delta"] =options.delta Constants["an"] =options.an Constants["sym"] =options.sym Constants["center"] =options.center Constants["nrefine"] =options.nrefine Constants["user_func"] =options.function Constants["low_pass_filter"] =options.low_pass_filter # enforced low_pass_filter Constants["main_log_prefix"] =args[1] #Constants["importali3d"] =options.importali3d Constants["myid"] =myid Constants["main_node"] =main_node Constants["nproc"] =nproc Constants["log_main"] =log_main Constants["nxinit"] =options.nxinit Constants["unaccounted"] =options.unaccounted Constants["seed"] =options.seed Constants["smallest_group"] =options.smallest_group Constants["previous_runs"] =options.previous_run1+" "+options.previous_run2 Constants["sausage"] =options.sausage Constants["chunkdir"] =options.chunkdir Constants["PWadjustment"] =options.PWadjustment Constants["upscale"] =options.upscale Constants["wn"] =options.wn Constants["3d-interpolation"] =options.interpolation Constants["protein_shape"] =options.protein_shape #Constants["frequency_stop_search"] =options.frequency_stop_search #Constants["scale_of_number"] =options.scale_of_number # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] Tracker["applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 Tracker["lowpass"] = Tracker["constants"]["low_pass_filter"] Tracker["falloff"] = 0.1 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"]= False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] = 0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp from sp_utilities import convertasi,prepare_ptp,print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # another part from sp_utilities import get_class_members, remove_small_groups, get_number_of_groups, get_stable_members_from_two_runs from sp_utilities import two_way_comparison_single, get_leftover_from_stable, get_initial_ID, Kmeans_exhaustive_run from sp_utilities import print_a_line_with_timestamp, split_a_group # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang from time import sleep import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"]["user_func"]] if(myid == main_node): line = '' sxprint((line+"Initialization of 3-D sorting")) a = get_im(Tracker["orgstack"]) nnxo = a.get_xsize() if( Tracker["nxinit"] > nnxo ): ERROR( "Image size less than minimum permitted $d"%Tracker["nxinit"] ) nnxo = -1 # we break here, so not sure what this is supposed to accomplish return else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size/Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0/nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node = main_node) if( nnxo < 0 ): return pixel_size = bcast_number_to_all(pixel_size, source_node = main_node) fq = bcast_number_to_all(fq, source_node = main_node) if Tracker["constants"]["wn"]==0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo= Tracker["constants"]["wn"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if(Tracker["constants"]["radius"] < 1): Tracker["constants"]["radius"] = Tracker["constants"]["nnxo"]//2-2 elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]): ERROR( "Particle radius set too large!", myid=myid ) return ####----------------------------------------------------------------------------------------- # create the master directory if myid == main_node: if masterdir =="": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir ="master_sort3d"+timestring li =len(masterdir) else: li = 0 cmd="{} {}".format("mkdir -p", masterdir) os.system(cmd) sp_global_def.write_command(masterdir) else: li=0 li = mpi.mpi_bcast( li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD )[0] if li>0: masterdir = mpi.mpi_bcast( masterdir, li,MPI_CHAR, main_node, mpi.MPI_COMM_WORLD ) masterdir = string.join(masterdir,"") ####--- masterdir done! if myid == main_node: print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program") from time import sleep while not os.path.exists(masterdir): # Be sure each proc is able to access the created dir sxprint("Node ",myid," waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:"+masterdir+"/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["partstack"] = Tracker["constants"]["ali3d"] Tracker["constants"]["ctf_params"] = os.path.join(masterdir, "ctf_params.txt") ###### if myid == main_node: if(Tracker["orgstack"][:4] == "bdb:"): cmd = "{} {} {}".format("e2bdb.py", Tracker["orgstack"],"--makevstack="+Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) cmdexecute(cmd) cmd = "{} {} {} {} ".format("sp_header.py", Tracker["constants"]["stack"],"--params=xform.projection","--export="+Tracker["constants"]["ali3d"]) cmdexecute(cmd) cmd = "{} {} {} {} ".format("sp_header.py", Tracker["constants"]["stack"],"--params=ctf","--export="+Tracker["constants"]["ctf_params"]) cmdexecute(cmd) #keepchecking = False total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack =0 total_stack = bcast_number_to_all(total_stack, source_node = main_node) """ if myid==main_node: from EMAN2db import db_open_dict OB = db_open_dict(orgstack) DB = db_open_dict(Tracker["constants"]["stack"]) for i in xrange(total_stack): DB[i] = OB[i] OB.close() DB.close() mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid==main_node: params= [] for i in xrange(total_stack): e=get_im(orgstack,i) phi,theta,psi,s2x,s2y = get_params_proj(e) params.append([phi,theta,psi,s2x,s2y]) write_text_row(params,Tracker["constants"]["ali3d"]) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) """ #Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"] #####------------------------------------------------------------------------------ if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf") else:Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"]=os.path.join(masterdir,"sfocus.hdf") else: Tracker["focus3D"] = None if myid ==main_node: if Tracker["constants"]["mask3D"]: get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"]).write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if( st[0] == 0.0 ): ERROR( "sxrsort3d","incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"]: PW_dict={} nxinit_pwsp=sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt") if myid ==main_node: write_text_file(nxinit_pwsp,Tracker["nxinit_PW"]) PW_dict[Tracker["constants"]["nnxo"]] =Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] =Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict ###---------------------------------------------------------------------------------- ####--------------------------- Extract the previous results ##################################################### from random import shuffle if myid ==main_node: log_main.add(" Sphire rsort3d ") log_main.add("extract stable groups from two previous runs") stable_member_list = get_stable_members_from_two_runs(Tracker["constants"]["previous_runs"], Tracker["constants"]["total_stack"], log_main) Tracker["this_unaccounted_list"], new_stable_P1 = get_leftover_from_stable(stable_member_list, Tracker["constants"]["total_stack"], Tracker["constants"]["smallest_group"]) Tracker["this_unaccounted_list"].sort() Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) log_main.add("new stable is %d"%len(new_stable_P1)) else: Tracker["total_stack"] = 0 Tracker["this_unaccounted_list"] = 0 stable_member_list =0 stable_member_list = wrap_mpi_bcast(stable_member_list, main_node) Tracker["total_stack"] = bcast_number_to_all(Tracker["total_stack"], source_node = main_node) left_one_from_old_two_runs = wrap_mpi_bcast(Tracker["this_unaccounted_list"], main_node) if myid ==main_node: write_text_file(left_one_from_old_two_runs, os.path.join(masterdir,"unaccounted_from_two_previous_runs.txt")) sxprint(" Extracting results of two previous runs is done!") #################################### Estimate resolution----------------------############# #### make chunkdir dictionary for computing margin of error chunk_list = [] if Tracker["constants"]["chunkdir"] !="": ##inhere previous random assignment of odd and even if myid == main_node: chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt")) chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt")) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) else: ## if traces are lost, then creating new random assignment of odd, even particles chunks = list(range(Tracker["constants"]["total_stack"])) shuffle(chunks) chunk_one =chunks[0:Tracker["constants"]["total_stack"]//2] chunk_two =chunks[Tracker["constants"]["total_stack"]//2:Tracker["constants"]["total_stack"]] chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) ###### Fill chunk ID into headers when calling get_shrink_data_huang if myid ==main_node: sxprint(" random odd and even assignment done !") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #------------------------------------------------------------------------------ Tracker["chunk_dict"] = {} for element in chunk_one: Tracker["chunk_dict"][element] = 0 for element in chunk_two: Tracker["chunk_dict"][element] = 1 Tracker["P_chunk0"] = len(chunk_one)/float(Tracker["constants"]["total_stack"]) Tracker["P_chunk1"] = len(chunk_two)/float(Tracker["constants"]["total_stack"]) ### create two volumes to estimate resolution if myid == main_node: write_text_file(chunk_one, os.path.join(masterdir,"chunk0.txt")) write_text_file(chunk_two, os.path.join(masterdir,"chunk1.txt")) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) vols = [] for index in range(2): data1,old_shifts1 = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%d.txt"%index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) vol1 = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data1, symmetry=Tracker["constants"]["sym"], finfo=None) if myid ==main_node: vol1_file_name = os.path.join(masterdir, "vol%d.hdf"%index) vol1.write_image(vol1_file_name) vols.append(vol1) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid ==main_node: low_pass, falloff, currentres = get_resolution_mrk01(vols, Tracker["constants"]["radius"]*Tracker["shrinkage"], Tracker["constants"]["nxinit"], masterdir,Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 currentres = bcast_number_to_all(currentres,source_node = main_node) low_pass = bcast_number_to_all(low_pass,source_node = main_node) falloff = bcast_number_to_all(falloff,source_node = main_node) Tracker["currentres"] = currentres #################################################################### Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = low_pass*Tracker["shrinkage"] else: Tracker["low_pass_filter"] = Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"] Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = 0.1 Tracker["global_fsc"] = os.path.join(masterdir,"fsc.txt") ################################################################## if myid ==main_node: log_main.add("The command-line inputs are :") log_main.add("**********************************************************") for a in sys.argv: log_main.add(a) log_main.add("**********************************************************") from sp_filter import filt_tanl ##################### START 3-D sorting ########################## if myid ==main_node: log_main.add("----------3-D sorting program------- ") log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution"%(round((Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"]),4))) filt_tanl(get_im(os.path.join(masterdir, "vol0.hdf")), Tracker["low_pass_filter"], 0.1).write_image(os.path.join(masterdir, "volf0.hdf")) filt_tanl(get_im(os.path.join(masterdir, "vol1.hdf")), Tracker["low_pass_filter"], 0.1).write_image(os.path.join(masterdir, "volf1.hdf")) sxprint(" random odd and even assignment done !") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ## ---------------------------------------------------------------------------------------------######## ## Stop program and output results when the leftover from two sort3d runs is not sufficient for a new run ######## ## --------------------------------------------------- --------------------------------------- ###### Tracker["number_of_groups"] = get_number_of_groups(len(left_one_from_old_two_runs), Tracker["constants"]["number_of_images_per_group"]) if Tracker["number_of_groups"] <=1 : # programs finishes if myid == main_node: log_main.add("the unaccounted ones are no sufficient for a simple two-group run, output results!") log_main.add("this implies your two sort3d runs already achieved high reproducibale ratio. ") log_main.add("Or your number_of_images_per_group is too large ") log_main.add("the final reproducibility is %f"%((Tracker["constants"]["total_stack"]-len(Tracker["this_unaccounted_list"]))/float(Tracker["constants"]["total_stack"]))) for i in range(len(stable_member_list)): write_text_file(stable_member_list[i], os.path.join(masterdir,"P2_final_class%d.txt"%i)) mask3d = get_im(Tracker["constants"]["mask3D"]) else: mask3d = model_blank(Tracker["constants"]["nnxo"],Tracker["constants"]["nnxo"],Tracker["constants"]["nnxo"]) bcast_EMData_to_all(mask3d, myid, main_node) for igrp in range(len(stable_member_list)): #name_of_class_file = os.path.join(masterdir, "P2_final_class%d.txt"%igrp) data, old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(masterdir, "P2_final_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True) if Tracker["constants"]["CTF"]: volref, fscc = rec3D_two_chunks_MPI(data, 1.0, Tracker["constants"]["sym"], mask3d,os.path.join(masterdir,"resolution_%02d.txt"%igrp), myid, main_node, index =-1, npad=2) else: sxprint("Missing CTF flag!") return mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #nx_of_image=volref.get_xsize() if Tracker["constants"]["PWadjustment"] : Tracker["PWadjustment"] = Tracker["PW_dict"][Tracker["constants"]["nnxo"]] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid ==main_node: try: lowpass = search_lowpass(fscc) falloff = 0.1 except: lowpass = 0.4 falloff = 0.1 log_main.add(" lowpass and falloff from fsc are %f %f"%(lowpass, falloff)) lowpass = round(lowpass,4) falloff = round(min(0.1,falloff),4) Tracker["lowpass"] = lowpass Tracker["falloff"] = falloff refdata = [None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) cutoff = Tracker["constants"]["pixel_size"]/lowpass log_main.add("%d vol low pass filer %f %f cut to %f Angstrom"%(igrp,Tracker["lowpass"],Tracker["falloff"],cutoff)) volref.write_image(os.path.join(masterdir,"volf_final%d.hdf"%igrp)) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) return else: # Continue clustering on unaccounted ones that produced by two_way comparison of two previous runs ######################################################################################################################### #if Tracker["constants"]["number_of_images_per_group"] ==-1: # Estimate number of images per group from delta, and scale up # or down by scale_of_number # number_of_images_per_group = int(Tracker["constants"]["scale_of_number"]*len(n_angles)) # #########################################################################################################################P2 if myid ==main_node: sxprint(" Now continue clustering on accounted ones because they can make at least two groups!") P2_partitions = [] number_of_P2_runs = 2 # Notice P2 start from two P1 runs ### input list_to_be_processed import copy mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) for iter_P2_run in range(number_of_P2_runs): # two runs such that one can obtain reproducibility list_to_be_processed = left_one_from_old_two_runs[:]#Tracker["this_unaccounted_list"][:] Tracker["this_unaccounted_list"] = left_one_from_old_two_runs[:] if myid == main_node : new_stable1 = new_stable_P1[:] total_stack = len(list_to_be_processed) # This is the input from two P1 runs #number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"] P2_run_dir = os.path.join(masterdir, "P2_run%d"%iter_P2_run) Tracker["number_of_groups"] = get_number_of_groups(total_stack, Tracker["constants"]["number_of_images_per_group"]) if myid == main_node: cmd="{} {}".format("mkdir", P2_run_dir) os.system(cmd) log_main.add("----------------P2 independent run %d--------------"%iter_P2_run) log_main.add("user provided number_of_images_per_group %d"%Tracker["constants"]["number_of_images_per_group"]) sxprint("----------------P2 independent run %d--------------"%iter_P2_run) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) # #Tracker["number_of_groups"] = get_number_of_groups(total_stack,Tracker["constants"]["number_of_images_per_group"]) generation = 0 if myid == main_node: log_main.add("number of groups is %d"%Tracker["number_of_groups"]) log_main.add("total stack %d"%total_stack) while( Tracker["number_of_groups"]>=2 ): partition_dict = {} full_dict = {} workdir = os.path.join(P2_run_dir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: cmd="{} {}".format("mkdir", workdir) os.system(cmd) log_main.add("---- generation %5d"%generation) log_main.add("number of images per group is set as %d"%Tracker["constants"]["number_of_images_per_group"]) log_main.add("the initial number of groups is %d "%Tracker["number_of_groups"]) log_main.add(" the number to be processed in this generation is %d"%len(list_to_be_processed)) sxprint("---- generation %5d"%generation) #core=read_text_row(Tracker["constants"]["ali3d"],-1) #write_text_row(core, os.path.join(workdir,"node%d.txt"%myid)) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) Tracker["this_data_list"] = list_to_be_processed # leftover of P1 runs Tracker["total_stack"] = len(list_to_be_processed) create_random_list(Tracker) ###------ For super computer ############## update_full_dict(list_to_be_processed, Tracker) ###---- ##### ----------------Independent runs for EQ-Kmeans ------------------------------------ for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid ==main_node: log_main.add("independent run %10d"%indep_run) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) #this_particle_text_file = # for get_shrink_data if myid ==main_node: write_text_file(list_to_be_processed, os.path.join(workdir, "independent_list_%03d.txt"%indep_run)) mref_ali3d_EQ_Kmeans(ref_vol, os.path.join(workdir, "EQ_Kmeans%03d"%indep_run), os.path.join(workdir, "independent_list_%03d.txt"%indep_run), Tracker) partition_dict[indep_run] = Tracker["this_partition"] del ref_vol Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] do_two_way_comparison(Tracker) ############################## if myid ==main_node: log_main.add("Now calculate stable volumes") if myid ==main_node: for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] write_text_file(Tracker["this_data_list"], os.path.join(workdir,"stable_class%d.txt"%igrp)) Tracker["this_data_list_file"] = -1 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ### number_of_ref_class = [] ref_vol_list = [] for igrp in range(len(Tracker["two_way_stable_member"])): data, old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], os.path.join(workdir, "stable_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid,prjlist=data,symmetry=Tracker["constants"]["sym"],finfo = None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid ==main_node: log_main.add("group %d members %d "%(igrp,len(Tracker["this_data_list"]))) #ref_vol_list=apply_low_pass_filter(ref_vol_list,Tracker) for iref in range(len(ref_vol_list)): ref_vol_list[iref].write_image(os.path.join(workdir,"vol_stable.hdf"),iref) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ################################ Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_groups,res_classes,final_list = ali3d_mref_Kmeans_MPI(ref_vol_list, outdir, os.path.join(workdir,"Accounted.txt"), Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements(list_to_be_processed,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) update_full_dict(Tracker["this_unaccounted_list"], Tracker) if myid == main_node: write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) Tracker["number_of_groups"] = len(res_classes) ### Update data mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid == main_node: number_of_ref_class=[] log_main.add(" Compute volumes of original size") for igrp in range(Tracker["number_of_groups"]): if os.path.exists( os.path.join( outdir,"Class%d.txt"%igrp ) ): new_stable1.append( read_text_file( os.path.join( outdir, "Class%d.txt"%igrp ) ) ) log_main.add(" read Class file %d"%igrp) number_of_ref_class.append(len(new_stable1)) else: number_of_ref_class = 0 number_of_ref_class = wrap_mpi_bcast(number_of_ref_class,main_node) ################################ mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid ==main_node: vol_list = [] for igrp in range(Tracker["number_of_groups"]): if myid ==main_node: log_main.add("start vol %d"%igrp) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry = Tracker["constants"]["sym"],finfo= None) if myid == main_node: vol_list.append(volref) log_main.add(" vol %d is done"%igrp) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) generation +=1 ################################# if myid ==main_node: for ivol in range(len(vol_list)): vol_list[ivol].write_image(os.path.join(workdir, "vol_of_Classes.hdf"),ivol) filt_tanl(vol_list[ivol],Tracker["constants"]["low_pass_filter"],.1).write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) del vol_list Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] #update_full_dict(complementary) #number_of_groups = int(float(len(Tracker["this_unaccounted_list"]))/number_of_images_per_group) del list_to_be_processed list_to_be_processed = copy.deepcopy(Tracker["this_unaccounted_list"]) Tracker["number_of_groups"] = get_number_of_groups(len(list_to_be_processed),Tracker["constants"]["number_of_images_per_group"]) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ############################################################################################################################# ### Reconstruct the unaccounted is only done once if (Tracker["constants"]["unaccounted"] and (len(Tracker["this_unaccounted_list"]) != 0)): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo=None) volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid ==main_node: volref.write_image(os.path.join(workdir, "volf_unaccounted.hdf")) ######## Exhaustive Kmeans ############################################# if myid ==main_node: if len(Tracker["this_unaccounted_list"])>=Tracker["constants"]["smallest_group"]: new_stable1.append(Tracker["this_unaccounted_list"]) unaccounted = get_complementary_elements_total(Tracker["constants"]["total_stack"], final_list) Tracker["number_of_groups"] = len(new_stable1) log_main.add("----------------Exhaustive Kmeans------------------") log_main.add("number_of_groups is %d"%Tracker["number_of_groups"]) else: Tracker["number_of_groups"] = 0 ### prepare references for final K-means if myid == main_node: final_list =[] for alist in new_stable1: for element in alist:final_list.append(int(element)) unaccounted = get_complementary_elements_total(Tracker["constants"]["total_stack"],final_list) if len(unaccounted) > Tracker["constants"]["smallest_group"]: # treat unaccounted ones also as a group if it is not too small. new_stable1.append(unaccounted) Tracker["number_of_groups"] = len(new_stable1) for any in unaccounted:final_list.append(any) log_main.add("total number %d"%len(final_list)) else: final_list = 0 Tracker["number_of_groups"] = bcast_number_to_all(Tracker["number_of_groups"],source_node = main_node) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) final_list = wrap_mpi_bcast(final_list, main_node) workdir = os.path.join(P2_run_dir,"Exhaustive_Kmeans") # new workdir if myid==main_node: os.mkdir(workdir) write_text_file(final_list, os.path.join(workdir,"final_list.txt")) else: new_stable1 = 0 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ## Create reference volumes if myid == main_node: number_of_ref_class = [] for igrp in range(Tracker["number_of_groups"]): class_file = os.path.join(workdir,"final_class%d.txt"%igrp) write_text_file(new_stable1[igrp],class_file) log_main.add(" group %d number of particles %d"%(igrp,len(new_stable1[igrp]))) number_of_ref_class.append(len(new_stable1[igrp])) else: number_of_ref_class= 0 number_of_ref_class = wrap_mpi_bcast(number_of_ref_class,main_node) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ref_vol_list = [] for igrp in range(Tracker["number_of_groups"]): if myid ==main_node : sxprint(" prepare reference %d"%igrp) #Tracker["this_data_list_file"] = os.path.join(workdir,"final_class%d.txt"%igrp) data,old_shifts = get_shrink_data_huang(Tracker, Tracker["nxinit"],os.path.join(workdir,"final_class%d.txt"%igrp), Tracker["constants"]["partstack"], myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None) #volref = filt_tanl(volref, Tracker["low_pass_filter"],.1) #if myid == main_node: # volref.write_image(os.path.join(masterdir,"volf_stable.hdf"),iref) #volref = resample(volref,Tracker["shrinkage"]) bcast_EMData_to_all(volref, myid, main_node) ref_vol_list.append(volref) mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) ### -------variables used in Kmeans_exhaustive_run----- Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = final_list Tracker["total_stack"] = len(final_list) Tracker["this_dir"] = workdir Tracker["this_data_list_file"] = os.path.join(workdir,"final_list.txt") KE_group = Kmeans_exhaustive_run(ref_vol_list,Tracker) # P2_partitions.append(KE_group[:][:]) if myid ==main_node: log_main.add(" the number of groups after exhaustive Kmeans is %d"%len(KE_group)) for ike in range(len(KE_group)):log_main.add(" group %d number of objects %d"%(ike,len(KE_group[ike]))) del new_stable1 mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if myid == main_node: log_main.add("P2 runs are done, now start two-way comparision to exclude those that are not reproduced ") reproduced_groups = two_way_comparison_single(P2_partitions[0],P2_partitions[1],Tracker)# Here partition IDs are original indexes. ###### ----------------Reconstruct reproduced groups------------------------####### ###### if myid == main_node: for index_of_reproduced_groups in range(len(reproduced_groups)): name_of_class_file = os.path.join(masterdir, "P2_final_class%d.txt"%index_of_reproduced_groups) write_text_file(reproduced_groups[index_of_reproduced_groups],name_of_class_file) log_main.add("-------start to reconstruct reproduced volumes individully to orignal size-----------") mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) if Tracker["constants"]["mask3D"]: mask_3d = get_shrink_3dmask(Tracker["constants"]["nnxo"],Tracker["constants"]["mask3D"]) else: mask_3d = None for igrp in range(len(reproduced_groups)): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],os.path.join(masterdir, "P2_final_class%d.txt"%igrp),Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) #volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None) if Tracker["constants"]["CTF"]: volref, fscc = rec3D_two_chunks_MPI(data,1.0,Tracker["constants"]["sym"],mask_3d, \ os.path.join(masterdir,"resolution_%02d.txt"%igrp),myid,main_node,index =-1,npad =2,finfo=None) else: sxprint("Missing CTF flag!") return mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) fscc = read_text_file(os.path.join(masterdir, "resolution_%02d.txt"%igrp),-1) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] try: lowpass = search_lowpass(fscc) falloff = 0.1 except: lowpass= 0.4 falloff= 0.1 sxprint(lowpass) lowpass=round(lowpass,4) falloff=round(min(.1,falloff),4) Tracker["lowpass"]= lowpass Tracker["falloff"]= falloff if myid == main_node: refdata =[None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) cutoff = Tracker["constants"]["pixel_size"]/lowpass log_main.add("%d vol low pass filer %f %f cut to %f Angstrom"%(igrp,Tracker["lowpass"],Tracker["falloff"],cutoff)) volref.write_image(os.path.join(masterdir,"volf_final%d.hdf"%igrp)) if myid==main_node: log_main.add(" sxsort3d_P2 finishes. ") # Finish program mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) return
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params print(" B number of groups ", myid, " ", len(proj_list_all), time() - st) mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in range(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(list(map(int, temp))) del temp mpi_barrier(MPI_COMM_WORLD) print(" C ", myid, " ", time() - st) if myid == main_node: # Assign the remaining groups to main_node for i in range(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method", "sxproj_stability", 1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in range(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 print(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print(" B ", myid, " ", time() - st) proj_ang = [0.0] * (nima * 2) for i in range(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] print(" C ", myid, " ", time() - st) asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in range(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi print(" D ", myid, " ", time() - st) #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print(" A ", myid, " ", time() - st) proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print(" B ", myid, " ", time() - st) proj_params = [] for i in range(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print(" C ", myid, " ", time() - st) from utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, list(range(img_begin, img_begin + 1))) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list print(" D ", myid, " ", time() - st) else: ERROR("Incorrect projection grouping option", "sxproj_stability", 1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in range(len(proj_list)): print(" E ", myid, " ", time() - st) class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from filter import filt_ctf for im in range(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in range(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in range(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in range(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print(" empty group ", i, refprojdir[i]) aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', list(map(int, members))) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', list(map(float, members))) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', list(map(float, members))) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=0.2 --aa=0.1 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--ave2D", type="string" , default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=10 , help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") parser.add_option("--radiusvar", type="int" , default=-1 , help="radius for 3D var" ) parser.add_option("--npad", type="int" , default=2 , help="number of time to pad the original images") parser.add_option("--sym" , type="string" , default="c1" , help="symmetry") parser.add_option("--fl", type="float" , default=0.0 , help="stop-band frequency (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.0 , help="fall off of the filter (Default - no filtration)") parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option("--decimate", type="float", default=1.0, help="image decimate rate, a number large than 1. default is 1") parser.add_option("--window", type="int", default=0, help="reduce images to a small image size without changing pixel_size. Default value is zero.") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option("--nvec", type="int" , default=0 , help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict if options.symmetrize : try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry prepration","sx3dvariability",1) except: pass except: pass # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" instack = args[0] sym = options.sym if( sym == "c1" ): ERROR("Thre is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) if(instack[:4] !="bdb:"): stack = "bdb:data" delete_bdb(stack) cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in xrange(ks): delete_bdb("bdb:Q%1d"%k) cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) DB = db_open_dict("bdb:Q%1d"%k) for i in xrange(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() delete_bdb("bdb:sdata") cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") #cmdexecute("ls EMAN2DB/sdata*") a = get_im("bdb:sdata") a.set_attr("variabilitysymmetry",sym) a.write_image("bdb:sdata") else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print( "usage: " + usage) print( "Please run '" + progname + " -h' for detailed options") return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0 : ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True if myid == main_node: print_begin_msg("sx3dvariability") print_msg("%-70s: %s\n"%("Input stack", stack)) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry") if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker ={} Tracker["nx"] =nx Tracker["ny"] =ny Tracker["total_stack"]=nima if options.decimate==1.: if options.window !=0: nx = options.window ny = options.window else: if options.window ==0: nx = int(nx/options.decimate) ny = int(ny/options.decimate) else: nx = int(options.window/options.decimate) ny = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: print_msg("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin,img_end): this_image.read_image(stack,index_of_particle) varList.append(image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() print_msg("%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) print_msg("...... Finding neighboring projections\n") if options.VERBOSE: print "Number of images per group: ", img_per_grp print "Now grouping projections" proj_angles.sort() proj_angles_list = [0.0]*(nima*4) if myid == main_node: for i in xrange(nima): proj_angles_list[i*4] = proj_angles[i][1] proj_angles_list[i*4+1] = proj_angles[i][2] proj_angles_list[i*4+2] = proj_angles[i][3] proj_angles_list[i*4+3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([proj_angles_list[i*4], proj_angles_list[i*4+1], proj_angles_list[i*4+2], int(proj_angles_list[i*4+3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print "On node %2d, number of images needed to be read = %5d"%(myid, len(all_proj)) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) print_msg("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) if options.VERBOSE: print "Grouping projections took: ", (time()-t2)/60 , "[min]" print "Number of groups on main node: ", len(proj_list) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: print_msg("...... calculating the stack of 2D variances \n") if options.VERBOSE: print "Now calculating the stack of 2D variances" proj_params = [0.0]*(nima*5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print "Begin to read images on processor %d"%(myid) ttt = time() #imgdata = EMData.read_images(stack, all_proj) img = EMData() imgdata = [] for index_of_proj in xrange(len(all_proj)): img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf(img,options.decimate,options.window,options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print "Reading images on processor %d done, time = %.2f"%(myid, time()-ttt) print "On processor %d, we got %d images"%(myid, len(imgdata)) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM-phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM-phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM-phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM-phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx/2-2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d(fft( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa) ),nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl( grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1) ) , nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx,ny) for q in grp_imgdata: Util.add_img2( var, q ) Util.mul_scalar( var, 1.0/(len(grp_imgdata)-1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print "%5.2f%% done on processor %d"%(i*100.0/len(proj_list), myid) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(options.ave2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, Tracker["nx"],Tracker["nx"],Tracker["nx"]) tmpvol.write_image(options.ave2D, km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print "Reconstructing 3D average volume" ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: ave3D=fpol(ave3D,Tracker["nx"],Tracker["nx"],Tracker["nx"]) ave3D.write_image(options.ave3D) print_msg("%-70s: %s\n"%("Writing to the disk volume reconstructed from averages as", options.ave3D)) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print "Reconstruction eigenvolumes", k cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image("eig3d_%03d.hdf"%k, ITER) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) print " Eigenvector: ",k," number changed ",int(icont[0]) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(varList)): tmpvol=fpol(varList[im], Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(options.var2D, km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: print "Reconstructing 3D variability volume" t6 = time() radiusvar = options.radiusvar if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res =fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(options.var3D) if myid == main_node: print_msg("%-70s: %.2f\n"%("Reconstructing 3D variability took [s]", time()-t6)) if options.VERBOSE: print "Reconstruction took: %.2f [min]"%((time()-t6)/60) if myid == main_node: print_msg("%-70s: %.2f\n"%("Total time for these computations [s]", time()-t0)) if options.VERBOSE: print "Total time for these computations: %.2f [min]"%((time()-t0)/60) print_end_msg("sx3dvariability") global_def.BATCH = False from mpi import mpi_finalize mpi_finalize()
def main(): import os import sys from optparse import OptionParser arglist = [] for arg in sys.argv: arglist.append( arg ) progname = os.path.basename(arglist[0]) usage = progname + """ input_image output_directory --wn --apix --Cs --voltage --ac --kboot --overlap_x --overlap_y --edge_x --edge_y --f_start --f_stop --MPI --debug Micrograph Mode - Process a set of micrographs: Specify micrograph name with wild card (*) enclosed by single quotes (') or double quotes (") (Note: sxgui.py automatically adds single quotes (')). The wild card (*) has to be in front of the extension. The extension must be 3 letter long excluding dot (.). Specify output directory as an argument. mpirun -np 16 sxcter.py 'Micrographs/mic*.mrc' outdir_cter --wn=512 --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 --MPI Stack Mode - Process a stack: Specify name of stack (without wild card "*") and output directory as arguments. sxcter.py bdb:stack outdir_cter --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--wn", type="int", default=512, help="size of window to use: should be slightly larger than particle box size (default 512)") parser.add_option("--apix", type="float", default= -1, help="pixel size in angstroms: (default 1.0)") parser.add_option("--Cs", type="float", default= 2.0, help="microscope Cs (spherical aberration): (default 2.0)") parser.add_option("--voltage", type="float", default=300.0, help="microscope voltage in KV: (default 300.0)") parser.add_option("--ac", type="float", default=10.0, help="amplitude contrast in percentage: (default 10.0)") parser.add_option("--kboot", type="int", default=16, help="number of defocus estimates for micrograph: used for error assessment (default 16)") parser.add_option("--overlap_x", type="int", default=50, help="overlap x in percentage: (default 50)") parser.add_option("--overlap_y", type="int", default=50, help="overlap y in percentage: (default 50)") parser.add_option("--edge_x", type="int", default=0, help="edge x in pixels: (default 0)") parser.add_option("--edge_y", type="int", default=0, help="edge y in pixels: (default 0)") parser.add_option("--f_start", type="float", default=-1.0, help="starting frequency in 1/A: by default determined automatically (default -1.0)") parser.add_option("--f_stop", type="float", default=-1.0, help="stop frequency in 1/A: by default determined automatically (default -1.0)") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version (default False)") parser.add_option("--debug", action="store_true", default=False, help="debug info printout: (default False)") (options, args) = parser.parse_args(arglist[1:]) if len(args) != 2: print "see usage " + usage sys.exit() if options.apix < 0: ERROR("Pixel size has to be specified", "sxcter", 1) sys.exit() input_image = args[0] # NOTE: 2015/11/27 Toshio Moriya # Require single quotes (') or double quotes (") for input_image so that # sys.argv does not automatically expand wild card and create a list of file names if input_image.find("*") != -1: # This is a micrograph file name pattern because the string contains wild card "*" stack = None micrograph_name = input_image indir, basename = os.path.split(input_image) nameroot, micsuffix = os.path.splitext(basename) if nameroot[-1] != "*": ERROR("input image file name for micrograph name (%s) must contain wild card * in front of the extension." % micrograph_name, "sxcter", 1) sys.exit() if micsuffix[0] != ".": ERROR("input image file name for micrograph name (%s) must contain extension." % micrograph_name, "sxcter", 1) sys.exit() # cter() will take care of the other error case of image image if not indir: # For input directory path, interpretate empty string as a current directory # Necessary to avoid error of os.listdir("") called by cter() in morphology.py indir = '.' nameroot = nameroot[:-1] else: if options.MPI: ERROR("Please use single processor version if specifying a stack", "sxcter", 1) sys.exit() # This is a stack file name because the string does NOT contains wild card "*" stack = input_image indir = "." nameroot = "" micsuffix = "" output_directory = args[1] if os.path.exists(output_directory): ERROR('Output directory exists, please change the name and restart the program', "sxcter", 1) sys.exit() out1 = "%s/pwrot" % (output_directory) out2 = "%s/partres" % (output_directory) # cter() will take care of the error case of output directory if options.MPI: from mpi import mpi_init, MPI_COMM_WORLD, mpi_comm_rank, mpi_barrier sys.argv = mpi_init(len(sys.argv), sys.argv) if mpi_comm_rank(MPI_COMM_WORLD) == 0: os.mkdir(output_directory) mpi_barrier(MPI_COMM_WORLD) else: os.mkdir(output_directory) if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from morphology import cter global_def.BATCH = True cter(stack, out1, out2, indir, nameroot, micsuffix, options.wn, \ f_start=options.f_start, f_stop=options.f_stop, voltage=options.voltage, Pixel_size=options.apix, \ Cs = options.Cs, wgh=options.ac, kboot=options.kboot, MPI=options.MPI, DEBug = options.debug, \ overlap_x = options.overlap_x, overlap_y = options.overlap_y, edge_x = options.edge_x, \ edge_y = options.edge_y, guimic=None) global_def.BATCH = False if options.MPI: from mpi import mpi_finalize mpi_finalize()
def prepare_recons(data, symmetry, myid, main_node_half, half_start, step, index, finfo=None, npad=4): from random import randint from utilities import reduce_EMData_to_root from mpi import mpi_barrier, MPI_COMM_WORLD nx = data[0].get_xsize() # from memorymonitor import MemoryMonitor # memory_mon = MemoryMonitor('rjhall') fftvol_half = EMData() weight_half = EMData() half_params = { "size": nx, "npad": npad, "symmetry": symmetry, "fftvol": fftvol_half, "weight": weight_half } half = Reconstructors.get("nn4", half_params) # print memory_mon.usage() half.setup() # print memory_mon.usage() group = -1 for i in xrange(half_start, len(data), step): if (index > -1): group = data[i].get_attr('group') if (group == index): if (data[i].get_attr_default('active', 1) == 1): xform_proj = data[i].get_attr("xform.projection") half.insert_slice(data[i], xform_proj) if not (finfo is None): finfo.write("begin reduce half\n") finfo.flush() reduce_EMData_to_root(fftvol_half, myid, main_node_half) reduce_EMData_to_root(weight_half, myid, main_node_half) if not (finfo is None): finfo.write("after reduce half\n") finfo.flush() if myid == main_node_half: tmpid = randint(0, 1000000) fftvol_half_file = ("fftvol_half%d.hdf" % tmpid) weight_half_file = ("weight_half%d.hdf" % tmpid) fftvol_half.write_image(fftvol_half_file) weight_half.write_image(weight_half_file) mpi_barrier(MPI_COMM_WORLD) fftvol_half = None weight_half = None if myid == main_node_half: return fftvol_half_file, weight_half_file return None, None
def filterlocal(ui, vi, m, falloff, myid, main_node, number_of_proc): if myid == main_node: nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() # Round all resolution numbers to two digits for x in range(nx): for y in range(ny): for z in range(nz): ui.set_value_at_fast(x, y, z, round(ui.get_value_at(x, y, z), 2)) dis = [nx, ny, nz] else: falloff = 0.0 radius = 0 dis = [0, 0, 0] falloff = sp_utilities.bcast_number_to_all(falloff, main_node) dis = sp_utilities.bcast_list_to_all(dis, myid, source_node=main_node) if myid != main_node: nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) vi = sp_utilities.model_blank(nx, ny, nz) ui = sp_utilities.model_blank(nx, ny, nz) sp_utilities.bcast_EMData_to_all(vi, myid, main_node) sp_utilities.bcast_EMData_to_all(ui, myid, main_node) sp_fundamentals.fftip(vi) # volume to be filtered st = EMAN2_cppwrap.Util.infomask(ui, m, True) filteredvol = sp_utilities.model_blank(nx, ny, nz) cutoff = max(st[2] - 0.01, 0.0) while cutoff < st[3]: cutoff = round(cutoff + 0.01, 2) # if(myid == main_node): print cutoff,st pt = EMAN2_cppwrap.Util.infomask( sp_morphology.threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True, ) # Ideally, one would want to check only slices in question... if pt[0] != 0.0: # print cutoff,pt[0] vovo = sp_fundamentals.fft(filt_tanl(vi, cutoff, falloff)) for z in range(myid, nz, number_of_proc): for x in range(nx): for y in range(ny): if m.get_value_at(x, y, z) > 0.5: if round(ui.get_value_at(x, y, z), 2) == cutoff: filteredvol.set_value_at_fast( x, y, z, vovo.get_value_at(x, y, z)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) sp_utilities.reduce_EMData_to_root(filteredvol, myid, main_node, mpi.MPI_COMM_WORLD) return filteredvol
def recons3d_trl_struct_MPI(myid, main_node, prjlist, paramstructure, refang, rshifts_shrank, delta, upweighted=True, mpi_comm=None, CTF=True, target_size=-1, avgnorm=1.0, norm_per_particle=None): """ recons3d_4nn_ctf - calculate CTF-corrected 3-D reconstruction from a set of projections using three Eulerian angles, two shifts, and CTF settings for each projeciton image Input list_of_prjlist: list of lists of projections to be included in the reconstruction """ pass #IMPORTIMPORTIMPORT from sp_utilities import reduce_EMData_to_root, random_string, get_im, findall pass #IMPORTIMPORTIMPORT from EMAN2 import Reconstructors pass #IMPORTIMPORTIMPORT from sp_utilities import model_blank pass #IMPORTIMPORTIMPORT from sp_filter import filt_table pass #IMPORTIMPORTIMPORT from sp_fundamentals import fshift pass #IMPORTIMPORTIMPORT from mpi import MPI_COMM_WORLD, mpi_barrier pass #IMPORTIMPORTIMPORT import types pass #IMPORTIMPORTIMPORT import datetime if mpi_comm == None: mpi_comm = mpi.MPI_COMM_WORLD refvol = sp_utilities.model_blank(target_size) refvol.set_attr("fudge", 1.0) if CTF: do_ctf = 1 else: do_ctf = 0 fftvol = EMAN2_cppwrap.EMData() weight = EMAN2_cppwrap.EMData() pass #IMPORTIMPORTIMPORT from sp_utilities import info params = { "size": target_size, "npad": 2, "snr": 1.0, "sign": 1, "symmetry": "c1", "refvol": refvol, "fftvol": fftvol, "weight": weight, "do_ctf": do_ctf } r = EMAN2_cppwrap.Reconstructors.get("nn4_ctfw", params) r.setup() if prjlist: if norm_per_particle == None: norm_per_particle = len(prjlist) * [1.0] nnx = prjlist[0].get_xsize() nny = prjlist[0].get_ysize() nshifts = len(rshifts_shrank) for im in range(len(prjlist)): # parse projection structure, generate three lists: # [ipsi+iang], [ishift], [probability] # Number of orientations for a given image numbor = len(paramstructure[im][2]) ipsiandiang = [ paramstructure[im][2][i][0] / 1000 for i in range(numbor) ] allshifts = [ paramstructure[im][2][i][0] % 1000 for i in range(numbor) ] probs = [paramstructure[im][2][i][1] for i in range(numbor)] # Find unique projection directions tdir = list(set(ipsiandiang)) bckgn = prjlist[im].get_attr("bckgnoise") ct = prjlist[im].get_attr("ctf") # For each unique projection direction: data = [None] * nshifts for ii in range(len(tdir)): # Find the number of times given projection direction appears on the list, it is the number of different shifts associated with it. lshifts = sp_utilities.findall(tdir[ii], ipsiandiang) toprab = 0.0 for ki in range(len(lshifts)): toprab += probs[lshifts[ki]] recdata = EMAN2_cppwrap.EMData(nny, nny, 1, False) recdata.set_attr("is_complex", 0) for ki in range(len(lshifts)): lpt = allshifts[lshifts[ki]] if (data[lpt] == None): data[lpt] = sp_fundamentals.fshift( prjlist[im], rshifts_shrank[lpt][0], rshifts_shrank[lpt][1]) data[lpt].set_attr("is_complex", 0) EMAN2_cppwrap.Util.add_img( recdata, EMAN2_cppwrap.Util.mult_scalar( data[lpt], probs[lshifts[ki]] / toprab)) recdata.set_attr_dict({ "padffted": 1, "is_fftpad": 1, "is_fftodd": 0, "is_complex_ri": 1, "is_complex": 1 }) if not upweighted: recdata = sp_filter.filt_table(recdata, bckgn) recdata.set_attr_dict({"bckgnoise": bckgn, "ctf": ct}) ipsi = tdir[ii] % 100000 iang = tdir[ii] / 100000 r.insert_slice( recdata, EMAN2_cppwrap.Transform({ "type": "spider", "phi": refang[iang][0], "theta": refang[iang][1], "psi": refang[iang][2] + ipsi * delta }), toprab * avgnorm / norm_per_particle[im]) # clean stuff del bckgn, recdata, tdir, ipsiandiang, allshifts, probs sp_utilities.reduce_EMData_to_root(fftvol, myid, main_node, comm=mpi_comm) sp_utilities.reduce_EMData_to_root(weight, myid, main_node, comm=mpi_comm) if myid == main_node: dummy = r.finish(True) mpi.mpi_barrier(mpi_comm) if myid == main_node: return fftvol, weight, refvol else: return None, None, None
def calculate_volumes_after_rotation_and_save_them(ali3d_options, rviper_iter, masterdir, bdb_stack_location, mpi_rank, mpi_size, no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options, mpi_comm = -1): # This function takes into account the case in which there are more processors than images if mpi_comm == -1: mpi_comm = MPI_COMM_WORLD # some arguments are for debugging purposes mainoutputdir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ("%03d" + DIR_DELIM) %(rviper_iter) # list_of_projection_indices_used_for_outlier_elimination = map(int, read_text_file(mainoutputdir + DIR_DELIM + "list_of_viper_runs_included_in_outlier_elimination.txt")) import json; f = open(mainoutputdir + "list_of_viper_runs_included_in_outlier_elimination.json", 'r') list_of_independent_viper_run_indices_used_for_outlier_elimination = json.load(f); f.close() if len(list_of_independent_viper_run_indices_used_for_outlier_elimination)==0: print "Error: len(list_of_independent_viper_run_indices_used_for_outlier_elimination)==0" mpi_finalize() sys.exit() # if this data analysis step was already performed in the past then return # for future changes make sure that the file checked is the last one to be processed !!! # if(os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(no_of_viper_runs_analyzed_together - 1) + DIR_DELIM + "rotated_volume.hdf")): # check_last_run = max(get_latest_directory_increment_value(mainoutputdir, NAME_OF_RUN_DIR, start_value=0), no_of_viper_runs_analyzed_together_from_user_options) # if(os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(check_last_run) + DIR_DELIM + "rotated_volume.hdf")): # return # if this data analysis step was already performed in the past then return for check_run in list_of_independent_viper_run_indices_used_for_outlier_elimination: if not (os.path.exists(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(check_run) + DIR_DELIM + "rotated_volume.hdf")): break else: return partstack = [] # for i1 in range(0,no_of_viper_runs_analyzed_together): for i1 in list_of_independent_viper_run_indices_used_for_outlier_elimination: partstack.append(mainoutputdir + NAME_OF_RUN_DIR + "%03d"%(i1) + DIR_DELIM + "rotated_reduced_params.txt") partids_file_name = mainoutputdir + "this_iteration_index_keep_images.txt" lpartids = map(int, read_text_file(partids_file_name) ) n_projs = len(lpartids) if (mpi_size > n_projs): # if there are more processors than images working = int(not(mpi_rank < n_projs)) mpi_subcomm = mpi_comm_split(mpi_comm, working, mpi_rank - working*n_projs) mpi_subsize = mpi_comm_size(mpi_subcomm) mpi_subrank = mpi_comm_rank(mpi_subcomm) if (mpi_rank < n_projs): # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): projdata = getindexdata(bdb_stack_location + "_%03d"%(rviper_iter - 1), partids_file_name, partstack[idx], mpi_rank, mpi_subsize) vol = do_volume(projdata, ali3d_options, 0, mpi_comm = mpi_subcomm) del projdata if( mpi_rank == 0): vol.write_image(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " => " print line + "Generated rec_ref_volume_run #%01d \n"%i del vol mpi_barrier(mpi_comm) else: for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): projdata = getindexdata(bdb_stack_location + "_%03d"%(rviper_iter - 1), partids_file_name, partstack[idx], mpi_rank, mpi_size) vol = do_volume(projdata, ali3d_options, 0, mpi_comm = mpi_comm) del projdata if( mpi_rank == 0): vol.write_image(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " => " print line + "Generated rec_ref_volume_run #%01d"%i del vol if( mpi_rank == 0): # Align all rotated volumes, calculate their average and save as an overall result from utilities import get_params3D, set_params3D, get_im, model_circle from statistics import ave_var from applications import ali_vol # vls = [None]*no_of_viper_runs_analyzed_together vls = [None]*len(list_of_independent_viper_run_indices_used_for_outlier_elimination) # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): vls[idx] = get_im(mainoutputdir + DIR_DELIM + NAME_OF_RUN_DIR + "%03d"%(i) + DIR_DELIM + "rotated_volume.hdf") set_params3D(vls[idx],[0.,0.,0.,0.,0.,0.,0,1.0]) asa,sas = ave_var(vls) # do the alignment nx = asa.get_xsize() radius = nx/2 - .5 st = Util.infomask(asa*asa, model_circle(radius,nx,nx,nx), True) goal = st[0] going = True while(going): set_params3D(asa,[0.,0.,0.,0.,0.,0.,0,1.0]) # for i in xrange(no_of_viper_runs_analyzed_together): for idx, i in enumerate(list_of_independent_viper_run_indices_used_for_outlier_elimination): o = ali_vol(vls[idx],asa,7.0,5.,radius) # range of angles and shifts, maybe should be adjusted p = get_params3D(o) del o set_params3D(vls[idx],p) asa,sas = ave_var(vls) st = Util.infomask(asa*asa, model_circle(radius,nx,nx,nx), True) if(st[0] > goal): goal = st[0] else: going = False # over and out asa.write_image(mainoutputdir + DIR_DELIM + "average_volume.hdf") sas.write_image(mainoutputdir + DIR_DELIM + "variance_volume.hdf") return
def mref_ali2d_MPI(stack, refim, outdir, maskfile=None, ir=1, ou=-1, rs=1, xrng=0, yrng=0, step=1, center=1, maxit=10, CTF=False, snr=1.0, user_func_name="ref_ali2d", rand_seed=1000): # 2D multi-reference alignment using rotational ccf in polar coordinates and quadratic interpolation from sp_utilities import model_circle, combine_params2, inverse_transform2, drop_image, get_image, get_im from sp_utilities import reduce_EMData_to_root, bcast_EMData_to_all, bcast_number_to_all from sp_utilities import send_attr_dict from sp_utilities import center_2D from sp_statistics import fsc_mask from sp_alignment import Numrinit, ringwe, search_range from sp_fundamentals import rot_shift2D, fshift from sp_utilities import get_params2D, set_params2D from random import seed, randint from sp_morphology import ctf_2 from sp_filter import filt_btwl, filt_params from numpy import reshape, shape from sp_utilities import print_msg, print_begin_msg, print_end_msg import os import sys import shutil from sp_applications import MPI_start_end from mpi import mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_recv, mpi_send from mpi import MPI_SUM, MPI_FLOAT, MPI_INT number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 # create the output directory, if it does not exist if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "mref_ali2d_MPI ", 1, myid) mpi_barrier(MPI_COMM_WORLD) import sp_global_def if myid == main_node: os.mkdir(outdir) sp_global_def.LOGFILE = os.path.join(outdir, sp_global_def.LOGFILE) print_begin_msg("mref_ali2d_MPI") nima = EMUtil.get_image_count(stack) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) nima = EMUtil.get_image_count(stack) ima = EMData() ima.read_image(stack, image_start) first_ring = int(ir) last_ring = int(ou) rstep = int(rs) max_iter = int(maxit) if max_iter == 0: max_iter = 10 auto_stop = True else: auto_stop = False if myid == main_node: print_msg("Input stack : %s\n" % (stack)) print_msg("Reference stack : %s\n" % (refim)) print_msg("Output directory : %s\n" % (outdir)) print_msg("Maskfile : %s\n" % (maskfile)) print_msg("Inner radius : %i\n" % (first_ring)) nx = ima.get_xsize() # default value for the last ring if last_ring == -1: last_ring = nx / 2 - 2 if myid == main_node: print_msg("Outer radius : %i\n" % (last_ring)) print_msg("Ring step : %i\n" % (rstep)) print_msg("X search range : %f\n" % (xrng)) print_msg("Y search range : %f\n" % (yrng)) print_msg("Translational step : %f\n" % (step)) print_msg("Center type : %i\n" % (center)) print_msg("Maximum iteration : %i\n" % (max_iter)) print_msg("CTF correction : %s\n" % (CTF)) print_msg("Signal-to-Noise Ratio : %f\n" % (snr)) print_msg("Random seed : %i\n\n" % (rand_seed)) print_msg("User function : %s\n" % (user_func_name)) import sp_user_functions user_func = sp_user_functions.factory[user_func_name] if maskfile: import types if type(maskfile) is bytes: mask = get_image(maskfile) else: mask = maskfile else: mask = model_circle(last_ring, nx, nx) # references, do them on all processors... refi = [] numref = EMUtil.get_image_count(refim) # IMAGES ARE SQUARES! center is in SPIDER convention cnx = nx / 2 + 1 cny = cnx mode = "F" #precalculate rings numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) # prepare reference images on all nodes ima.to_zero() for j in range(numref): # even, odd, numer of even, number of images. After frc, totav refi.append([get_im(refim, j), ima.copy(), 0]) # for each node read its share of data data = EMData.read_images(stack, list(range(image_start, image_end))) for im in range(image_start, image_end): data[im - image_start].set_attr('ID', im) if myid == main_node: seed(rand_seed) a0 = -1.0 again = True Iter = 0 ref_data = [mask, center, None, None] while Iter < max_iter and again: ringref = [] mashi = cnx - last_ring - 2 for j in range(numref): refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) # normalize reference images to N(0,1) cimage = Util.Polar2Dm(refi[j][0], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Util.Applyws(cimage, numr, wr) ringref.append(cimage) # zero refi refi[j][0].to_zero() refi[j][1].to_zero() refi[j][2] = 0 assign = [[] for i in range(numref)] # begin MPI section for im in range(image_start, image_end): alpha, sx, sy, mirror, scale = get_params2D(data[im - image_start]) # Why inverse? 07/11/2015 PAP alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy) # normalize data[im - image_start].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 0 }) # subtract average under the mask # If shifts are outside of the permissible range, reset them if (abs(sxi) > mashi or abs(syi) > mashi): sxi = 0.0 syi = 0.0 set_params2D(data[im - image_start], [0.0, 0.0, 0.0, 0, 1.0]) ny = nx txrng = search_range(nx, last_ring, sxi, xrng, "mref_ali2d_MPI") txrng = [txrng[1], txrng[0]] tyrng = search_range(ny, last_ring, syi, yrng, "mref_ali2d_MPI") tyrng = [tyrng[1], tyrng[0]] # align current image to the reference [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im - image_start], ringref, txrng, tyrng, step, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) # combine parameters and set them to the header, ignore previous angle and mirror [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort)) set_params2D(data[im - image_start], [alphan, sxn, syn, int(mn), scale]) data[im - image_start].set_attr('assign', iref) # apply current parameters and add to the average temp = rot_shift2D(data[im - image_start], alphan, sxn, syn, mn) it = im % 2 Util.add_img(refi[iref][it], temp) assign[iref].append(im) #assign[im] = iref refi[iref][2] += 1.0 del ringref # end MPI section, bring partial things together, calculate new reference images, broadcast them back for j in range(numref): reduce_EMData_to_root(refi[j][0], myid, main_node) reduce_EMData_to_root(refi[j][1], myid, main_node) refi[j][2] = mpi_reduce(refi[j][2], 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if (myid == main_node): refi[j][2] = int(refi[j][2][0]) # gather assignements for j in range(numref): if myid == main_node: for n in range(number_of_proc): if n != main_node: import sp_global_def ln = mpi_recv(1, MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) lis = mpi_recv(ln[0], MPI_INT, n, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for l in range(ln[0]): assign[j].append(int(lis[l])) else: import sp_global_def mpi_send(len(assign[j]), 1, MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(assign[j], len(assign[j]), MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) if myid == main_node: # replace the name of the stack with reference with the current one refim = os.path.join(outdir, "aqm%03d.hdf" % Iter) a1 = 0.0 ave_fsc = [] for j in range(numref): if refi[j][2] < 4: #ERROR("One of the references vanished","mref_ali2d_MPI",1) # if vanished, put a random image (only from main node!) there assign[j] = [] assign[j].append( randint(image_start, image_end - 1) - image_start) refi[j][0] = data[assign[j][0]].copy() #print 'ERROR', j else: #frsc = fsc_mask(refi[j][0], refi[j][1], mask, 1.0, os.path.join(outdir,"drm%03d%04d"%(Iter, j))) from sp_statistics import fsc frsc = fsc( refi[j][0], refi[j][1], 1.0, os.path.join(outdir, "drm%03d%04d.txt" % (Iter, j))) Util.add_img(refi[j][0], refi[j][1]) Util.mul_scalar(refi[j][0], 1.0 / float(refi[j][2])) if ave_fsc == []: for i in range(len(frsc[1])): ave_fsc.append(frsc[1][i]) c_fsc = 1 else: for i in range(len(frsc[1])): ave_fsc[i] += frsc[1][i] c_fsc += 1 #print 'OK', j, len(frsc[1]), frsc[1][0:5], ave_fsc[0:5] #print 'sum', sum(ave_fsc) if sum(ave_fsc) != 0: for i in range(len(ave_fsc)): ave_fsc[i] /= float(c_fsc) frsc[1][i] = ave_fsc[i] for j in range(numref): ref_data[2] = refi[j][0] ref_data[3] = frsc refi[j][0], cs = user_func(ref_data) # write the current average TMP = [] for i_tmp in range(len(assign[j])): TMP.append(float(assign[j][i_tmp])) TMP.sort() refi[j][0].set_attr_dict({'ave_n': refi[j][2], 'members': TMP}) del TMP refi[j][0].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) refi[j][0].write_image(refim, j) Iter += 1 msg = "ITERATION #%3d %d\n\n" % (Iter, again) print_msg(msg) for j in range(numref): msg = " group #%3d number of particles = %7d\n" % ( j, refi[j][2]) print_msg(msg) Iter = bcast_number_to_all(Iter, main_node) # need to tell all if again: for j in range(numref): bcast_EMData_to_all(refi[j][0], myid, main_node) # clean up del assign # write out headers and STOP, under MPI writing has to be done sequentially (time-consumming) mpi_barrier(MPI_COMM_WORLD) if CTF and data_had_ctf == 0: for im in range(len(data)): data[im].set_attr('ctf_applied', 0) par_str = ['xform.align2d', 'assign', 'ID'] if myid == main_node: from sp_utilities import file_type if (file_type(stack) == "bdb"): from sp_utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from sp_utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("mref_ali2d_MPI")
def main(): from logger import Logger, BaseLogger_Files arglist = [] i = 0 while( i < len(sys.argv) ): if sys.argv[i]=='-p4pg': i = i+2 elif sys.argv[i]=='-p4wd': i = i+2 else: arglist.append( sys.argv[i] ) i = i+1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_frequency=.25 --seed=random_seed" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--focus", type ="string", default ='', help="bineary 3D mask for focused clustering ") parser.add_option("--ir", type = "int", default =1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option("--radius", type = "int", default =-1, help="particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)") parser.add_option("--maxit", type = "int", default =25, help="maximum number of iteration") parser.add_option("--rs", type = "int", default =1, help="step between rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type ="string", default ='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option("--yr", type ="string", default ='-1', help="range for translation search in y direction, search is +/-yr (default = same as xr)") parser.add_option("--ts", type ="string", default ='0.25', help="step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr ") parser.add_option("--delta", type ="string", default ='2', help="angular step of reference projections") parser.add_option("--an", type ="string", default ='-1', help="angular neighborhood for local searches") parser.add_option("--center", type ="int", default =0, help="0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)") parser.add_option("--nassign", type ="int", default =1, help="number of reassignment iterations performed for each angular step (set to 3) ") parser.add_option("--nrefine", type ="int", default =0, help="number of alignment iterations performed for each angular step (set to 0)") parser.add_option("--CTF", action ="store_true", default =False, help="do CTF correction during clustring") parser.add_option("--stoprnct", type ="float", default =3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type ="string", default ='c1', help="symmetry of the structure ") parser.add_option("--function", type ="string", default ='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type ="int", default = 3, help="number of independent run") parser.add_option("--number_of_images_per_group", type ="int", default =1000, help="number of groups") parser.add_option("--low_pass_filter", type ="float", default =-1.0, help="absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type ="int", default =64, help="initial image size for sorting" ) parser.add_option("--unaccounted", action ="store_true", default =False, help="reconstruct the unaccounted images") parser.add_option("--seed", type ="int", default =-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type ="int", default =500, help="minimum members for identified group") parser.add_option("--sausage", action ="store_true", default =False, help="way of filter volume") parser.add_option("--chunkdir", type ="string", default ='', help="chunkdir for computing margin of error") parser.add_option("--PWadjustment", type ="string", default ='', help="1-D power spectrum of PDB file used for EM volume power spectrum correction") parser.add_option("--protein_shape", type ="string", default ='g', help="protein shape. It defines protein preferred orientation angles. Currently it has g and f two types ") parser.add_option("--upscale", type ="float", default =0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type ="int", default =0, help="optimal window size for data processing") parser.add_option("--interpolation", type ="string", default ="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn") (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if len(args)>2: mask_file = args[2] else: mask_file = None orgstack =args[0] masterdir =args[1] global_def.BATCH = True #---initialize MPI related variables from mpi import mpi_init, mpi_comm_size, MPI_COMM_WORLD, mpi_comm_rank,mpi_barrier,mpi_bcast, mpi_bcast, MPI_INT,MPI_CHAR sys.argv = mpi_init(len(sys.argv),sys.argv) nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) mpi_comm = MPI_COMM_WORLD main_node= 0 # import some utilities from utilities import get_im,bcast_number_to_all,cmdexecute,write_text_file,read_text_file,wrap_mpi_bcast, get_params_proj, write_text_row from applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from statistics import k_means_match_clusters_asg_new,k_means_stab_bbenum from applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from logger import Logger,BaseLogger_Files if myid ==main_node: log_main=Logger(BaseLogger_Files()) log_main.prefix = masterdir+"/" else: log_main =None #--- fill input parameters into dictionary named after Constants Constants ={} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants["number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants["low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunkdir"] = options.chunkdir Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker["applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from utilities import sample_down_1D_curve,get_initial_ID,remove_small_groups,print_upper_triangular_matrix,print_a_line_with_timestamp from utilities import print_dict,get_resolution_mrk01,partition_to_groups,partition_independent_runs,get_outliers from utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, adjust_fsc_down, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from utilities import get_shrink_data_huang if(myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" print(line+"Initialization of 3-D sorting") a = get_im(orgstack) nnxo = a.get_xsize() if( Tracker["nxinit"] > nnxo ): ERROR("Image size less than minimum permitted $d"%Tracker["nxinit"],"sxsort3d.py",1) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size/Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0/nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node = main_node) if( nnxo < 0 ): mpi_finalize() exit() pixel_size = bcast_number_to_all(pixel_size, source_node = main_node) fq = bcast_number_to_all(fq, source_node = main_node) if Tracker["constants"]["wn"]==0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if(Tracker["constants"]["radius"] < 1): Tracker["constants"]["radius"] = Tracker["constants"]["nnxo"]//2-2 elif((2*Tracker["constants"]["radius"] +2) > Tracker["constants"]["nnxo"]): ERROR("Particle radius set too large!","sxsort3d.py",1,myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir =="": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir ="master_sort3d"+timestring li =len(masterdir) cmd="{} {}".format("mkdir", masterdir) os.system(cmd) else: li=0 li = mpi_bcast(li,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] if li>0: masterdir = mpi_bcast(masterdir,li,MPI_CHAR,main_node,MPI_COMM_WORLD) import string masterdir = string.join(masterdir,"") if myid ==main_node: print_dict(Tracker["constants"],"Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:"+masterdir+"/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join(masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"]["ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node = main_node) mpi_barrier(MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): print "Node ",myid," waiting..." sleep(5) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is "+masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import user_functions user_func = user_functions.factory[Tracker["constants"]["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk0.txt")) chunk_two = read_text_file(os.path.join(Tracker["constants"]["chunkdir"],"chunk1.txt")) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi_barrier(MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid==main_node: if(orgstack[:4] == "bdb:"): cmd = "{} {} {}".format("e2bdb.py", orgstack,"--makevstack="+Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sxcpy.py", orgstack, Tracker["constants"]["stack"]) cmdexecute(cmd) cmd = "{} {} {}".format("sxheader.py --params=xform.projection", "--export="+Tracker["constants"]["ali3d"],orgstack) cmdexecute(cmd) cmd = "{} {} {}".format("sxheader.py --params=ctf", "--export="+Tracker["constants"]["ctf_params"],orgstack) cmdexecute(cmd) mpi_barrier(MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float(Tracker["nxinit"])/Tracker["constants"]["nnxo"] Tracker["radius"] = Tracker["constants"]["radius"]*Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir,"smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir,"sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"],Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if( st[0] == 0.0 ): ERROR("sxrsort3d","incorrect focused mask, after binarize all values zero",1) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] !='': PW_dict = {} nxinit_pwsp = sample_down_1D_curve(Tracker["constants"]["nxinit"],Tracker["constants"]["nnxo"],Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir,"spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp,Tracker["nxinit_PW"]) PW_dict[Tracker["constants"]["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi_barrier(MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list =[chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one)/float(total_stack) Tracker["P_chunk1"] = len(chunk_two)/float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in xrange(2): write_text_file(chunk_list[index],os.path.join(masterdir,"chunk%01d.txt"%index)) mpi_barrier(MPI_COMM_WORLD) vols = [] for index in xrange(2): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"], os.path.join(masterdir,"chunk%01d.txt"%index), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data,symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf"%index)) vols.append(vol) mpi_barrier(MPI_COMM_WORLD) if myid ==main_node: low_pass, falloff,currentres = get_resolution_mrk01(vols,Tracker["constants"]["radius"],Tracker["constants"]["nxinit"],masterdir,Tracker["mask3D"]) if low_pass >Tracker["constants"]["low_pass_filter"]: low_pass= Tracker["constants"]["low_pass_filter"] else: low_pass =0.0 falloff =0.0 currentres =0.0 bcast_number_to_all(currentres,source_node = main_node) bcast_number_to_all(low_pass,source_node = main_node) bcast_number_to_all(falloff,source_node = main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] ==-1.0: Tracker["low_pass_filter"] = min(.45,low_pass/Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min(.45,Tracker["constants"]["low_pass_filter"]/Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] =.1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add("**********************************************************") for a in sys.argv: if myid == main_node:log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d"%Tracker["constants"]["nproc"]) log_main.add("**********************************************************") from filter import filt_tanl ### START 3-D sorting if myid ==main_node: log_main.add("----------3-D sorting program------- ") log_main.add("current resolution %6.3f for images of original size in terms of absolute frequency"%Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["currentres"]/Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f"%Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in xrange(2): filt_tanl(get_im(os.path.join(masterdir,"vol%01d.hdf"%index)), Tracker["low_pass_filter"],Tracker["falloff"]).write_image(os.path.join(masterdir, "volf%01d.hdf"%index)) mpi_barrier(MPI_COMM_WORLD) from utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker,delta,this_ali3d) if myid ==main_node: nc = 0 for a in sampled: if len(sampled[a])>0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f"%(len(n_angles), delta)) log_main.add("captured sampled directions %10d percentage covered by data %6.3f"%(nc,float(nc)/len(n_angles)*100)) number_of_images_per_group = Tracker["constants"]["number_of_images_per_group"] if myid ==main_node: log_main.add("user provided number_of_images_per_group %d"%number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack,number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation =0 partition_dict ={} full_dict ={} workdir =os.path.join(masterdir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: log_main.add("---- generation %5d"%generation) log_main.add("number of images per group is set as %d"%number_of_images_per_group) log_main.add("the initial number of groups is %10d "%number_of_groups) cmd="{} {}".format("mkdir",workdir) os.system(cmd) mpi_barrier(MPI_COMM_WORLD) list_to_be_processed = range(Tracker["constants"]["total_stack"]) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict ={} for iptl in xrange(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in xrange(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d"%indep_run) mpi_barrier(MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join(workdir,"independent_list_%03d.txt"%indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi_barrier(MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run) ref_vol = apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run]=Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in xrange(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo = None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d "%(igrp,len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] # no PW adjustment if myid == main_node: for iref in xrange(len(ref_vol_list)): refdata = [None]*4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir,"volf_stable.hdf"),iref) mpi_barrier(MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir,"Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements(list_to_be_processed,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in xrange(number_of_groups): data,old_shifts = get_shrink_data_huang(Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if( myid == main_node ): npergroup = len(read_text_file(os.path.join(outdir,"Class%d.txt"%igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node ) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi_barrier(MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in xrange(len(vol_list)): refdata =[None]*4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir,"volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2 : generation +=1 partition_dict ={} workdir =os.path.join(masterdir,"generation%03d"%generation) Tracker["this_dir"] = workdir if myid ==main_node: log_main.add("*********************************************") log_main.add("----- generation %5d "%generation) log_main.add("number of images per group is set as %10d "%number_of_images_per_group) log_main.add("the number of groups is %10d "%number_of_groups) log_main.add(" number of particles for clustering is %10d"%Tracker["total_stack"]) cmd ="{} {}".format("mkdir",workdir) os.system(cmd) mpi_barrier(MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in xrange(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d"%indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d"%indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol,outdir,Tracker["this_unaccounted_text"],Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in xrange(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join(workdir,"stable_class%d.txt"%igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi_barrier(MPI_COMM_WORLD) data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nxinit"],Tracker["this_data_list_file"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node:volref.write_image(os.path.join(workdir,"vol_stable.hdf"),iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi_barrier(MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir,"Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI(ref_vol_list,outdir,Tracker["this_accounted_text"],Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements(total_list_of_this_run,final_list) if myid == main_node: log_main.add("the number of particles not processed is %d"%len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"],Tracker["this_unaccounted_text"]) mpi_barrier(MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"],Tracker) vol_list = [] for igrp in xrange(number_of_groups): data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"], os.path.join(outdir,"Class%d.txt"%igrp), Tracker["constants"]["partstack"], myid, main_node, nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) vol_list.append(volref) mpi_barrier(MPI_COMM_WORLD) nx_of_image=ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in xrange(len(vol_list)): refdata = [None]*4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_of_Classes.hdf"),ivol) log_main.add("number of unaccounted particles %10d"%len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d"%len(Tracker["this_accounted_list"])) del vol_list mpi_barrier(MPI_COMM_WORLD) number_of_groups = get_number_of_groups(len(Tracker["this_unaccounted_list"]),number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data,old_shifts = get_shrink_data_huang(Tracker,Tracker["constants"]["nnxo"],Tracker["this_unaccounted_text"],Tracker["constants"]["partstack"],myid,main_node,nproc,preshift = True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist = data, symmetry=Tracker["constants"]["sym"],finfo= None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"]=Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"]=Tracker["constants"]["PWadjustment"] if( myid == main_node ): refdata = [None]*4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image(os.path.join(workdir,"volf_unaccounted.hdf")) # Finish program if myid ==main_node: log_main.add("sxsort3d finishes") mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize() exit()
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ input_micrograph_list_file input_micrograph_pattern input_coordinates_pattern output_directory --coordinates_format --box_size=box_size --invert --import_ctf=ctf_file --limit_ctf --resample_ratio=resample_ratio --defocus_error=defocus_error --astigmatism_error=astigmatism_error Window particles from micrographs in input list file. The coordinates of the particles should be given as input. Please specify name pattern of input micrographs and coordinates files with a wild card (*). Use the wild card to indicate the place of micrograph ID (e.g. serial number, time stamp, and etc). The name patterns must be enclosed by single quotes (') or double quotes ("). (Note: sxgui.py automatically adds single quotes (')). BDB files can not be selected as input micrographs. sxwindow.py mic_list.txt ./mic*.hdf info/mic*_info.json particles --coordinates_format=eman2 --box_size=64 --invert --import_ctf=outdir_cter/partres/partres.txt If micrograph list file name is not provided, all files matched with the micrograph name pattern will be processed. sxwindow.py ./mic*.hdf info/mic*_info.json particles --coordinates_format=eman2 --box_size=64 --invert --import_ctf=outdir_cter/partres/partres.txt """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--coordinates_format", type="string", default="eman1", help="format of input coordinates files: 'sparx', 'eman1', 'eman2', or 'spider'. the coordinates of sparx, eman2, and spider format is particle center. the coordinates of eman1 format is particle box conner associated with the original box size. (default eman1)") parser.add_option("--box_size", type="int", default=256, help="x and y dimension of square area to be windowed (in pixels): pixel size after resampling is assumed when resample_ratio < 1.0 (default 256)") parser.add_option("--invert", action="store_true", default=False, help="invert image contrast: recommended for cryo data (default False)") parser.add_option("--import_ctf", type="string", default="", help="file name of sxcter output: normally partres.txt (default none)") parser.add_option("--limit_ctf", action="store_true", default=False, help="filter micrographs based on the CTF limit: this option requires --import_ctf. (default False)") parser.add_option("--resample_ratio", type="float", default=1.0, help="ratio of new to old image size (or old to new pixel size) for resampling: Valid range is 0.0 < resample_ratio <= 1.0. (default 1.0)") parser.add_option("--defocus_error", type="float", default=1000000.0, help="defocus errror limit: exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocus_error percent. the error is computed as (std dev defocus)/defocus*100%. (default 1000000.0)" ) parser.add_option("--astigmatism_error", type="float", default=360.0, help="astigmatism error limit: Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatism_error degrees. (default 360.0)") ### detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ main_node = 0 if RUNNING_UNDER_MPI: from mpi import mpi_init from mpi import MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_barrier, mpi_reduce, MPI_INT, MPI_SUM mpi_init(0, []) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_processes = mpi_comm_size(MPI_COMM_WORLD) else: number_of_processes = 1 myid = 0 (options, args) = parser.parse_args(sys.argv[1:]) mic_list_file_path = None mic_pattern = None coords_pattern = None error_status = None while True: if len(args) < 3 or len(args) > 4: error_status = ("Please check usage for number of arguments.\n Usage: " + usage + "\n" + "Please run %s -h for help." % (progname), getframeinfo(currentframe())) break if len(args) == 3: mic_pattern = args[0] coords_pattern = args[1] out_dir = args[2] else: # assert(len(args) == 4) mic_list_file_path = args[0] mic_pattern = args[1] coords_pattern = args[2] out_dir = args[3] if mic_list_file_path != None: if os.path.splitext(mic_list_file_path)[1] != ".txt": error_status = ("Extension of input micrograph list file must be \".txt\". Please check input_micrograph_list_file argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if mic_pattern[:len("bdb:")].lower() == "bdb": error_status = ("BDB file can not be selected as input micrographs. Please convert the format, and restart the program. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if mic_pattern.find("*") == -1: error_status = ("Input micrograph file name pattern must contain wild card (*). Please check input_micrograph_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if coords_pattern.find("*") == -1: error_status = ("Input coordinates file name pattern must contain wild card (*). Please check input_coordinates_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if myid == main_node: if os.path.exists(out_dir): error_status = ("Output directory exists. Please change the name and restart the program.", getframeinfo(currentframe())) break break if_error_then_all_processes_exit_program(error_status) # Check invalid conditions of options check_options(options, progname) mic_name_list = None error_status = None if myid == main_node: if mic_list_file_path != None: print("Loading micrograph list from %s file ..." % (mic_list_file_path)) mic_name_list = read_text_file(mic_list_file_path) if len(mic_name_list) == 0: print("Directory of first micrograph entry is " % (os.path.dirname(mic_name_list[0]))) else: # assert (mic_list_file_path == None) print("Generating micrograph list in %s directory..." % (os.path.dirname(mic_pattern))) mic_name_list = glob.glob(mic_pattern) if len(mic_name_list) == 0: error_status = ("No micrograph file is found. Please check input_micrograph_pattern and/or input_micrograph_list_file argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) else: print("Found %d microgarphs" % len(mic_name_list)) if_error_then_all_processes_exit_program(error_status) if RUNNING_UNDER_MPI: mic_name_list = wrap_mpi_bcast(mic_name_list, main_node) coords_name_list = None error_status = None if myid == main_node: coords_name_list = glob.glob(coords_pattern) if len(coords_name_list) == 0: error_status = ("No coordinates file is found. Please check input_coordinates_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) if_error_then_all_processes_exit_program(error_status) if RUNNING_UNDER_MPI: coords_name_list = wrap_mpi_bcast(coords_name_list, main_node) ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## # all processes must have access to indices if options.import_ctf: i_enum = -1 i_enum += 1; idx_cter_def = i_enum # defocus [um]; index must be same as ctf object format i_enum += 1; idx_cter_cs = i_enum # Cs [mm]; index must be same as ctf object format i_enum += 1; idx_cter_vol = i_enum # voltage[kV]; index must be same as ctf object format i_enum += 1; idx_cter_apix = i_enum # pixel size [A]; index must be same as ctf object format i_enum += 1; idx_cter_bfactor = i_enum # B-factor [A^2]; index must be same as ctf object format i_enum += 1; idx_cter_ac = i_enum # amplitude contrast [%]; index must be same as ctf object format i_enum += 1; idx_cter_astig_amp = i_enum # astigmatism amplitude [um]; index must be same as ctf object format i_enum += 1; idx_cter_astig_ang = i_enum # astigmatism angle [degree]; index must be same as ctf object format i_enum += 1; idx_cter_sd_def = i_enum # std dev of defocus [um] i_enum += 1; idx_cter_sd_astig_amp = i_enum # std dev of ast amp [A] i_enum += 1; idx_cter_sd_astig_ang = i_enum # std dev of ast angle [degree] i_enum += 1; idx_cter_cv_def = i_enum # coefficient of variation of defocus [%] i_enum += 1; idx_cter_cv_astig_amp = i_enum # coefficient of variation of ast amp [%] i_enum += 1; idx_cter_spectra_diff = i_enum # average of differences between with- and without-astig. experimental 1D spectra at extrema i_enum += 1; idx_cter_error_def = i_enum # frequency at which signal drops by 50% due to estimated error of defocus alone [1/A] i_enum += 1; idx_cter_error_astig = i_enum # frequency at which signal drops by 50% due to estimated error of defocus and astigmatism [1/A] i_enum += 1; idx_cter_error_ctf = i_enum # limit frequency by CTF error [1/A] i_enum += 1; idx_cter_mic_name = i_enum # micrograph name i_enum += 1; n_idx_cter = i_enum # Prepare loop variables mic_basename_pattern = os.path.basename(mic_pattern) # file pattern without path mic_baseroot_pattern = os.path.splitext(mic_basename_pattern)[0] # file pattern without path and extension coords_format = options.coordinates_format.lower() box_size = options.box_size box_half = box_size // 2 mask2d = model_circle(box_size//2, box_size, box_size) # Create circular 2D mask to Util.infomask of particle images resample_ratio = options.resample_ratio n_mic_process = 0 n_mic_reject_no_coords = 0 n_mic_reject_no_cter_entry = 0 n_global_coords_detect = 0 n_global_coords_process = 0 n_global_coords_reject_out_of_boundary = 0 serial_id_list = [] error_status = None ## not a real while, an if with the opportunity to use break when errors need to be reported while myid == main_node: # # NOTE: 2016/05/24 Toshio Moriya # Now, ignores the path in mic_pattern and entries of mic_name_list to create serial ID # Only the basename (file name) in micrograph path must be match # # Create list of micrograph serial ID # Break micrograph name pattern into prefix and suffix to find the head index of the micrograph serial id # mic_basename_tokens = mic_basename_pattern.split('*') # assert (len(mic_basename_tokens) == 2) serial_id_head_index = len(mic_basename_tokens[0]) # Loop through micrograph names for mic_name in mic_name_list: # Find the tail index of the serial id and extract serial id from the micrograph name mic_basename = os.path.basename(mic_name) serial_id_tail_index = mic_basename.index(mic_basename_tokens[1]) serial_id = mic_basename[serial_id_head_index:serial_id_tail_index] serial_id_list.append(serial_id) # assert (len(serial_id_list) == len(mic_name)) del mic_name_list # Do not need this anymore # Load CTFs if necessary if options.import_ctf: ctf_list = read_text_row(options.import_ctf) # print("Detected CTF entries : %6d ..." % (len(ctf_list))) if len(ctf_list) == 0: error_status = ("No CTF entry is found in %s. Please check --import_ctf option. Run %s -h for help." % (options.import_ctf, progname), getframeinfo(currentframe())) break if (len(ctf_list[0]) != n_idx_cter): error_status = ("Number of columns (%d) must be %d in %s. The format might be old. Please run sxcter.py again." % (len(ctf_list[0]), n_idx_cter, options.import_ctf), getframeinfo(currentframe())) break ctf_dict={} n_reject_defocus_error = 0 ctf_error_limit = [options.defocus_error/100.0, options.astigmatism_error] for ctf_params in ctf_list: assert(len(ctf_params) == n_idx_cter) # mic_baseroot is name of micrograph minus the path and extension mic_baseroot = os.path.splitext(os.path.basename(ctf_params[idx_cter_mic_name]))[0] if(ctf_params[idx_cter_sd_def] / ctf_params[idx_cter_def] > ctf_error_limit[0]): print("Defocus error %f exceeds the threshold. Micrograph %s is rejected." % (ctf_params[idx_cter_sd_def] / ctf_params[idx_cter_def], mic_baseroot)) n_reject_defocus_error += 1 else: if(ctf_params[idx_cter_sd_astig_ang] > ctf_error_limit[1]): ctf_params[idx_cter_astig_amp] = 0.0 ctf_params[idx_cter_astig_ang] = 0.0 ctf_dict[mic_baseroot] = ctf_params del ctf_list # Do not need this anymore break if_error_then_all_processes_exit_program(error_status) if options.import_ctf: if options.limit_ctf: cutoff_histogram = [] #@ming compute the histogram for micrographs cut of by ctf_params limit. ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## restricted_serial_id_list = [] if myid == main_node: # Loop over serial IDs of micrographs for serial_id in serial_id_list: # mic_baseroot is name of micrograph minus the path and extension mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) mic_name = mic_pattern.replace("*", serial_id) coords_name = coords_pattern.replace("*", serial_id) ########### # CHECKS: BEGIN if coords_name not in coords_name_list: print(" Cannot read %s. Skipping %s ..." % (coords_name, mic_baseroot)) n_mic_reject_no_coords += 1 continue # IF mic is in CTER results if options.import_ctf: if mic_baseroot not in ctf_dict: print(" Is not listed in CTER results. Skipping %s ..." % (mic_baseroot)) n_mic_reject_no_cter_entry += 1 continue else: ctf_params = ctf_dict[mic_baseroot] # CHECKS: END n_mic_process += 1 restricted_serial_id_list.append(serial_id) # restricted_serial_id_list = restricted_serial_id_list[:128] ## for testing against the nonMPI version if myid != main_node: if options.import_ctf: ctf_dict = None error_status = None if len(restricted_serial_id_list) < number_of_processes: error_status = ('Number of processes (%d) supplied by --np in mpirun cannot be greater than %d (number of micrographs that satisfy all criteria to be processed) ' % (number_of_processes, len(restricted_serial_id_list)), getframeinfo(currentframe())) if_error_then_all_processes_exit_program(error_status) ## keep a copy of the original output directory where the final bdb will be created original_out_dir = out_dir if RUNNING_UNDER_MPI: mpi_barrier(MPI_COMM_WORLD) restricted_serial_id_list = wrap_mpi_bcast(restricted_serial_id_list, main_node) mic_start, mic_end = MPI_start_end(len(restricted_serial_id_list), number_of_processes, myid) restricted_serial_id_list_not_sliced = restricted_serial_id_list restricted_serial_id_list = restricted_serial_id_list[mic_start:mic_end] if options.import_ctf: ctf_dict = wrap_mpi_bcast(ctf_dict, main_node) # generate subdirectories of out_dir, one for each process out_dir = os.path.join(out_dir,"%03d"%myid) if myid == main_node: print("Micrographs processed by main process (including percent complete):") len_processed_by_main_node_divided_by_100 = len(restricted_serial_id_list)/100.0 ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ##### Starting main parallel execution for my_idx, serial_id in enumerate(restricted_serial_id_list): mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) mic_name = mic_pattern.replace("*", serial_id) coords_name = coords_pattern.replace("*", serial_id) if myid == main_node: print(mic_name, " ---> % 2.2f%%"%(my_idx/len_processed_by_main_node_divided_by_100)) mic_img = get_im(mic_name) # Read coordinates according to the specified format and # make the coordinates the center of particle image if coords_format == "sparx": coords_list = read_text_row(coords_name) elif coords_format == "eman1": coords_list = read_text_row(coords_name) for i in xrange(len(coords_list)): coords_list[i] = [(coords_list[i][0] + coords_list[i][2] // 2), (coords_list[i][1] + coords_list[i][3] // 2)] elif coords_format == "eman2": coords_list = js_open_dict(coords_name)["boxes"] for i in xrange(len(coords_list)): coords_list[i] = [coords_list[i][0], coords_list[i][1]] elif coords_format == "spider": coords_list = read_text_row(coords_name) for i in xrange(len(coords_list)): coords_list[i] = [coords_list[i][2], coords_list[i][3]] # else: assert (False) # Unreachable code # Calculate the new pixel size if options.import_ctf: ctf_params = ctf_dict[mic_baseroot] pixel_size_origin = ctf_params[idx_cter_apix] if resample_ratio < 1.0: # assert (resample_ratio > 0.0) new_pixel_size = pixel_size_origin / resample_ratio print("Resample micrograph to pixel size %6.4f and window segments from resampled micrograph." % new_pixel_size) else: # assert (resample_ratio == 1.0) new_pixel_size = pixel_size_origin # Set ctf along with new pixel size in resampled micrograph ctf_params[idx_cter_apix] = new_pixel_size else: # assert (not options.import_ctf) if resample_ratio < 1.0: # assert (resample_ratio > 0.0) print("Resample micrograph with ratio %6.4f and window segments from resampled micrograph." % resample_ratio) # else: # assert (resample_ratio == 1.0) # Apply filters to micrograph fftip(mic_img) if options.limit_ctf: # assert (options.import_ctf) # Cut off frequency components higher than CTF limit q1, q2 = ctflimit(box_size, ctf_params[idx_cter_def], ctf_params[idx_cter_cs], ctf_params[idx_cter_vol], new_pixel_size) # This is absolute frequency of CTF limit in scale of original micrograph if resample_ratio < 1.0: # assert (resample_ratio > 0.0) q1 = resample_ratio * q1 / float(box_size) # q1 = (pixel_size_origin / new_pixel_size) * q1/float(box_size) else: # assert (resample_ratio == 1.0) -> pixel_size_origin == new_pixel_size -> pixel_size_origin / new_pixel_size == 1.0 q1 = q1 / float(box_size) if q1 < 0.5: mic_img = filt_tanl(mic_img, q1, 0.01) cutoff_histogram.append(q1) # Cut off frequency components lower than the box size can express mic_img = fft(filt_gaussh(mic_img, resample_ratio / box_size)) # Resample micrograph, map coordinates, and window segments from resampled micrograph using new coordinates # after resampling by resample_ratio, new pixel size will be pixel_size/resample_ratio = new_pixel_size # NOTE: 2015/04/13 Toshio Moriya # resample() efficiently takes care of the case resample_ratio = 1.0 but # it does not set apix_*. Even though it sets apix_* when resample_ratio < 1.0 ... mic_img = resample(mic_img, resample_ratio) if options.invert: mic_stats = Util.infomask(mic_img, None, True) # mic_stat[0:mean, 1:SD, 2:min, 3:max] Util.mul_scalar(mic_img, -1.0) mic_img += 2 * mic_stats[0] if options.import_ctf: from utilities import generate_ctf ctf_obj = generate_ctf(ctf_params) # indexes 0 to 7 (idx_cter_def to idx_cter_astig_ang) must be same in cter format & ctf object format. # Prepare loop variables nx = mic_img.get_xsize() ny = mic_img.get_ysize() x0 = nx//2 y0 = ny//2 n_coords_reject_out_of_boundary = 0 local_stack_name = "bdb:%s#" % out_dir + mic_baseroot + '_ptcls' local_particle_id = 0 # can be different from coordinates_id # Loop over coordinates for coords_id in xrange(len(coords_list)): x = int(coords_list[coords_id][0]) y = int(coords_list[coords_id][1]) if resample_ratio < 1.0: # assert (resample_ratio > 0.0) x = int(x * resample_ratio) y = int(y * resample_ratio) # else: # assert(resample_ratio == 1.0) if( (0 <= x - box_half) and ( x + box_half <= nx ) and (0 <= y - box_half) and ( y + box_half <= ny ) ): particle_img = Util.window(mic_img, box_size, box_size, 1, x-x0, y-y0) else: print("In %s, coordinates ID = %04d (x = %4d, y = %4d, box_size = %4d) is out of micrograph bound, skipping ..." % (mic_baseroot, coords_id, x, y, box_size)) n_coords_reject_out_of_boundary += 1 continue particle_img = ramp(particle_img) particle_stats = Util.infomask(particle_img, mask2d, False) # particle_stats[0:mean, 1:SD, 2:min, 3:max] particle_img -= particle_stats[0] particle_img /= particle_stats[1] # NOTE: 2015/04/09 Toshio Moriya # ptcl_source_image might be redundant information ... # Consider re-organizing header entries... particle_img.set_attr("ptcl_source_image", mic_name) particle_img.set_attr("ptcl_source_coord_id", coords_id) particle_img.set_attr("ptcl_source_coord", [int(coords_list[coords_id][0]), int(coords_list[coords_id][1])]) particle_img.set_attr("resample_ratio", resample_ratio) # NOTE: 2015/04/13 Toshio Moriya # apix_* attributes are updated by resample() only when resample_ratio != 1.0 # Let's make sure header info is consistent by setting apix_* = 1.0 # regardless of options, so it is not passed down the processing line particle_img.set_attr("apix_x", 1.0) particle_img.set_attr("apix_y", 1.0) particle_img.set_attr("apix_z", 1.0) if options.import_ctf: particle_img.set_attr("ctf",ctf_obj) particle_img.set_attr("ctf_applied", 0) particle_img.set_attr("pixel_size_origin", pixel_size_origin) # particle_img.set_attr("apix_x", new_pixel_size) # particle_img.set_attr("apix_y", new_pixel_size) # particle_img.set_attr("apix_z", new_pixel_size) # NOTE: 2015/04/13 Toshio Moriya # Pawel Comment: Micrograph is not supposed to have CTF header info. # So, let's assume it does not exist & ignore its presence. # Note that resample() "correctly" updates pixel size of CTF header info if it exists # elif (particle_img.has_ctff()): # assert(not options.import_ctf) # ctf_origin = particle_img.get_attr("ctf_obj") # pixel_size_origin = round(ctf_origin.apix, 5) # Because SXCTER ouputs up to 5 digits # particle_img.set_attr("apix_x",pixel_size_origin) # particle_img.set_attr("apix_y",pixel_size_origin) # particle_img.set_attr("apix_z",pixel_size_origin) # print("local_stack_name, local_particle_id", local_stack_name, local_particle_id) particle_img.write_image(local_stack_name, local_particle_id) local_particle_id += 1 n_global_coords_detect += len(coords_list) n_global_coords_process += local_particle_id n_global_coords_reject_out_of_boundary += n_coords_reject_out_of_boundary # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # result = db_check_dict(local_stack_name) # print('# MRK_DEBUG: result = db_check_dict(local_stack_name): %s' % (result)) # result = db_list_dicts('bdb:%s' % out_dir) # print('# MRK_DEBUG: result = db_list_dicts(out_dir): %s' % (result)) # result = db_get_image_info(local_stack_name) # print('# MRK_DEBUG: result = db_get_image_info(local_stack_name)', result) # Release the data base of local stack from this process # so that the subprocess can access to the data base db_close_dict(local_stack_name) # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # cmd_line = "e2iminfo.py %s" % (local_stack_name) # print('# MRK_DEBUG: Executing the command: %s' % (cmd_line)) # cmdexecute(cmd_line) # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # cmd_line = "e2iminfo.py bdb:%s#data" % (out_dir) # print('# MRK_DEBUG: Executing the command: %s' % (cmd_line)) # cmdexecute(cmd_line) if RUNNING_UNDER_MPI: if options.import_ctf: if options.limit_ctf: cutoff_histogram = wrap_mpi_gatherv(cutoff_histogram, main_node) if myid == main_node: if options.limit_ctf: # Print out the summary of CTF-limit filtering print(" ") print("Global summary of CTF-limit filtering (--limit_ctf) ...") print("Percentage of filtered micrographs: %8.2f\n" % (len(cutoff_histogram) * 100.0 / len(restricted_serial_id_list_not_sliced))) n_bins = 10 if len(cutoff_histogram) >= n_bins: from statistics import hist_list cutoff_region, cutoff_counts = hist_list(cutoff_histogram, n_bins) print(" Histogram of cut-off frequency") print(" cut-off counts") for bin_id in xrange(n_bins): print(" %14.7f %7d" % (cutoff_region[bin_id], cutoff_counts[bin_id])) else: print("The number of filtered micrographs (%d) is less than the number of bins (%d). No histogram is produced." % (len(cutoff_histogram), n_bins)) n_mic_process = mpi_reduce(n_mic_process, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_mic_reject_no_coords = mpi_reduce(n_mic_reject_no_coords, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_mic_reject_no_cter_entry = mpi_reduce(n_mic_reject_no_cter_entry, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_detect = mpi_reduce(n_global_coords_detect, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_process = mpi_reduce(n_global_coords_process, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_reject_out_of_boundary = mpi_reduce(n_global_coords_reject_out_of_boundary, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) # Print out the summary of all micrographs if main_node == myid: print(" ") print("Global summary of micrographs ...") print("Detected : %6d" % (len(restricted_serial_id_list_not_sliced))) print("Processed : %6d" % (n_mic_process)) print("Rejected by no coordinates file : %6d" % (n_mic_reject_no_coords)) print("Rejected by no CTER entry : %6d" % (n_mic_reject_no_cter_entry)) print(" ") print("Global summary of coordinates ...") print("Detected : %6d" % (n_global_coords_detect)) print("Processed : %6d" % (n_global_coords_process)) print("Rejected by out of boundary : %6d" % (n_global_coords_reject_out_of_boundary)) # print(" ") # print("DONE!!!") mpi_barrier(MPI_COMM_WORLD) if main_node == myid: import time time.sleep(1) print("\n Creating bdb:%s/data\n"%original_out_dir) for proc_i in range(number_of_processes): mic_start, mic_end = MPI_start_end(len(restricted_serial_id_list_not_sliced), number_of_processes, proc_i) for serial_id in restricted_serial_id_list_not_sliced[mic_start:mic_end]: e2bdb_command = "e2bdb.py " mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) if RUNNING_UNDER_MPI: e2bdb_command += "bdb:" + os.path.join(original_out_dir,"%03d/"%proc_i) + mic_baseroot + "_ptcls " else: e2bdb_command += "bdb:" + os.path.join(original_out_dir, mic_baseroot + "_ptcls ") e2bdb_command += " --appendvstack=bdb:%s/data 1>/dev/null"%original_out_dir cmdexecute(e2bdb_command, printing_on_success = False) print("Done!\n") if RUNNING_UNDER_MPI: mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize() sys.stdout.flush() sys.exit(0)
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string" , default="./", help="Output directory") parser.add_option("--ave2D", type="string" , default=False, help="Write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="Write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="Write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="Compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=100, help="Number of neighbouring projections.(Default is 100)") parser.add_option("--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int" , default=2 , help="Number of time to pad the original images.(Default is 2 times padding)") parser.add_option("--sym" , type="string" , default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option("--fl", type="float" , default=0.0, help="Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.02 , help="Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)") parser.add_option("--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)") parser.add_option("--decimate", type ="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)") parser.add_option("--window", type ="int", default=0, help="Target image size relative to original image size. (Default value is zero.)") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") #parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") parser.add_option("--overhead", type ="float", default=0.5, help="python overhead per CPU.") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX #from mpi import * from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im, wrap_mpi_send, wrap_mpi_recv from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.output_dir =="./": current_output_dir = os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize : if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry preparation","sx3dvariability",1) except: pass except: pass if not os.path.exists(current_output_dir): os.mkdir(current_output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger,BaseLogger_Files if os.path.exists(os.path.join(current_output_dir, "log.txt")): os.remove(os.path.join(current_output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if( sym == "c1" ): ERROR("There is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) line ="" for a in sys.argv: line +=" "+a log_main.add(line) if(instack[:4] !="bdb:"): #if output_dir =="./": stack = "bdb:data" stack = "bdb:"+current_output_dir+"/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in range(ks): #Qfile = "Q%1d"%k #if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = os.path.join(current_output_dir, "Q%1d"%k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:"+Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:"+Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:"+Qfile) for i in range(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() #if options.output_dir =="./": delete_bdb("bdb:sdata") delete_bdb("bdb:" + current_output_dir + "/"+"sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:"+current_output_dir+"/"+"sdata" print(sdata) junk = cmdexecute("e2bdb.py " + current_output_dir +" --makevstack="+sdata +" --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry",sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: from fundamentals import window2d sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 shared_comm = mpi_comm_split_type(MPI_COMM_WORLD, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL) myid_on_node = mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi_comm_split(MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = get_colors_and_subsets(main_node, MPI_COMM_WORLD, myid, \ shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm) overhead_loading = options.overhead*number_of_proc #memory_per_node = options.memory_per_node #if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: print(( "usage: " + usage)) print(( "Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True #options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) #if options.VAR and options.SND: # ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) #if options.nvec > 0 : # ERROR("PCA option not implemented", "sx3dvariability", 1, myid) #if options.nvec > 0 and options.ave3D == None: # ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", 1, myid) if current_decimate>1.0 or current_decimate<0.0: ERROR("Decimate rate should be a value between 0.0 and 1.0", "sx3dvariability", 1, myid) if current_window < 0.0: ERROR("Target window size should be always larger than zero", "sx3dvariability", 1, myid) if myid == main_node: img = get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if(min(nx, ny) < current_window): keepgoing = 0 keepgoing = bcast_number_to_all(keepgoing, main_node, MPI_COMM_WORLD) if keepgoing == 0: ERROR("The target window size cannot be larger than the size of decimated image", "sx3dvariability", 1, myid) import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not os.path.exists(current_output_dir): os.mkdir(current_output_dir)# Never delete output_dir in the program! img_per_grp = options.img_per_grp #nvec = options.nvec radiuspca = options.radiuspca from logger import Logger,BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line +=" "+a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s"%options.sym) log_main.add("Input stack : %s"%stack) log_main.add("Output_dir : %s"%current_output_dir) if options.ave3D: log_main.add("Ave3d : %s"%options.ave3D) if options.var3D: log_main.add("Var3d : %s"%options.var3D) if options.ave2D: log_main.add("Ave2D : %s"%options.ave2D) if options.var2D: log_main.add("Var2D : %s"%options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d"%options.img_per_grp) log_main.add("Image decimate rate : %4.3f"%current_decimate) log_main.add("Low pass filter : %4.3f"%options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add("Current low pass filter is equivalent to cutoff frequency %4.3f for original image size"%round((current_fl*current_decimate),3)) log_main.add("Window size : %5d "%current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", 1, myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", 1, myid) from utilities import get_symt i = len(get_symt(options.sym)) if((old_div(nima,i))*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", 1, myid) symbaselen = old_div(nima,i) else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) nnxo = bcast_number_to_all(nnxo) nnyo = bcast_number_to_all(nnyo) if current_window > max(nx, ny): ERROR("Window size is larger than the original image size", "sx3dvariability", 1) if current_decimate == 1.: if current_window !=0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx*current_decimate+0.5) ny = int(ny*current_decimate+0.5) else: nx = int(current_window*current_decimate+0.5) ny = nx symbaselen = bcast_number_to_all(symbaselen) # check FFT prime number from fundamentals import smallprime is_fft_friendly = (nx == smallprime(nx)) if not is_fft_friendly: if myid == main_node: log_main.add("The target image size is not a product of small prime numbers") log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.: nx = smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d."%current_window) else: if current_window == 0: nx = smallprime(int(nx*current_decimate+0.5)) current_decimate = float(nx)/nnxo ny = nx if (myid == main_node): log_main.add("The decimate rate is updated to %f."%current_decimate) else: nx = smallprime(int(current_window*current_decimate+0.5)) ny = nx current_window = int(old_div(nx,current_decimate)+0.5) if (myid == main_node): log_main.add("The window size is updated to %d."%current_window) if myid == main_node: log_main.add("The target image size is %d"%nx) if radiuspca == -1: radiuspca = old_div(nx,2)-2 if myid == main_node: log_main.add("%-70s: %d\n"%("Number of projection", nima)) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from pap_statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: # 2D variance images have no shifts #varList = EMData.read_images(stack, range(img_begin, img_end)) for index_of_particle in range(img_begin,img_end): image = get_im(stack, index_of_proj) if current_window > 0: varList.append(fdecimate(window2d(image,current_window,current_window), nx,ny)) else: varList.append(fdecimate(image, nx,ny)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle, write_text_row, wrap_mpi_gatherv from applications import pca from pap_statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set from utilities import wrap_mpi_recv, wrap_mpi_bcast, wrap_mpi_send import numpy as np if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in range(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() log_main.add( "%-70s: %d\n"%("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add( "Number of images per group: %d"%img_per_grp) log_main.add( "Now grouping projections") proj_angles.sort() proj_angles_list = np.full((nima, 4), 0.0, dtype=np.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = wrap_mpi_bcast(proj_angles_list, main_node, MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) log_main.add("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]"%((time()-t2)/60.)) log_main.add("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] #if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len(all_proj)# all neighborhood set for assigned to myid pnumber = len(proj_list)*2. + img_per_grp # aveList and varList tnumber = dnumber+pnumber vol_size2 = old_div(nx**3*4.*8,1.e9) vol_size1 = old_div(2.*nnxo**3*4.*8,1.e9) proj_size = nnxo*nnyo*len(proj_list)*4.*2./1.e9 # both aveList and varList orig_data_size = old_div(nnxo*nnyo*4.*tnumber,1.e9) reduced_data_size = old_div(nx*nx*4.*tnumber,1.e9) full_data = np.full((number_of_proc, 2), -1., dtype=np.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: wrap_mpi_send(full_data, main_node, MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = wrap_mpi_recv(iproc, MPI_COMM_WORLD) full_data[np.where(dummy>-1)] = dummy[np.where(dummy>-1)] del dummy mpi_barrier(MPI_COMM_WORLD) full_data = wrap_mpi_bcast(full_data, main_node, MPI_COMM_WORLD) # find the CPU with heaviest load minindx = np.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add("Nx: current image size = %d. Decimated by %f from %d"%(nx, current_decimate, nnxo)) else: log_main.add("Nx: current image size = %d. Windowed to %d, and decimated by %f from %d"%(nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add("Img_per_grp: user defined image per group for averaging = %d"%img_per_grp) log_main.add("Overhead: total python overhead memory consumption = %f"%overhead_loading) log_main.add("Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]"%\ (total_mem[1] + overhead_loading)) del full_data mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Begin reading and preprocessing images on processor. Wait... ") ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [ None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): #image = get_im(stack, all_proj[index_of_proj]) if( current_window > 0): imgdata[index_of_proj] = fdecimate(window2d(get_im(stack, all_proj[index_of_proj]),current_window,current_window), nx, ny) else: imgdata[index_of_proj] = fdecimate(get_im(stack, all_proj[index_of_proj]), nx, ny) if (current_decimate> 0.0 and options.CTF): ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = old_div(ctf.apix,current_decimate) imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj%100 == 0: log_main.add(" ...... %6.2f%% "%(index_of_proj/float(len(all_proj))*100.)) mpi_barrier(MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m"%((time()-ttt)/60.)) log_main.add("Wait untill reading on all CPUs done...") ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from utilities import model_blank from EMAN2 import Transform if not options.no_norm: mask = model_circle(old_div(nx,2)-2, nx, nx) if options.CTF: from utilities import pad from filter import filt_ctf from filter import filt_tanl if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time() inner=nx//2-4 outer=inner+2 xform_proj_for_2D = [ None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = Util.get_transform_params(imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = dpar["phi"],dpar["theta"],dpar["psi"],-dpar["tx"]*current_decimate,-dpar["ty"]*current_decimate grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = Util.get_transform_params(imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW(cpar["phi"], cpar["theta"],cpar["psi"], -cpar["tx"]*current_decimate, -cpar["ty"]*current_decimate, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM- cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM - cpar["phi"])), 0.0, 0.0, 1.0) imgdata[mj].set_attr("xform.align2d", Transform({"type":"2D","alpha":alpha,"tx":sx,"ty":sy,"mirror":mirror,"scale":1.0})) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = aves_wiener(grp_imgdata, SNR = 1.0e5, interpolation_method = "linear") else: ave, var = ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = square_root(threshold(var)) set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] ''' if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in range(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ ''' if (myid == heavy_load_myid) and (i%100 == 0): log_main.add(" ......%6.2f%% "%(i/float(len(proj_list))*100.)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi_barrier(MPI_COMM_WORLD) if (myid == heavy_load_myid): log_main.add("Computing aveList and varList took %12.1f [m]"%((time()-ttt)/60.)) xform_proj_for_2D = wrap_mpi_gatherv(xform_proj_for_2D, main_node, MPI_COMM_WORLD) if (myid == main_node): write_text_row(xform_proj_for_2D, os.path.join(current_output_dir, "params.txt")) del xform_proj_for_2D mpi_barrier(MPI_COMM_WORLD) if options.ave2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(aveList)): aveList[im].write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if myid == main_node: header(os.path.join(current_output_dir, options.ave2D), params='xform.projection', fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.ave3D: from fundamentals import fpol t5 = time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = resample(ave3D, 1./current_decimate) ave3D = fpol(ave3D, nnxo, nnxo, nnxo) # always to the orignal image size set_pixel_size(ave3D, 1.0) ave3D.write_image(os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]"%((time()-t5)/60.0)) log_main.add("%-70s: %s\n"%("The reconstructed ave3D is saved as ", options.ave3D)) mpi_barrier(MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList ''' if nvec > 0: for k in range(nvec): if myid == main_node:log_main.add("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in range(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: u = int(u[0]) log_main.add(" Eigenvector: ",k," number changed ",int(icont[0])) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d ''' if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol from applications import header if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node : for im in range(len(varList)): tmpvol=fpol(varList[im], nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in range(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, nx, nx,1) tmpvol.write_image(os.path.join(current_output_dir, options.var2D), km) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in range(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if myid == main_node: from applications import header header(os.path.join(current_output_dir, options.var2D), params = 'xform.projection',fimport = os.path.join(current_output_dir, "params.txt")) mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry = options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol if current_decimate != 1.0: res = resample(res, 1./current_decimate) res = fpol(res, nnxo, nnxo, nnxo) set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add("%-70s: %s\n"%("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]"%((time()-t6)/60.0)) log_main.add("Total computation time %f12.1 [m]"%((time()-t0)/60.0)) log_main.add("sx3dvariability finishes") from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False
def main(): progname = os.path.basename(sys.argv[0]) usage = progname + """ input_micrograph_list_file input_micrograph_pattern input_coordinates_pattern output_directory --coordinates_format --box_size=box_size --invert --import_ctf=ctf_file --limit_ctf --resample_ratio=resample_ratio --defocus_error=defocus_error --astigmatism_error=astigmatism_error Window particles from micrographs in input list file. The coordinates of the particles should be given as input. Please specify name pattern of input micrographs and coordinates files with a wild card (*). Use the wild card to indicate the place of micrograph ID (e.g. serial number, time stamp, and etc). The name patterns must be enclosed by single quotes (') or double quotes ("). (Note: sxgui.py automatically adds single quotes (')). BDB files can not be selected as input micrographs. sxwindow.py mic_list.txt ./mic*.hdf info/mic*_info.json particles --coordinates_format=eman2 --box_size=64 --invert --import_ctf=outdir_cter/partres/partres.txt If micrograph list file name is not provided, all files matched with the micrograph name pattern will be processed. sxwindow.py ./mic*.hdf info/mic*_info.json particles --coordinates_format=eman2 --box_size=64 --invert --import_ctf=outdir_cter/partres/partres.txt """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option( "--coordinates_format", type="string", default="eman1", help= "format of input coordinates files: 'sparx', 'eman1', 'eman2', or 'spider'. the coordinates of sparx, eman2, and spider format is particle center. the coordinates of eman1 format is particle box conner associated with the original box size. (default eman1)" ) parser.add_option( "--box_size", type="int", default=256, help= "x and y dimension of square area to be windowed (in pixels): pixel size after resampling is assumed when resample_ratio < 1.0 (default 256)" ) parser.add_option( "--invert", action="store_true", default=False, help="invert image contrast: recommended for cryo data (default False)" ) parser.add_option( "--import_ctf", type="string", default="", help="file name of sxcter output: normally partres.txt (default none)") parser.add_option( "--limit_ctf", action="store_true", default=False, help= "filter micrographs based on the CTF limit: this option requires --import_ctf. (default False)" ) parser.add_option( "--resample_ratio", type="float", default=1.0, help= "ratio of new to old image size (or old to new pixel size) for resampling: Valid range is 0.0 < resample_ratio <= 1.0. (default 1.0)" ) parser.add_option( "--defocus_error", type="float", default=1000000.0, help= "defocus errror limit: exclude micrographs whose relative defocus error as estimated by sxcter is larger than defocus_error percent. the error is computed as (std dev defocus)/defocus*100%. (default 1000000.0)" ) parser.add_option( "--astigmatism_error", type="float", default=360.0, help= "astigmatism error limit: Set to zero astigmatism for micrographs whose astigmatism angular error as estimated by sxcter is larger than astigmatism_error degrees. (default 360.0)" ) ### detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ main_node = 0 if RUNNING_UNDER_MPI: from mpi import mpi_init from mpi import MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_barrier, mpi_reduce, MPI_INT, MPI_SUM mpi_init(0, []) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_processes = mpi_comm_size(MPI_COMM_WORLD) else: number_of_processes = 1 myid = 0 (options, args) = parser.parse_args(sys.argv[1:]) mic_list_file_path = None mic_pattern = None coords_pattern = None error_status = None while True: if len(args) < 3 or len(args) > 4: error_status = ( "Please check usage for number of arguments.\n Usage: " + usage + "\n" + "Please run %s -h for help." % (progname), getframeinfo(currentframe())) break if len(args) == 3: mic_pattern = args[0] coords_pattern = args[1] out_dir = args[2] else: # assert(len(args) == 4) mic_list_file_path = args[0] mic_pattern = args[1] coords_pattern = args[2] out_dir = args[3] if mic_list_file_path != None: if os.path.splitext(mic_list_file_path)[1] != ".txt": error_status = ( "Extension of input micrograph list file must be \".txt\". Please check input_micrograph_list_file argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if mic_pattern[:len("bdb:")].lower() == "bdb": error_status = ( "BDB file can not be selected as input micrographs. Please convert the format, and restart the program. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if mic_pattern.find("*") == -1: error_status = ( "Input micrograph file name pattern must contain wild card (*). Please check input_micrograph_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if coords_pattern.find("*") == -1: error_status = ( "Input coordinates file name pattern must contain wild card (*). Please check input_coordinates_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) break if myid == main_node: if os.path.exists(out_dir): error_status = ( "Output directory exists. Please change the name and restart the program.", getframeinfo(currentframe())) break break if_error_then_all_processes_exit_program(error_status) # Check invalid conditions of options check_options(options, progname) mic_name_list = None error_status = None if myid == main_node: if mic_list_file_path != None: print("Loading micrograph list from %s file ..." % (mic_list_file_path)) mic_name_list = read_text_file(mic_list_file_path) if len(mic_name_list) == 0: print("Directory of first micrograph entry is " % (os.path.dirname(mic_name_list[0]))) else: # assert (mic_list_file_path == None) print("Generating micrograph list in %s directory..." % (os.path.dirname(mic_pattern))) mic_name_list = glob.glob(mic_pattern) if len(mic_name_list) == 0: error_status = ( "No micrograph file is found. Please check input_micrograph_pattern and/or input_micrograph_list_file argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) else: print("Found %d microgarphs" % len(mic_name_list)) if_error_then_all_processes_exit_program(error_status) if RUNNING_UNDER_MPI: mic_name_list = wrap_mpi_bcast(mic_name_list, main_node) coords_name_list = None error_status = None if myid == main_node: coords_name_list = glob.glob(coords_pattern) if len(coords_name_list) == 0: error_status = ( "No coordinates file is found. Please check input_coordinates_pattern argument. Run %s -h for help." % (progname), getframeinfo(currentframe())) if_error_then_all_processes_exit_program(error_status) if RUNNING_UNDER_MPI: coords_name_list = wrap_mpi_bcast(coords_name_list, main_node) ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## # all processes must have access to indices if options.import_ctf: i_enum = -1 i_enum += 1 idx_cter_def = i_enum # defocus [um]; index must be same as ctf object format i_enum += 1 idx_cter_cs = i_enum # Cs [mm]; index must be same as ctf object format i_enum += 1 idx_cter_vol = i_enum # voltage[kV]; index must be same as ctf object format i_enum += 1 idx_cter_apix = i_enum # pixel size [A]; index must be same as ctf object format i_enum += 1 idx_cter_bfactor = i_enum # B-factor [A^2]; index must be same as ctf object format i_enum += 1 idx_cter_ac = i_enum # amplitude contrast [%]; index must be same as ctf object format i_enum += 1 idx_cter_astig_amp = i_enum # astigmatism amplitude [um]; index must be same as ctf object format i_enum += 1 idx_cter_astig_ang = i_enum # astigmatism angle [degree]; index must be same as ctf object format i_enum += 1 idx_cter_sd_def = i_enum # std dev of defocus [um] i_enum += 1 idx_cter_sd_astig_amp = i_enum # std dev of ast amp [A] i_enum += 1 idx_cter_sd_astig_ang = i_enum # std dev of ast angle [degree] i_enum += 1 idx_cter_cv_def = i_enum # coefficient of variation of defocus [%] i_enum += 1 idx_cter_cv_astig_amp = i_enum # coefficient of variation of ast amp [%] i_enum += 1 idx_cter_spectra_diff = i_enum # average of differences between with- and without-astig. experimental 1D spectra at extrema i_enum += 1 idx_cter_error_def = i_enum # frequency at which signal drops by 50% due to estimated error of defocus alone [1/A] i_enum += 1 idx_cter_error_astig = i_enum # frequency at which signal drops by 50% due to estimated error of defocus and astigmatism [1/A] i_enum += 1 idx_cter_error_ctf = i_enum # limit frequency by CTF error [1/A] i_enum += 1 idx_cter_mic_name = i_enum # micrograph name i_enum += 1 n_idx_cter = i_enum # Prepare loop variables mic_basename_pattern = os.path.basename( mic_pattern) # file pattern without path mic_baseroot_pattern = os.path.splitext(mic_basename_pattern)[ 0] # file pattern without path and extension coords_format = options.coordinates_format.lower() box_size = options.box_size box_half = box_size // 2 mask2d = model_circle( box_size // 2, box_size, box_size ) # Create circular 2D mask to Util.infomask of particle images resample_ratio = options.resample_ratio n_mic_process = 0 n_mic_reject_no_coords = 0 n_mic_reject_no_cter_entry = 0 n_global_coords_detect = 0 n_global_coords_process = 0 n_global_coords_reject_out_of_boundary = 0 serial_id_list = [] error_status = None ## not a real while, an if with the opportunity to use break when errors need to be reported while myid == main_node: # # NOTE: 2016/05/24 Toshio Moriya # Now, ignores the path in mic_pattern and entries of mic_name_list to create serial ID # Only the basename (file name) in micrograph path must be match # # Create list of micrograph serial ID # Break micrograph name pattern into prefix and suffix to find the head index of the micrograph serial id # mic_basename_tokens = mic_basename_pattern.split('*') # assert (len(mic_basename_tokens) == 2) serial_id_head_index = len(mic_basename_tokens[0]) # Loop through micrograph names for mic_name in mic_name_list: # Find the tail index of the serial id and extract serial id from the micrograph name mic_basename = os.path.basename(mic_name) serial_id_tail_index = mic_basename.index(mic_basename_tokens[1]) serial_id = mic_basename[serial_id_head_index:serial_id_tail_index] serial_id_list.append(serial_id) # assert (len(serial_id_list) == len(mic_name)) del mic_name_list # Do not need this anymore # Load CTFs if necessary if options.import_ctf: ctf_list = read_text_row(options.import_ctf) # print("Detected CTF entries : %6d ..." % (len(ctf_list))) if len(ctf_list) == 0: error_status = ( "No CTF entry is found in %s. Please check --import_ctf option. Run %s -h for help." % (options.import_ctf, progname), getframeinfo(currentframe())) break if (len(ctf_list[0]) != n_idx_cter): error_status = ( "Number of columns (%d) must be %d in %s. The format might be old. Please run sxcter.py again." % (len(ctf_list[0]), n_idx_cter, options.import_ctf), getframeinfo(currentframe())) break ctf_dict = {} n_reject_defocus_error = 0 ctf_error_limit = [ options.defocus_error / 100.0, options.astigmatism_error ] for ctf_params in ctf_list: assert (len(ctf_params) == n_idx_cter) # mic_baseroot is name of micrograph minus the path and extension mic_baseroot = os.path.splitext( os.path.basename(ctf_params[idx_cter_mic_name]))[0] if (ctf_params[idx_cter_sd_def] / ctf_params[idx_cter_def] > ctf_error_limit[0]): print( "Defocus error %f exceeds the threshold. Micrograph %s is rejected." % (ctf_params[idx_cter_sd_def] / ctf_params[idx_cter_def], mic_baseroot)) n_reject_defocus_error += 1 else: if (ctf_params[idx_cter_sd_astig_ang] > ctf_error_limit[1]): ctf_params[idx_cter_astig_amp] = 0.0 ctf_params[idx_cter_astig_ang] = 0.0 ctf_dict[mic_baseroot] = ctf_params del ctf_list # Do not need this anymore break if_error_then_all_processes_exit_program(error_status) if options.import_ctf: if options.limit_ctf: cutoff_histogram = [ ] #@ming compute the histogram for micrographs cut of by ctf_params limit. ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## restricted_serial_id_list = [] if myid == main_node: # Loop over serial IDs of micrographs for serial_id in serial_id_list: # mic_baseroot is name of micrograph minus the path and extension mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) mic_name = mic_pattern.replace("*", serial_id) coords_name = coords_pattern.replace("*", serial_id) ########### # CHECKS: BEGIN if coords_name not in coords_name_list: print(" Cannot read %s. Skipping %s ..." % (coords_name, mic_baseroot)) n_mic_reject_no_coords += 1 continue # IF mic is in CTER results if options.import_ctf: if mic_baseroot not in ctf_dict: print( " Is not listed in CTER results. Skipping %s ..." % (mic_baseroot)) n_mic_reject_no_cter_entry += 1 continue else: ctf_params = ctf_dict[mic_baseroot] # CHECKS: END n_mic_process += 1 restricted_serial_id_list.append(serial_id) # restricted_serial_id_list = restricted_serial_id_list[:128] ## for testing against the nonMPI version if myid != main_node: if options.import_ctf: ctf_dict = None error_status = None if len(restricted_serial_id_list) < number_of_processes: error_status = ( 'Number of processes (%d) supplied by --np in mpirun cannot be greater than %d (number of micrographs that satisfy all criteria to be processed) ' % (number_of_processes, len(restricted_serial_id_list)), getframeinfo(currentframe())) if_error_then_all_processes_exit_program(error_status) ## keep a copy of the original output directory where the final bdb will be created original_out_dir = out_dir if RUNNING_UNDER_MPI: mpi_barrier(MPI_COMM_WORLD) restricted_serial_id_list = wrap_mpi_bcast(restricted_serial_id_list, main_node) mic_start, mic_end = MPI_start_end(len(restricted_serial_id_list), number_of_processes, myid) restricted_serial_id_list_not_sliced = restricted_serial_id_list restricted_serial_id_list = restricted_serial_id_list[ mic_start:mic_end] if options.import_ctf: ctf_dict = wrap_mpi_bcast(ctf_dict, main_node) # generate subdirectories of out_dir, one for each process out_dir = os.path.join(out_dir, "%03d" % myid) if myid == main_node: print( "Micrographs processed by main process (including percent complete):" ) len_processed_by_main_node_divided_by_100 = len( restricted_serial_id_list) / 100.0 ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ################################################################################################################################################################################################################## ##### Starting main parallel execution for my_idx, serial_id in enumerate(restricted_serial_id_list): mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) mic_name = mic_pattern.replace("*", serial_id) coords_name = coords_pattern.replace("*", serial_id) if myid == main_node: print( mic_name, " ---> % 2.2f%%" % (my_idx / len_processed_by_main_node_divided_by_100)) mic_img = get_im(mic_name) # Read coordinates according to the specified format and # make the coordinates the center of particle image if coords_format == "sparx": coords_list = read_text_row(coords_name) elif coords_format == "eman1": coords_list = read_text_row(coords_name) for i in xrange(len(coords_list)): coords_list[i] = [(coords_list[i][0] + coords_list[i][2] // 2), (coords_list[i][1] + coords_list[i][3] // 2)] elif coords_format == "eman2": coords_list = js_open_dict(coords_name)["boxes"] for i in xrange(len(coords_list)): coords_list[i] = [coords_list[i][0], coords_list[i][1]] elif coords_format == "spider": coords_list = read_text_row(coords_name) for i in xrange(len(coords_list)): coords_list[i] = [coords_list[i][2], coords_list[i][3]] # else: assert (False) # Unreachable code # Calculate the new pixel size if options.import_ctf: ctf_params = ctf_dict[mic_baseroot] pixel_size_origin = ctf_params[idx_cter_apix] if resample_ratio < 1.0: # assert (resample_ratio > 0.0) new_pixel_size = pixel_size_origin / resample_ratio print( "Resample micrograph to pixel size %6.4f and window segments from resampled micrograph." % new_pixel_size) else: # assert (resample_ratio == 1.0) new_pixel_size = pixel_size_origin # Set ctf along with new pixel size in resampled micrograph ctf_params[idx_cter_apix] = new_pixel_size else: # assert (not options.import_ctf) if resample_ratio < 1.0: # assert (resample_ratio > 0.0) print( "Resample micrograph with ratio %6.4f and window segments from resampled micrograph." % resample_ratio) # else: # assert (resample_ratio == 1.0) # Apply filters to micrograph fftip(mic_img) if options.limit_ctf: # assert (options.import_ctf) # Cut off frequency components higher than CTF limit q1, q2 = ctflimit(box_size, ctf_params[idx_cter_def], ctf_params[idx_cter_cs], ctf_params[idx_cter_vol], new_pixel_size) # This is absolute frequency of CTF limit in scale of original micrograph if resample_ratio < 1.0: # assert (resample_ratio > 0.0) q1 = resample_ratio * q1 / float( box_size ) # q1 = (pixel_size_origin / new_pixel_size) * q1/float(box_size) else: # assert (resample_ratio == 1.0) -> pixel_size_origin == new_pixel_size -> pixel_size_origin / new_pixel_size == 1.0 q1 = q1 / float(box_size) if q1 < 0.5: mic_img = filt_tanl(mic_img, q1, 0.01) cutoff_histogram.append(q1) # Cut off frequency components lower than the box size can express mic_img = fft(filt_gaussh(mic_img, resample_ratio / box_size)) # Resample micrograph, map coordinates, and window segments from resampled micrograph using new coordinates # after resampling by resample_ratio, new pixel size will be pixel_size/resample_ratio = new_pixel_size # NOTE: 2015/04/13 Toshio Moriya # resample() efficiently takes care of the case resample_ratio = 1.0 but # it does not set apix_*. Even though it sets apix_* when resample_ratio < 1.0 ... mic_img = resample(mic_img, resample_ratio) if options.invert: mic_stats = Util.infomask( mic_img, None, True) # mic_stat[0:mean, 1:SD, 2:min, 3:max] Util.mul_scalar(mic_img, -1.0) mic_img += 2 * mic_stats[0] if options.import_ctf: from utilities import generate_ctf ctf_obj = generate_ctf( ctf_params ) # indexes 0 to 7 (idx_cter_def to idx_cter_astig_ang) must be same in cter format & ctf object format. # Prepare loop variables nx = mic_img.get_xsize() ny = mic_img.get_ysize() x0 = nx // 2 y0 = ny // 2 n_coords_reject_out_of_boundary = 0 local_stack_name = "bdb:%s#" % out_dir + mic_baseroot + '_ptcls' local_particle_id = 0 # can be different from coordinates_id # Loop over coordinates for coords_id in xrange(len(coords_list)): x = int(coords_list[coords_id][0]) y = int(coords_list[coords_id][1]) if resample_ratio < 1.0: # assert (resample_ratio > 0.0) x = int(x * resample_ratio) y = int(y * resample_ratio) # else: # assert(resample_ratio == 1.0) if ((0 <= x - box_half) and (x + box_half <= nx) and (0 <= y - box_half) and (y + box_half <= ny)): particle_img = Util.window(mic_img, box_size, box_size, 1, x - x0, y - y0) else: print( "In %s, coordinates ID = %04d (x = %4d, y = %4d, box_size = %4d) is out of micrograph bound, skipping ..." % (mic_baseroot, coords_id, x, y, box_size)) n_coords_reject_out_of_boundary += 1 continue particle_img = ramp(particle_img) particle_stats = Util.infomask( particle_img, mask2d, False) # particle_stats[0:mean, 1:SD, 2:min, 3:max] particle_img -= particle_stats[0] particle_img /= particle_stats[1] # NOTE: 2015/04/09 Toshio Moriya # ptcl_source_image might be redundant information ... # Consider re-organizing header entries... particle_img.set_attr("ptcl_source_image", mic_name) particle_img.set_attr("ptcl_source_coord_id", coords_id) particle_img.set_attr("ptcl_source_coord", [ int(coords_list[coords_id][0]), int(coords_list[coords_id][1]) ]) particle_img.set_attr("resample_ratio", resample_ratio) # NOTE: 2015/04/13 Toshio Moriya # apix_* attributes are updated by resample() only when resample_ratio != 1.0 # Let's make sure header info is consistent by setting apix_* = 1.0 # regardless of options, so it is not passed down the processing line particle_img.set_attr("apix_x", 1.0) particle_img.set_attr("apix_y", 1.0) particle_img.set_attr("apix_z", 1.0) if options.import_ctf: particle_img.set_attr("ctf", ctf_obj) particle_img.set_attr("ctf_applied", 0) particle_img.set_attr("pixel_size_origin", pixel_size_origin) # particle_img.set_attr("apix_x", new_pixel_size) # particle_img.set_attr("apix_y", new_pixel_size) # particle_img.set_attr("apix_z", new_pixel_size) # NOTE: 2015/04/13 Toshio Moriya # Pawel Comment: Micrograph is not supposed to have CTF header info. # So, let's assume it does not exist & ignore its presence. # Note that resample() "correctly" updates pixel size of CTF header info if it exists # elif (particle_img.has_ctff()): # assert(not options.import_ctf) # ctf_origin = particle_img.get_attr("ctf_obj") # pixel_size_origin = round(ctf_origin.apix, 5) # Because SXCTER ouputs up to 5 digits # particle_img.set_attr("apix_x",pixel_size_origin) # particle_img.set_attr("apix_y",pixel_size_origin) # particle_img.set_attr("apix_z",pixel_size_origin) # print("local_stack_name, local_particle_id", local_stack_name, local_particle_id) particle_img.write_image(local_stack_name, local_particle_id) local_particle_id += 1 n_global_coords_detect += len(coords_list) n_global_coords_process += local_particle_id n_global_coords_reject_out_of_boundary += n_coords_reject_out_of_boundary # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # result = db_check_dict(local_stack_name) # print('# MRK_DEBUG: result = db_check_dict(local_stack_name): %s' % (result)) # result = db_list_dicts('bdb:%s' % out_dir) # print('# MRK_DEBUG: result = db_list_dicts(out_dir): %s' % (result)) # result = db_get_image_info(local_stack_name) # print('# MRK_DEBUG: result = db_get_image_info(local_stack_name)', result) # Release the data base of local stack from this process # so that the subprocess can access to the data base db_close_dict(local_stack_name) # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # cmd_line = "e2iminfo.py %s" % (local_stack_name) # print('# MRK_DEBUG: Executing the command: %s' % (cmd_line)) # cmdexecute(cmd_line) # # MRK_DEBUG: Toshio Moriya 2016/05/03 # # Following codes are for debugging bdb. Delete in future # cmd_line = "e2iminfo.py bdb:%s#data" % (out_dir) # print('# MRK_DEBUG: Executing the command: %s' % (cmd_line)) # cmdexecute(cmd_line) if RUNNING_UNDER_MPI: if options.import_ctf: if options.limit_ctf: cutoff_histogram = wrap_mpi_gatherv(cutoff_histogram, main_node) if myid == main_node: if options.limit_ctf: # Print out the summary of CTF-limit filtering print(" ") print("Global summary of CTF-limit filtering (--limit_ctf) ...") print("Percentage of filtered micrographs: %8.2f\n" % (len(cutoff_histogram) * 100.0 / len(restricted_serial_id_list_not_sliced))) n_bins = 10 if len(cutoff_histogram) >= n_bins: from statistics import hist_list cutoff_region, cutoff_counts = hist_list( cutoff_histogram, n_bins) print(" Histogram of cut-off frequency") print(" cut-off counts") for bin_id in xrange(n_bins): print(" %14.7f %7d" % (cutoff_region[bin_id], cutoff_counts[bin_id])) else: print( "The number of filtered micrographs (%d) is less than the number of bins (%d). No histogram is produced." % (len(cutoff_histogram), n_bins)) n_mic_process = mpi_reduce(n_mic_process, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_mic_reject_no_coords = mpi_reduce(n_mic_reject_no_coords, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_mic_reject_no_cter_entry = mpi_reduce(n_mic_reject_no_cter_entry, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_detect = mpi_reduce(n_global_coords_detect, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_process = mpi_reduce(n_global_coords_process, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) n_global_coords_reject_out_of_boundary = mpi_reduce( n_global_coords_reject_out_of_boundary, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) # Print out the summary of all micrographs if main_node == myid: print(" ") print("Global summary of micrographs ...") print("Detected : %6d" % (len(restricted_serial_id_list_not_sliced))) print("Processed : %6d" % (n_mic_process)) print("Rejected by no coordinates file : %6d" % (n_mic_reject_no_coords)) print("Rejected by no CTER entry : %6d" % (n_mic_reject_no_cter_entry)) print(" ") print("Global summary of coordinates ...") print("Detected : %6d" % (n_global_coords_detect)) print("Processed : %6d" % (n_global_coords_process)) print("Rejected by out of boundary : %6d" % (n_global_coords_reject_out_of_boundary)) # print(" ") # print("DONE!!!") mpi_barrier(MPI_COMM_WORLD) if main_node == myid: import time time.sleep(1) print("\n Creating bdb:%s/data\n" % original_out_dir) for proc_i in range(number_of_processes): mic_start, mic_end = MPI_start_end( len(restricted_serial_id_list_not_sliced), number_of_processes, proc_i) for serial_id in restricted_serial_id_list_not_sliced[ mic_start:mic_end]: e2bdb_command = "e2bdb.py " mic_baseroot = mic_baseroot_pattern.replace("*", serial_id) if RUNNING_UNDER_MPI: e2bdb_command += "bdb:" + os.path.join( original_out_dir, "%03d/" % proc_i) + mic_baseroot + "_ptcls " else: e2bdb_command += "bdb:" + os.path.join( original_out_dir, mic_baseroot + "_ptcls ") e2bdb_command += " --appendvstack=bdb:%s/data 1>/dev/null" % original_out_dir cmdexecute(e2bdb_command, printing_on_success=False) print("Done!\n") if RUNNING_UNDER_MPI: mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize() sys.stdout.flush() sys.exit(0)
def compare(compare_ref_free, outfile_repro, ref_free_output, yrng, xrng, rstep, nx, apix, ref_free_cutoff, nproc, myid, main_node): from alignment import Numrinit, ringwe, Applyws from random import seed, randint from utilities import get_params2D, set_params2D, model_circle, inverse_transform2, combine_params2 from fundamentals import rot_shift2D from mpi import MPI_COMM_WORLD, mpi_barrier, mpi_bcast, MPI_INT from statistics import fsc_mask from filter import fit_tanh from numpy import array fout = "%s.hdf" % ref_free_output frc_out = "%s_frc" % ref_free_output res_out = "%s_res" % ref_free_output nima = EMUtil.get_image_count(compare_ref_free) image_start, image_end = MPI_start_end(nima, nproc, myid) ima = EMData() ima.read_image(compare_ref_free, image_start) last_ring = nx / 2 - 2 first_ring = 1 mask = model_circle(last_ring, nx, nx) refi = [] numref = EMUtil.get_image_count(outfile_repro) cnx = nx / 2 + 1 cny = cnx mode = "F" numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) ima.to_zero() for j in xrange(numref): temp = EMData() temp.read_image(outfile_repro, j) # even, odd, numer of even, number of images. After frc, totav refi.append(temp) # for each node read its share of data data = EMData.read_images(compare_ref_free, range(image_start, image_end)) for im in xrange(image_start, image_end): data[im - image_start].set_attr('ID', im) set_params2D(data[im - image_start], [0, 0, 0, 0, 1]) ringref = [] for j in xrange(numref): refi[j].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) # normalize reference images to N(0,1) cimage = Util.Polar2Dm(refi[j], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Applyws(cimage, numr, wr) ringref.append(cimage) if myid == main_node: seed(1000) data_shift = [] frc = [] res = [] for im in xrange(image_start, image_end): alpha, sx, sy, mirror, scale = get_params2D(data[im - image_start]) alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy, 1.0) # normalize data[im - image_start].process_inplace("normalize.mask", { "mask": mask, "no_sigma": 1 }) # subtract average under the mask # align current image to the reference [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im - image_start], ringref, xrng, yrng, 1, mode, numr, cnx + sxi, cny + syi) iref = int(xiref) [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort)) set_params2D(data[im - image_start], [alphan, sxn, syn, int(mn), scale]) temp = rot_shift2D(data[im - image_start], alphan, sxn, syn, mn) temp.set_attr('assign', iref) tfrc = fsc_mask(temp, refi[iref], mask=mask) temp.set_attr('frc', tfrc[1]) res = fit_tanh(tfrc) temp.set_attr('res', res) data_shift.append(temp) for node in xrange(nproc): if myid == node: for image in data_shift: image.write_image(fout, -1) refindex = image.get_attr('assign') refi[refindex].write_image(fout, -1) mpi_barrier(MPI_COMM_WORLD) rejects = [] if myid == main_node: a = EMData() index = 0 frc = [] res = [] temp = [] classes = [] for im in xrange(nima): a.read_image(fout, index) frc.append(a.get_attr("frc")) if ref_free_cutoff != -1: classes.append(a.get_attr("class_ptcl_idxs")) tmp = a.get_attr("res") temp.append(tmp[0]) res.append("%12f" % (apix / tmp[0])) res.append("\n") index = index + 2 res_num = array(temp) mean_score = res_num.mean(axis=0) std_score = res_num.std(axis=0) std = std_score / 2 if ref_free_cutoff != -1: cutoff = mean_score - std * ref_free_cutoff reject = res_num < cutoff index = 0 for i in reject: if i: rejects.extend(classes[index]) index = index + 1 rejects.sort() length = mpi_bcast(len(rejects), 1, MPI_INT, main_node, MPI_COMM_WORLD) rejects = mpi_bcast(rejects, length, MPI_INT, main_node, MPI_COMM_WORLD) del a fout_frc = open(frc_out, 'w') fout_res = open(res_out, 'w') fout_res.write("".join(res)) temp = zip(*frc) datstrings = [] for i in temp: for j in i: datstrings.append(" %12f" % (j)) datstrings.append("\n") fout_frc.write("".join(datstrings)) fout_frc.close() del refi del ringref return rejects
def compare(compare_ref_free, outfile_repro,ref_free_output,yrng, xrng, rstep,nx,apix,ref_free_cutoff, nproc, myid, main_node): from alignment import Numrinit, ringwe, Applyws from random import seed, randint from utilities import get_params2D, set_params2D, model_circle, inverse_transform2, combine_params2 from fundamentals import rot_shift2D from mpi import MPI_COMM_WORLD, mpi_barrier, mpi_bcast, MPI_INT from statistics import fsc_mask from filter import fit_tanh from numpy import array fout = "%s.hdf" % ref_free_output frc_out = "%s_frc" % ref_free_output res_out = "%s_res" % ref_free_output nima = EMUtil.get_image_count(compare_ref_free) image_start, image_end = MPI_start_end(nima, nproc, myid) ima = EMData() ima.read_image(compare_ref_free, image_start) last_ring = nx/2-2 first_ring = 1 mask = model_circle(last_ring, nx, nx) refi = [] numref = EMUtil.get_image_count(outfile_repro) cnx = nx/2 +1 cny = cnx mode = "F" numr = Numrinit(first_ring, last_ring, rstep, mode) wr = ringwe(numr, mode) ima.to_zero() for j in xrange(numref): temp = EMData() temp.read_image(outfile_repro, j) # even, odd, numer of even, number of images. After frc, totav refi.append(temp) # for each node read its share of data data = EMData.read_images(compare_ref_free, range(image_start, image_end)) for im in xrange(image_start, image_end): data[im-image_start].set_attr('ID', im) set_params2D(data[im-image_start],[0,0,0,0,1]) ringref = [] for j in xrange(numref): refi[j].process_inplace("normalize.mask", {"mask":mask, "no_sigma":1}) # normalize reference images to N(0,1) cimage = Util.Polar2Dm(refi[j], cnx, cny, numr, mode) Util.Frngs(cimage, numr) Applyws(cimage, numr, wr) ringref.append(cimage) if myid == main_node: seed(1000) data_shift = [] frc = [] res = [] for im in xrange(image_start, image_end): alpha, sx, sy, mirror, scale = get_params2D(data[im-image_start]) alphai, sxi, syi, scalei = inverse_transform2(alpha, sx, sy, 1.0) # normalize data[im-image_start].process_inplace("normalize.mask", {"mask":mask, "no_sigma":1}) # subtract average under the mask # align current image to the reference [angt, sxst, syst, mirrort, xiref, peakt] = Util.multiref_polar_ali_2d(data[im-image_start], ringref, xrng, yrng, 1, mode, numr, cnx+sxi, cny+syi) iref = int(xiref) [alphan, sxn, syn, mn] = combine_params2(0.0, -sxi, -syi, 0, angt, sxst, syst, (int)(mirrort)) set_params2D(data[im-image_start], [alphan, sxn, syn, int(mn), scale]) temp = rot_shift2D(data[im-image_start], alphan, sxn, syn, mn) temp.set_attr('assign',iref) tfrc = fsc_mask(temp,refi[iref],mask = mask) temp.set_attr('frc',tfrc[1]) res = fit_tanh(tfrc) temp.set_attr('res',res) data_shift.append(temp) for node in xrange(nproc): if myid == node: for image in data_shift: image.write_image(fout,-1) refindex = image.get_attr('assign') refi[refindex].write_image(fout,-1) mpi_barrier(MPI_COMM_WORLD) rejects = [] if myid == main_node: a = EMData() index = 0 frc = [] res = [] temp = [] classes = [] for im in xrange(nima): a.read_image(fout, index) frc.append(a.get_attr("frc")) if ref_free_cutoff != -1: classes.append(a.get_attr("class_ptcl_idxs")) tmp = a.get_attr("res") temp.append(tmp[0]) res.append("%12f" %(apix/tmp[0])) res.append("\n") index = index + 2 res_num = array(temp) mean_score = res_num.mean(axis=0) std_score = res_num.std(axis=0) std = std_score / 2 if ref_free_cutoff !=-1: cutoff = mean_score - std * ref_free_cutoff reject = res_num < cutoff index = 0 for i in reject: if i: rejects.extend(classes[index]) index = index + 1 rejects.sort() length = mpi_bcast(len(rejects),1,MPI_INT,main_node, MPI_COMM_WORLD) rejects = mpi_bcast(rejects,length , MPI_INT, main_node, MPI_COMM_WORLD) del a fout_frc = open(frc_out,'w') fout_res = open(res_out,'w') fout_res.write("".join(res)) temp = zip(*frc) datstrings = [] for i in temp: for j in i: datstrings.append(" %12f" % (j)) datstrings.append("\n") fout_frc.write("".join(datstrings)) fout_frc.close() del refi del ringref return rejects
def main(args): """ Main function Arguments: args - Arguments as dictionary Returns: None """ main_mpi_proc = 0 my_mpi_proc_id = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) n_mpi_procs = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) # Import the file names sanity_checks(args, my_mpi_proc_id) if my_mpi_proc_id == main_mpi_proc: if args['Expert options']: sp_global_def.sxprint( 'Expert option detected! The program will enable expert mode!') if args['Magnification correction']: sp_global_def.sxprint( 'Magnification correction option detected! The program will enable magnification correction mode!' ) file_names = load_file_names_by_pattern( args['input_micrograph_pattern'], args['selection_file']) else: file_names = [] file_names = sp_utilities.wrap_mpi_bcast(file_names, main_mpi_proc) # Split the list indices by node max_proc = min(n_mpi_procs, len(file_names)) if my_mpi_proc_id in list(range(max_proc)): idx_start, idx_end = sp_applications.MPI_start_end( len(file_names), max_proc, my_mpi_proc_id) else: idx_start = 0 idx_end = 0 nima = idx_end - idx_start max_nima_list = sp_utilities.wrap_mpi_gatherv([nima], main_mpi_proc, mpi.MPI_COMM_WORLD) max_nima_list = sp_utilities.wrap_mpi_bcast(max_nima_list, main_mpi_proc, mpi.MPI_COMM_WORLD) max_nima = max(max_nima_list) mpi_print_id = max_nima_list.index(max_nima) try: os.makedirs(args['output_directory']) except OSError: pass sp_global_def.write_command(args['output_directory']) start_unblur = time.time.time() for idx, file_path in enumerate(file_names[idx_start:idx_end]): if my_mpi_proc_id == mpi_print_id: total_time = time.time.time() - start_unblur if idx == 0: average_time = 0 else: average_time = total_time / float(idx) sp_global_def.sxprint( '{0: 6.2f}% => Elapsed time: {1: 6.2f}min | Estimated total time: {2: 6.2f}min | Time per micrograph: {3: 5.2f}min/mic' .format( 100 * idx / float(max_nima), total_time / float(60), (max_nima) * average_time / float(60), average_time / float(60), )) file_name = os.path.basename(os.path.splitext(file_path)[0]) file_name_out = '{0}.mrc'.format(file_name) file_name_log = '{0}.log'.format(file_name) file_name_err = '{0}.err'.format(file_name) output_dir_name = os.path.join(args['output_directory'], 'corrsum') output_dir_name_log = os.path.join(args['output_directory'], 'corrsum_log') output_dir_name_dw = os.path.join(args['output_directory'], 'corrsum_dw') output_dir_name_dw_log = os.path.join(args['output_directory'], 'corrsum_dw_log') if args['additional_dose_unadjusted']: unblur_list = ( (True, output_dir_name_dw, output_dir_name_dw_log), (False, output_dir_name, output_dir_name_log), ) elif args['skip_dose_adjustment']: unblur_list = ((False, output_dir_name, output_dir_name_log), ) else: unblur_list = ((True, output_dir_name_dw, output_dir_name_dw_log), ) for dose_adjustment, dir_name, log_dir_name in unblur_list: try: os.makedirs(dir_name) except OSError: pass try: os.makedirs(log_dir_name) except OSError: pass output_name = os.path.join(dir_name, file_name_out) output_name_log = os.path.join(log_dir_name, file_name_log) output_name_err = os.path.join(log_dir_name, file_name_err) unblur_command = create_unblur_command( file_path, output_name, args['pixel_size'], args['bin_factor'], dose_adjustment, args['voltage'], args['exposure_per_frame'], args['pre_exposure'], args['Expert options'], args['min_shift_initial'], args['outer_radius'], args['b_factor'], args['half_width_vert'], args['half_width_hor'], args['termination'], args['max_iterations'], bool(not args['dont_restore_noise_power']), args['gain_file'], args['first_frame'], args['last_frame'], args['Magnification correction'], args['distortion_angle'], args['major_scale'], args['minor_scale'], ) execute_command = r'echo "{0}" | {1}'.format( unblur_command, args['unblur_path']) with open(output_name_log, 'w') as log, open(output_name_err, 'w') as err: start = time.time.time() child = subprocess.Popen(execute_command, shell=True, stdout=log, stderr=err) child.wait() if child.returncode != 0: sp_global_def.sxprint( 'Process failed for image {0}.\nPlease make sure that the unblur path is correct\nand check the respective logfile.' .format(file_path)) log.write('Time => {0:.2f} for command: {1}'.format( time.time.time() - start, execute_command)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if my_mpi_proc_id == mpi_print_id: idx = idx + 1 total_time = time.time.time() - start_unblur average_time = total_time / float(idx) sp_global_def.sxprint( '{0: 6.2f}% => Elapsed time: {1: 6.2f}min | Estimated total time: {2: 6.2f}min | Time per micrograph: {3: 5.2f}min/mic' .format( 100 * idx / float(max_nima), total_time / float(60), (max_nima) * average_time / float(60), average_time / float(60), ))
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): # the final ali2d parameters already combine shifts operation first and rotation operation second for parameters converted from 3D if mirror: m = 1 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 540.0 - psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = sp_utilities.compose_transform2( 0, s2x, s2y, 1.0, 360.0 - psi, 0, 0, 1.0) return alpha, sx, sy, m progname = optparse.os.path.basename(sys.argv[0]) usage = ( progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl= --aa= --sym=symmetry --CTF" ) parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option("--output_dir", type="string", default="./", help="Output directory") parser.add_option( "--ave2D", type="string", default=False, help="Write to the disk a stack of 2D averages", ) parser.add_option( "--var2D", type="string", default=False, help="Write to the disk a stack of 2D variances", ) parser.add_option( "--ave3D", type="string", default=False, help="Write to the disk reconstructed 3D average", ) parser.add_option( "--var3D", type="string", default=False, help="Compute 3D variability (time consuming!)", ) parser.add_option( "--img_per_grp", type="int", default=100, help="Number of neighbouring projections.(Default is 100)", ) parser.add_option( "--no_norm", action="store_true", default=False, help="Do not use normalization.(Default is to apply normalization)", ) # parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option( "--npad", type="int", default=2, help= "Number of time to pad the original images.(Default is 2 times padding)", ) parser.add_option("--sym", type="string", default="c1", help="Symmetry. (Default is no symmetry)") parser.add_option( "--fl", type="float", default=0.0, help= "Low pass filter cutoff in absolute frequency (0.0 - 0.5) and is applied to decimated images. (Default - no filtration)", ) parser.add_option( "--aa", type="float", default=0.02, help= "Fall off of the filter. Use default value if user has no clue about falloff (Default value is 0.02)", ) parser.add_option( "--CTF", action="store_true", default=False, help="Use CFT correction.(Default is no CTF correction)", ) # parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") # parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) # parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) # parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) # parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option( "--VAR", action="store_true", default=False, help="Stack of input consists of 2D variances (Default False)", ) parser.add_option( "--decimate", type="float", default=0.25, help="Image decimate rate, a number less than 1. (Default is 0.25)", ) parser.add_option( "--window", type="int", default=0, help= "Target image size relative to original image size. (Default value is zero.)", ) # parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") # parser.add_option("--nvec", type="int" , default=0 , help="Number of eigenvectors, (Default = 0 meaning no PCA calculated)") parser.add_option( "--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)", ) parser.add_option("--overhead", type="float", default=0.5, help="python overhead per CPU.") (options, args) = parser.parse_args() ##### # from mpi import * # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 # Set up global variables related to bdb cache if sp_global_def.CACHE_DISABLE: sp_utilities.disable_bdb_cache() # Set up global variables related to ERROR function sp_global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in optparse.os.environ if RUNNING_UNDER_MPI: sp_global_def.MPI = True if options.output_dir == "./": current_output_dir = optparse.os.path.abspath(options.output_dir) else: current_output_dir = options.output_dir if options.symmetrize: if mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) > 1: sp_global_def.ERROR( "Cannot use more than one CPU for symmetry preparation") if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs(current_output_dir) sp_global_def.write_command(current_output_dir) if optparse.os.path.exists( optparse.os.path.join(current_output_dir, "log.txt")): optparse.os.remove( optparse.os.path.join(current_output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") instack = args[0] sym = options.sym.lower() if sym == "c1": sp_global_def.ERROR( "There is no need to symmetrize stack for C1 symmetry") line = "" for a in sys.argv: line += " " + a log_main.add(line) if instack[:4] != "bdb:": # if output_dir =="./": stack = "bdb:data" stack = "bdb:" + current_output_dir + "/data" sp_utilities.delete_bdb(stack) junk = sp_utilities.cmdexecute("sp_cpy.py " + instack + " " + stack) else: stack = instack qt = EMAN2_cppwrap.EMUtil.get_all_attributes(stack, "xform.projection") na = len(qt) ts = sp_utilities.get_symt(sym) ks = len(ts) angsa = [None] * na for k in range(ks): # Qfile = "Q%1d"%k # if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) Qfile = optparse.os.path.join(current_output_dir, "Q%1d" % k) # delete_bdb("bdb:Q%1d"%k) sp_utilities.delete_bdb("bdb:" + Qfile) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = sp_utilities.cmdexecute("e2bdb.py " + stack + " --makevstack=bdb:" + Qfile) # DB = db_open_dict("bdb:Q%1d"%k) DB = EMAN2db.db_open_dict("bdb:" + Qfile) for i in range(na): ut = qt[i] * ts[k] DB.set_attr(i, "xform.projection", ut) # bt = ut.get_params("spider") # angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] # write_text_row(angsa, 'ptsma%1d.txt'%k) # junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) # junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() # if options.output_dir =="./": delete_bdb("bdb:sdata") sp_utilities.delete_bdb("bdb:" + current_output_dir + "/" + "sdata") # junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:" + current_output_dir + "/" + "sdata" sp_global_def.sxprint(sdata) junk = sp_utilities.cmdexecute("e2bdb.py " + current_output_dir + " --makevstack=" + sdata + " --filt=Q") # junk = cmdexecute("ls EMAN2DB/sdata*") # a = get_im("bdb:sdata") a = sp_utilities.get_im(sdata) a.set_attr("variabilitysymmetry", sym) # a.write_image("bdb:sdata") a.write_image(sdata) else: myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) number_of_proc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) main_node = 0 shared_comm = mpi.mpi_comm_split_type(mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) myid_on_node = mpi.mpi_comm_rank(shared_comm) no_of_processes_per_group = mpi.mpi_comm_size(shared_comm) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, main_node == myid_on_node, myid_on_node) color, no_of_groups, balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( main_node, mpi.MPI_COMM_WORLD, myid, shared_comm, myid_on_node, masters_from_groups_vs_everything_else_comm, ) overhead_loading = options.overhead * number_of_proc # memory_per_node = options.memory_per_node # if memory_per_node == -1.: memory_per_node = 2.*no_of_processes_per_group keepgoing = 1 current_window = options.window current_decimate = options.decimate if len(args) == 1: stack = args[0] else: sp_global_def.sxprint("Usage: " + usage) sp_global_def.sxprint("Please run '" + progname + " -h' for detailed options") sp_global_def.ERROR( "Invalid number of parameters used. Please see usage information above." ) return t0 = time.time() # obsolete flags options.MPI = True # options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: sp_global_def.ERROR( "Fall off has to be given for the low-pass filter", myid=myid) # if options.VAR and options.SND: # ERROR( "Only one of var and SND can be set!",myid=myid ) if options.VAR and (options.ave2D or options.ave3D or options.var2D): sp_global_def.ERROR( "When VAR is set, the program cannot output ave2D, ave3D or var2D", myid=myid, ) # if options.SND and (options.ave2D or options.ave3D): # ERROR( "When SND is set, the program cannot output ave2D or ave3D", myid=myid ) # if options.nvec > 0 : # ERROR( "PCA option not implemented", myid=myid ) # if options.nvec > 0 and options.ave3D == None: # ERROR( "When doing PCA analysis, one must set ave3D", myid=myid ) if current_decimate > 1.0 or current_decimate < 0.0: sp_global_def.ERROR( "Decimate rate should be a value between 0.0 and 1.0", myid=myid) if current_window < 0.0: sp_global_def.ERROR( "Target window size should be always larger than zero", myid=myid) if myid == main_node: img = sp_utilities.get_image(stack, 0) nx = img.get_xsize() ny = img.get_ysize() if min(nx, ny) < current_window: keepgoing = 0 keepgoing = sp_utilities.bcast_number_to_all(keepgoing, main_node, mpi.MPI_COMM_WORLD) if keepgoing == 0: sp_global_def.ERROR( "The target window size cannot be larger than the size of decimated image", myid=myid, ) options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if not optparse.os.path.exists(current_output_dir): optparse.os.makedirs( current_output_dir ) # Never delete output_dir in the program! img_per_grp = options.img_per_grp # nvec = options.nvec radiuspca = options.radiuspca # if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = optparse.os.path.join(current_output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line += " " + a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("Symmetry : %s" % options.sym) log_main.add("Input stack : %s" % stack) log_main.add("Output_dir : %s" % current_output_dir) if options.ave3D: log_main.add("Ave3d : %s" % options.ave3D) if options.var3D: log_main.add("Var3d : %s" % options.var3D) if options.ave2D: log_main.add("Ave2D : %s" % options.ave2D) if options.var2D: log_main.add("Var2D : %s" % options.var2D) if options.VAR: log_main.add("VAR : True") else: log_main.add("VAR : False") if options.CTF: log_main.add("CTF correction : True ") else: log_main.add("CTF correction : False ") log_main.add("Image per group : %5d" % options.img_per_grp) log_main.add("Image decimate rate : %4.3f" % current_decimate) log_main.add("Low pass filter : %4.3f" % options.fl) current_fl = options.fl if current_fl == 0.0: current_fl = 0.5 log_main.add( "Current low pass filter is equivalent to cutoff frequency %4.3f for original image size" % round((current_fl * current_decimate), 3)) log_main.add("Window size : %5d " % current_window) log_main.add("sx3dvariability begins") symbaselen = 0 if myid == main_node: nima = EMAN2_cppwrap.EMUtil.get_image_count(stack) img = sp_utilities.get_image(stack) nx = img.get_xsize() ny = img.get_ysize() nnxo = nx nnyo = ny if options.sym != "c1": imgdata = sp_utilities.get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if i != options.sym: sp_global_def.ERROR( "The symmetry provided does not agree with the symmetry of the input stack", myid=myid, ) except: sp_global_def.ERROR( "Input stack is not prepared for symmetry, please follow instructions", myid=myid, ) i = len(sp_utilities.get_symt(options.sym)) if (old_div(nima, i)) * i != nima: sp_global_def.ERROR( "The length of the input stack is incorrect for symmetry processing", myid=myid, ) symbaselen = old_div(nima, i) else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nnxo = 0 nnyo = 0 nima = sp_utilities.bcast_number_to_all(nima) nx = sp_utilities.bcast_number_to_all(nx) ny = sp_utilities.bcast_number_to_all(ny) nnxo = sp_utilities.bcast_number_to_all(nnxo) nnyo = sp_utilities.bcast_number_to_all(nnyo) if current_window > max(nx, ny): sp_global_def.ERROR( "Window size is larger than the original image size") if current_decimate == 1.0: if current_window != 0: nx = current_window ny = current_window else: if current_window == 0: nx = int(nx * current_decimate + 0.5) ny = int(ny * current_decimate + 0.5) else: nx = int(current_window * current_decimate + 0.5) ny = nx symbaselen = sp_utilities.bcast_number_to_all(symbaselen) # check FFT prime number is_fft_friendly = nx == sp_fundamentals.smallprime(nx) if not is_fft_friendly: if myid == main_node: log_main.add( "The target image size is not a product of small prime numbers" ) log_main.add("Program adjusts the input settings!") ### two cases if current_decimate == 1.0: nx = sp_fundamentals.smallprime(nx) ny = nx current_window = nx # update if myid == main_node: log_main.add("The window size is updated to %d." % current_window) else: if current_window == 0: nx = sp_fundamentals.smallprime( int(nx * current_decimate + 0.5)) current_decimate = old_div(float(nx), nnxo) ny = nx if myid == main_node: log_main.add("The decimate rate is updated to %f." % current_decimate) else: nx = sp_fundamentals.smallprime( int(current_window * current_decimate + 0.5)) ny = nx current_window = int(old_div(nx, current_decimate) + 0.5) if myid == main_node: log_main.add("The window size is updated to %d." % current_window) if myid == main_node: log_main.add("The target image size is %d" % nx) if radiuspca == -1: radiuspca = old_div(nx, 2) - 2 if myid == main_node: log_main.add("%-70s: %d\n" % ("Number of projection", nima)) img_begin, img_end = sp_applications.MPI_start_end( nima, number_of_proc, myid) """Multiline Comment0""" """ Comments from adnan, replace index_of_proj to index_of_particle, index_of_proj was not defined also varList is not defined not made an empty list there """ if options.VAR: # 2D variance images have no shifts varList = [] # varList = EMData.read_images(stack, range(img_begin, img_end)) for index_of_particle in range(img_begin, img_end): image = sp_utilities.get_im(stack, index_of_particle) if current_window > 0: varList.append( sp_fundamentals.fdecimate( sp_fundamentals.window2d(image, current_window, current_window), nx, ny, )) else: varList.append(sp_fundamentals.fdecimate(image, nx, ny)) else: if myid == main_node: t1 = time.time() proj_angles = [] aveList = [] tab = EMAN2_cppwrap.EMUtil.get_all_attributes( stack, "xform.projection") for i in range(nima): t = tab[i].get_params("spider") phi = t["phi"] theta = t["theta"] psi = t["psi"] x = theta if x > 90.0: x = 180.0 - x x = x * 10000 + psi proj_angles.append([x, t["phi"], t["theta"], t["psi"], i]) t2 = time.time() log_main.add( "%-70s: %d\n" % ("Number of neighboring projections", img_per_grp)) log_main.add("...... Finding neighboring projections\n") log_main.add("Number of images per group: %d" % img_per_grp) log_main.add("Now grouping projections") proj_angles.sort() proj_angles_list = numpy.full((nima, 4), 0.0, dtype=numpy.float32) for i in range(nima): proj_angles_list[i][0] = proj_angles[i][1] proj_angles_list[i][1] = proj_angles[i][2] proj_angles_list[i][2] = proj_angles[i][3] proj_angles_list[i][3] = proj_angles[i][4] else: proj_angles_list = 0 proj_angles_list = sp_utilities.wrap_mpi_bcast( proj_angles_list, main_node, mpi.MPI_COMM_WORLD) proj_angles = [] for i in range(nima): proj_angles.append([ proj_angles_list[i][0], proj_angles_list[i][1], proj_angles_list[i][2], int(proj_angles_list[i][3]), ]) del proj_angles_list proj_list, mirror_list = sp_utilities.nearest_proj( proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = [] for im in proj_list: for jm in im: all_proj.append(proj_angles[jm][3]) all_proj = list(set(all_proj)) index = {} for i in range(len(all_proj)): index[all_proj[i]] = i mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("%-70s: %.2f\n" % ("Finding neighboring projections lasted [s]", time.time() - t2)) log_main.add("%-70s: %d\n" % ("Number of groups processed on the main node", len(proj_list))) log_main.add("Grouping projections took: %12.1f [m]" % (old_div((time.time() - t2), 60.0))) log_main.add("Number of groups on main node: ", len(proj_list)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("...... Calculating the stack of 2D variances \n") # Memory estimation. There are two memory consumption peaks # peak 1. Compute ave, var; # peak 2. Var volume reconstruction; # proj_params = [0.0]*(nima*5) aveList = [] varList = [] # if nvec > 0: eigList = [[] for i in range(nvec)] dnumber = len( all_proj) # all neighborhood set for assigned to myid pnumber = len(proj_list) * 2.0 + img_per_grp # aveList and varList tnumber = dnumber + pnumber vol_size2 = old_div(nx**3 * 4.0 * 8, 1.0e9) vol_size1 = old_div(2.0 * nnxo**3 * 4.0 * 8, 1.0e9) proj_size = old_div(nnxo * nnyo * len(proj_list) * 4.0 * 2.0, 1.0e9) # both aveList and varList orig_data_size = old_div(nnxo * nnyo * 4.0 * tnumber, 1.0e9) reduced_data_size = old_div(nx * nx * 4.0 * tnumber, 1.0e9) full_data = numpy.full((number_of_proc, 2), -1.0, dtype=numpy.float16) full_data[myid] = orig_data_size, reduced_data_size if myid != main_node: sp_utilities.wrap_mpi_send(full_data, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: for iproc in range(number_of_proc): if iproc != main_node: dummy = sp_utilities.wrap_mpi_recv( iproc, mpi.MPI_COMM_WORLD) full_data[numpy.where(dummy > -1)] = dummy[numpy.where( dummy > -1)] del dummy mpi.mpi_barrier(mpi.MPI_COMM_WORLD) full_data = sp_utilities.wrap_mpi_bcast(full_data, main_node, mpi.MPI_COMM_WORLD) # find the CPU with heaviest load minindx = numpy.argsort(full_data, 0) heavy_load_myid = minindx[-1][1] total_mem = sum(full_data) if myid == main_node: if current_window == 0: log_main.add( "Nx: current image size = %d. Decimated by %f from %d" % (nx, current_decimate, nnxo)) else: log_main.add( "Nx: current image size = %d. Windowed to %d, and decimated by %f from %d" % (nx, current_window, current_decimate, nnxo)) log_main.add("Nproj: number of particle images.") log_main.add("Navg: number of 2D average images.") log_main.add("Nvar: number of 2D variance images.") log_main.add( "Img_per_grp: user defined image per group for averaging = %d" % img_per_grp) log_main.add( "Overhead: total python overhead memory consumption = %f" % overhead_loading) log_main.add( "Total memory) = 4.0*nx^2*(nproj + navg +nvar+ img_per_grp)/1.0e9 + overhead: %12.3f [GB]" % (total_mem[1] + overhead_loading)) del full_data mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add( "Begin reading and preprocessing images on processor. Wait... " ) ttt = time.time() # imgdata = EMData.read_images(stack, all_proj) imgdata = [None for im in range(len(all_proj))] for index_of_proj in range(len(all_proj)): # image = get_im(stack, all_proj[index_of_proj]) if current_window > 0: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_fundamentals.window2d( sp_utilities.get_im(stack, all_proj[index_of_proj]), current_window, current_window, ), nx, ny, ) else: imgdata[index_of_proj] = sp_fundamentals.fdecimate( sp_utilities.get_im(stack, all_proj[index_of_proj]), nx, ny) if current_decimate > 0.0 and options.CTF: ctf = imgdata[index_of_proj].get_attr("ctf") ctf.apix = old_div(ctf.apix, current_decimate) imgdata[index_of_proj].set_attr("ctf", ctf) if myid == heavy_load_myid and index_of_proj % 100 == 0: log_main.add( " ...... %6.2f%% " % (old_div(index_of_proj, float(len(all_proj))) * 100.0)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("All_proj preprocessing cost %7.2f m" % (old_div( (time.time() - ttt), 60.0))) log_main.add("Wait untill reading on all CPUs done...") """Multiline Comment1""" if not options.no_norm: mask = sp_utilities.model_circle(old_div(nx, 2) - 2, nx, nx) if myid == heavy_load_myid: log_main.add("Start computing 2D aveList and varList. Wait...") ttt = time.time() inner = old_div(nx, 2) - 4 outer = inner + 2 xform_proj_for_2D = [None for i in range(len(proj_list))] for i in range(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] dpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mi], "xform.projection", "spider") phiM, thetaM, psiM, s2xM, s2yM = ( dpar["phi"], dpar["theta"], dpar["psi"], -dpar["tx"] * current_decimate, -dpar["ty"] * current_decimate, ) grp_imgdata = [] for j in range(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] cpar = EMAN2_cppwrap.Util.get_transform_params( imgdata[mj], "xform.projection", "spider") alpha, sx, sy, mirror = params_3D_2D_NEW( cpar["phi"], cpar["theta"], cpar["psi"], -cpar["tx"] * current_decimate, -cpar["ty"] * current_decimate, mirror_list[i][j], ) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, phiM - cpar["phi"], 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, 180 - (phiM - cpar["phi"]), 0.0, 0.0, 1.0, ) else: if mirror == 0: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(phiM - cpar["phi"]), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = sp_utilities.compose_transform2( alpha, sx, sy, 1.0, -(180 - (phiM - cpar["phi"])), 0.0, 0.0, 1.0, ) imgdata[mj].set_attr( "xform.align2d", EMAN2_cppwrap.Transform({ "type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0, }), ) grp_imgdata.append(imgdata[mj]) if not options.no_norm: for k in range(img_per_grp): ave, std, minn, maxx = EMAN2_cppwrap.Util.infomask( grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] = old_div(grp_imgdata[k], std) if options.fl > 0.0: for k in range(img_per_grp): grp_imgdata[k] = sp_filter.filt_tanl( grp_imgdata[k], options.fl, options.aa) # Because of background issues, only linear option works. if options.CTF: ave, var = sp_statistics.aves_wiener( grp_imgdata, SNR=1.0e5, interpolation_method="linear") else: ave, var = sp_statistics.ave_var(grp_imgdata) # Switch to std dev # threshold is not really needed,it is just in case due to numerical accuracy something turns out negative. var = sp_morphology.square_root(sp_morphology.threshold(var)) sp_utilities.set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) sp_utilities.set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) xform_proj_for_2D[i] = [phiM, thetaM, 0.0, 0.0, 0.0] """Multiline Comment2""" if (myid == heavy_load_myid) and (i % 100 == 0): log_main.add(" ......%6.2f%% " % (old_div(i, float(len(proj_list))) * 100.0)) del imgdata, grp_imgdata, cpar, dpar, all_proj, proj_angles, index if not options.no_norm: del mask if myid == main_node: del tab # At this point, all averages and variances are computed mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == heavy_load_myid: log_main.add("Computing aveList and varList took %12.1f [m]" % (old_div((time.time() - ttt), 60.0))) xform_proj_for_2D = sp_utilities.wrap_mpi_gatherv( xform_proj_for_2D, main_node, mpi.MPI_COMM_WORLD) if myid == main_node: sp_utilities.write_text_row( [str(entry) for entry in xform_proj_for_2D], optparse.os.path.join(current_output_dir, "params.txt"), ) del xform_proj_for_2D mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave2D: if myid == main_node: log_main.add("Compute ave2D ... ") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(aveList)): aveList[im].write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) """Multiline Comment3""" tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.ave2D), km, ) km += 1 else: mpi.mpi_send( len(aveList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(aveList)): sp_utilities.send_EMData(aveList[im], main_node, im + myid + 70000) """Multiline Comment4""" if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.ave2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.ave3D: t5 = time.time() if myid == main_node: log_main.add("Reconstruct ave3D ... ") ave3D = sp_reconstruction.recons3d_4nn_MPI( myid, aveList, symmetry=options.sym, npad=options.npad) sp_utilities.bcast_EMData_to_all(ave3D, myid) if myid == main_node: if current_decimate != 1.0: ave3D = sp_fundamentals.resample( ave3D, old_div(1.0, current_decimate)) ave3D = sp_fundamentals.fpol( ave3D, nnxo, nnxo, nnxo) # always to the orignal image size sp_utilities.set_pixel_size(ave3D, 1.0) ave3D.write_image( optparse.os.path.join(current_output_dir, options.ave3D)) log_main.add("Ave3D reconstruction took %12.1f [m]" % (old_div((time.time() - t5), 60.0))) log_main.add("%-70s: %s\n" % ("The reconstructed ave3D is saved as ", options.ave3D)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) del ave, var, proj_list, stack, alpha, sx, sy, mirror, aveList """Multiline Comment5""" if options.ave3D: del ave3D if options.var2D: if myid == main_node: log_main.add("Compute var2D...") km = 0 for i in range(number_of_proc): if i == main_node: for im in range(len(varList)): tmpvol = sp_fundamentals.fpol( varList[im], nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: nl = mpi.mpi_recv( 1, mpi.MPI_INT, i, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) nl = int(nl[0]) for im in range(nl): ave = sp_utilities.recv_EMData( i, im + i + 70000) tmpvol = sp_fundamentals.fpol(ave, nx, nx, 1) tmpvol.write_image( optparse.os.path.join( current_output_dir, options.var2D), km, ) km += 1 else: mpi.mpi_send( len(varList), 1, mpi.MPI_INT, main_node, sp_global_def.SPARX_MPI_TAG_UNIVERSAL, mpi.MPI_COMM_WORLD, ) for im in range(len(varList)): sp_utilities.send_EMData( varList[im], main_node, im + myid + 70000) # What with the attributes?? mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: sp_applications.header( optparse.os.path.join(current_output_dir, options.var2D), params="xform.projection", fimport=optparse.os.path.join(current_output_dir, "params.txt"), ) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.var3D: if myid == main_node: log_main.add("Reconstruct var3D ...") t6 = time.time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = sp_reconstruction.recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) # res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: if current_decimate != 1.0: res = sp_fundamentals.resample( res, old_div(1.0, current_decimate)) res = sp_fundamentals.fpol(res, nnxo, nnxo, nnxo) sp_utilities.set_pixel_size(res, 1.0) res.write_image(os.path.join(current_output_dir, options.var3D)) log_main.add( "%-70s: %s\n" % ("The reconstructed var3D is saved as ", options.var3D)) log_main.add("Var3D reconstruction took %f12.1 [m]" % (old_div( (time.time() - t6), 60.0))) log_main.add("Total computation time %f12.1 [m]" % (old_div( (time.time() - t0), 60.0))) log_main.add("sx3dvariability finishes") if RUNNING_UNDER_MPI: sp_global_def.MPI = False sp_global_def.BATCH = False
def main(): global Tracker, Blockdata progname = os.path.basename(sys.argv[0]) usage = progname + " --output_dir=output_dir --isac_dir=output_dir_of_isac " parser = optparse.OptionParser(usage, version=sp_global_def.SPARXVERSION) parser.add_option( "--pw_adjustment", type="string", default="analytical_model", help= "adjust power spectrum of 2-D averages to an analytic model. Other opions: no_adjustment; bfactor; a text file of 1D rotationally averaged PW", ) #### Four options for --pw_adjustment: # 1> analytical_model(default); # 2> no_adjustment; # 3> bfactor; # 4> adjust_to_given_pw2(user has to provide a text file that contains 1D rotationally averaged PW) # options in common parser.add_option( "--isac_dir", type="string", default="", help="ISAC run output directory, input directory for this command", ) parser.add_option( "--output_dir", type="string", default="", help="output directory where computed averages are saved", ) parser.add_option( "--pixel_size", type="float", default=-1.0, help= "pixel_size of raw images. one can put 1.0 in case of negative stain data", ) parser.add_option( "--fl", type="float", default=-1.0, help= "low pass filter, = -1.0, not applied; =0.0, using FH1 (initial resolution), = 1.0 using FH2 (resolution after local alignment), or user provided value in absolute freqency [0.0:0.5]", ) parser.add_option("--stack", type="string", default="", help="data stack used in ISAC") parser.add_option("--radius", type="int", default=-1, help="radius") parser.add_option("--xr", type="float", default=-1.0, help="local alignment search range") # parser.add_option("--ts", type ="float", default =1.0, help= "local alignment search step") parser.add_option( "--fh", type="float", default=-1.0, help="local alignment high frequencies limit", ) # parser.add_option("--maxit", type ="int", default =5, help= "local alignment iterations") parser.add_option("--navg", type="int", default=1000000, help="number of aveages") parser.add_option( "--local_alignment", action="store_true", default=False, help="do local alignment", ) parser.add_option( "--noctf", action="store_true", default=False, help= "no ctf correction, useful for negative stained data. always ctf for cryo data", ) parser.add_option( "--B_start", type="float", default=45.0, help= "start frequency (Angstrom) of power spectrum for B_factor estimation", ) parser.add_option( "--Bfactor", type="float", default=-1.0, help= "User defined bactors (e.g. 25.0[A^2]). By default, the program automatically estimates B-factor. ", ) (options, args) = parser.parse_args(sys.argv[1:]) adjust_to_analytic_model = (True if options.pw_adjustment == "analytical_model" else False) no_adjustment = True if options.pw_adjustment == "no_adjustment" else False B_enhance = True if options.pw_adjustment == "bfactor" else False adjust_to_given_pw2 = ( True if not (adjust_to_analytic_model or no_adjustment or B_enhance) else False) # mpi nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) Blockdata = {} Blockdata["nproc"] = nproc Blockdata["myid"] = myid Blockdata["main_node"] = 0 Blockdata["shared_comm"] = mpi.mpi_comm_split_type( mpi.MPI_COMM_WORLD, mpi.MPI_COMM_TYPE_SHARED, 0, mpi.MPI_INFO_NULL) Blockdata["myid_on_node"] = mpi.mpi_comm_rank(Blockdata["shared_comm"]) Blockdata["no_of_processes_per_group"] = mpi.mpi_comm_size( Blockdata["shared_comm"]) masters_from_groups_vs_everything_else_comm = mpi.mpi_comm_split( mpi.MPI_COMM_WORLD, Blockdata["main_node"] == Blockdata["myid_on_node"], Blockdata["myid_on_node"], ) Blockdata["color"], Blockdata[ "no_of_groups"], balanced_processor_load_on_nodes = sp_utilities.get_colors_and_subsets( Blockdata["main_node"], mpi.MPI_COMM_WORLD, Blockdata["myid"], Blockdata["shared_comm"], Blockdata["myid_on_node"], masters_from_groups_vs_everything_else_comm, ) # We need two nodes for processing of volumes Blockdata["node_volume"] = [ Blockdata["no_of_groups"] - 3, Blockdata["no_of_groups"] - 2, Blockdata["no_of_groups"] - 1, ] # For 3D stuff take three last nodes # We need two CPUs for processing of volumes, they are taken to be main CPUs on each volume # We have to send the two myids to all nodes so we can identify main nodes on two selected groups. Blockdata["nodes"] = [ Blockdata["node_volume"][0] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][1] * Blockdata["no_of_processes_per_group"], Blockdata["node_volume"][2] * Blockdata["no_of_processes_per_group"], ] # End of Blockdata: sorting requires at least three nodes, and the used number of nodes be integer times of three sp_global_def.BATCH = True sp_global_def.MPI = True if adjust_to_given_pw2: checking_flag = 0 if Blockdata["myid"] == Blockdata["main_node"]: if not os.path.exists(options.pw_adjustment): checking_flag = 1 checking_flag = sp_utilities.bcast_number_to_all( checking_flag, Blockdata["main_node"], mpi.MPI_COMM_WORLD) if checking_flag == 1: sp_global_def.ERROR("User provided power spectrum does not exist", myid=Blockdata["myid"]) Tracker = {} Constants = {} Constants["isac_dir"] = options.isac_dir Constants["masterdir"] = options.output_dir Constants["pixel_size"] = options.pixel_size Constants["orgstack"] = options.stack Constants["radius"] = options.radius Constants["xrange"] = options.xr Constants["FH"] = options.fh Constants["low_pass_filter"] = options.fl # Constants["maxit"] = options.maxit Constants["navg"] = options.navg Constants["B_start"] = options.B_start Constants["Bfactor"] = options.Bfactor if adjust_to_given_pw2: Constants["modelpw"] = options.pw_adjustment Tracker["constants"] = Constants # ------------------------------------------------------------- # # Create and initialize Tracker dictionary with input options # State Variables # <<<---------------------->>>imported functions<<<--------------------------------------------- # x_range = max(Tracker["constants"]["xrange"], int(1./Tracker["ini_shrink"])+1) # y_range = x_range ####----------------------------------------------------------- # Create Master directory and associated subdirectories line = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>" if Tracker["constants"]["masterdir"] == Tracker["constants"]["isac_dir"]: masterdir = os.path.join(Tracker["constants"]["isac_dir"], "sharpen") else: masterdir = Tracker["constants"]["masterdir"] if Blockdata["myid"] == Blockdata["main_node"]: msg = "Postprocessing ISAC 2D averages starts" sp_global_def.sxprint(line, "Postprocessing ISAC 2D averages starts") if not masterdir: timestring = time.strftime("_%d_%b_%Y_%H_%M_%S", time.localtime()) masterdir = "sharpen_" + Tracker["constants"]["isac_dir"] os.makedirs(masterdir) else: if os.path.exists(masterdir): sp_global_def.sxprint("%s already exists" % masterdir) else: os.makedirs(masterdir) sp_global_def.write_command(masterdir) subdir_path = os.path.join(masterdir, "ali2d_local_params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) subdir_path = os.path.join(masterdir, "params_avg") if not os.path.exists(subdir_path): os.mkdir(subdir_path) li = len(masterdir) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, Blockdata["main_node"], mpi.MPI_COMM_WORLD)[0] masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, Blockdata["main_node"], mpi.MPI_COMM_WORLD) masterdir = b"".join(masterdir).decode('latin1') Tracker["constants"]["masterdir"] = masterdir log_main = sp_logger.Logger(sp_logger.BaseLogger_Files()) log_main.prefix = Tracker["constants"]["masterdir"] + "/" while not os.path.exists(Tracker["constants"]["masterdir"]): sp_global_def.sxprint( "Node ", Blockdata["myid"], " waiting...", Tracker["constants"]["masterdir"], ) time.sleep(1) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if Blockdata["myid"] == Blockdata["main_node"]: init_dict = {} sp_global_def.sxprint(Tracker["constants"]["isac_dir"]) Tracker["directory"] = os.path.join(Tracker["constants"]["isac_dir"], "2dalignment") core = sp_utilities.read_text_row( os.path.join(Tracker["directory"], "initial2Dparams.txt")) for im in range(len(core)): init_dict[im] = core[im] del core else: init_dict = 0 init_dict = sp_utilities.wrap_mpi_bcast(init_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) ### do_ctf = True if options.noctf: do_ctf = False if Blockdata["myid"] == Blockdata["main_node"]: if do_ctf: sp_global_def.sxprint("CTF correction is on") else: sp_global_def.sxprint("CTF correction is off") if options.local_alignment: sp_global_def.sxprint("local refinement is on") else: sp_global_def.sxprint("local refinement is off") if B_enhance: sp_global_def.sxprint("Bfactor is to be applied on averages") elif adjust_to_given_pw2: sp_global_def.sxprint( "PW of averages is adjusted to a given 1D PW curve") elif adjust_to_analytic_model: sp_global_def.sxprint( "PW of averages is adjusted to analytical model") else: sp_global_def.sxprint("PW of averages is not adjusted") # Tracker["constants"]["orgstack"] = "bdb:"+ os.path.join(Tracker["constants"]["isac_dir"],"../","sparx_stack") image = sp_utilities.get_im(Tracker["constants"]["orgstack"], 0) Tracker["constants"]["nnxo"] = image.get_xsize() if Tracker["constants"]["pixel_size"] == -1.0: sp_global_def.sxprint( "Pixel size value is not provided by user. extracting it from ctf header entry of the original stack." ) try: ctf_params = image.get_attr("ctf") Tracker["constants"]["pixel_size"] = ctf_params.apix except: sp_global_def.ERROR( "Pixel size could not be extracted from the original stack.", myid=Blockdata["myid"], ) ## Now fill in low-pass filter isac_shrink_path = os.path.join(Tracker["constants"]["isac_dir"], "README_shrink_ratio.txt") if not os.path.exists(isac_shrink_path): sp_global_def.ERROR( "%s does not exist in the specified ISAC run output directory" % (isac_shrink_path), myid=Blockdata["myid"], ) isac_shrink_file = open(isac_shrink_path, "r") isac_shrink_lines = isac_shrink_file.readlines() isac_shrink_ratio = float( isac_shrink_lines[5] ) # 6th line: shrink ratio (= [target particle radius]/[particle radius]) used in the ISAC run isac_radius = float( isac_shrink_lines[6] ) # 7th line: particle radius at original pixel size used in the ISAC run isac_shrink_file.close() print("Extracted parameter values") print("ISAC shrink ratio : {0}".format(isac_shrink_ratio)) print("ISAC particle radius : {0}".format(isac_radius)) Tracker["ini_shrink"] = isac_shrink_ratio else: Tracker["ini_shrink"] = 0.0 Tracker = sp_utilities.wrap_mpi_bcast(Tracker, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # print(Tracker["constants"]["pixel_size"], "pixel_size") x_range = max( Tracker["constants"]["xrange"], int(old_div(1.0, Tracker["ini_shrink"]) + 0.99999), ) a_range = y_range = x_range if Blockdata["myid"] == Blockdata["main_node"]: parameters = sp_utilities.read_text_row( os.path.join(Tracker["constants"]["isac_dir"], "all_parameters.txt")) else: parameters = 0 parameters = sp_utilities.wrap_mpi_bcast(parameters, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) params_dict = {} list_dict = {} # parepare params_dict # navg = min(Tracker["constants"]["navg"]*Blockdata["nproc"], EMUtil.get_image_count(os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"))) navg = min( Tracker["constants"]["navg"], EMAN2_cppwrap.EMUtil.get_image_count( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf")), ) global_dict = {} ptl_list = [] memlist = [] if Blockdata["myid"] == Blockdata["main_node"]: sp_global_def.sxprint("Number of averages computed in this run is %d" % navg) for iavg in range(navg): params_of_this_average = [] image = sp_utilities.get_im( os.path.join(Tracker["constants"]["isac_dir"], "class_averages.hdf"), iavg, ) members = sorted(image.get_attr("members")) memlist.append(members) for im in range(len(members)): abs_id = members[im] global_dict[abs_id] = [iavg, im] P = sp_utilities.combine_params2( init_dict[abs_id][0], init_dict[abs_id][1], init_dict[abs_id][2], init_dict[abs_id][3], parameters[abs_id][0], old_div(parameters[abs_id][1], Tracker["ini_shrink"]), old_div(parameters[abs_id][2], Tracker["ini_shrink"]), parameters[abs_id][3], ) if parameters[abs_id][3] == -1: sp_global_def.sxprint( "WARNING: Image #{0} is an unaccounted particle with invalid 2D alignment parameters and should not be the member of any classes. Please check the consitency of input dataset." .format(abs_id) ) # How to check what is wrong about mirror = -1 (Toshio 2018/01/11) params_of_this_average.append([P[0], P[1], P[2], P[3], 1.0]) ptl_list.append(abs_id) params_dict[iavg] = params_of_this_average list_dict[iavg] = members sp_utilities.write_text_row( params_of_this_average, os.path.join( Tracker["constants"]["masterdir"], "params_avg", "params_avg_%03d.txt" % iavg, ), ) ptl_list.sort() init_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): init_params[im] = [ptl_list[im]] + params_dict[global_dict[ ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( init_params, os.path.join(Tracker["constants"]["masterdir"], "init_isac_params.txt"), ) else: params_dict = 0 list_dict = 0 memlist = 0 params_dict = sp_utilities.wrap_mpi_bcast(params_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) list_dict = sp_utilities.wrap_mpi_bcast(list_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) memlist = sp_utilities.wrap_mpi_bcast(memlist, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) # Now computing! del init_dict tag_sharpen_avg = 1000 ## always apply low pass filter to B_enhanced images to suppress noise in high frequencies enforced_to_H1 = False if B_enhance: if Tracker["constants"]["low_pass_filter"] == -1.0: enforced_to_H1 = True # distribute workload among mpi processes image_start, image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], Blockdata["myid"]) if Blockdata["myid"] == Blockdata["main_node"]: cpu_dict = {} for iproc in range(Blockdata["nproc"]): local_image_start, local_image_end = sp_applications.MPI_start_end( navg, Blockdata["nproc"], iproc) for im in range(local_image_start, local_image_end): cpu_dict[im] = iproc else: cpu_dict = 0 cpu_dict = sp_utilities.wrap_mpi_bcast(cpu_dict, Blockdata["main_node"], communicator=mpi.MPI_COMM_WORLD) slist = [None for im in range(navg)] ini_list = [None for im in range(navg)] avg1_list = [None for im in range(navg)] avg2_list = [None for im in range(navg)] data_list = [None for im in range(navg)] plist_dict = {} if Blockdata["myid"] == Blockdata["main_node"]: if B_enhance: sp_global_def.sxprint( "Avg ID B-factor FH1(Res before ali) FH2(Res after ali)") else: sp_global_def.sxprint( "Avg ID FH1(Res before ali) FH2(Res after ali)") FH_list = [[0, 0.0, 0.0] for im in range(navg)] for iavg in range(image_start, image_end): mlist = EMAN2_cppwrap.EMData.read_images( Tracker["constants"]["orgstack"], list_dict[iavg]) for im in range(len(mlist)): sp_utilities.set_params2D(mlist[im], params_dict[iavg][im], xform="xform.align2d") if options.local_alignment: new_avg, plist, FH2 = sp_applications.refinement_2d_local( mlist, Tracker["constants"]["radius"], a_range, x_range, y_range, CTF=do_ctf, SNR=1.0e10, ) plist_dict[iavg] = plist FH1 = -1.0 else: new_avg, frc, plist = compute_average( mlist, Tracker["constants"]["radius"], do_ctf) FH1 = get_optimistic_res(frc) FH2 = -1.0 FH_list[iavg] = [iavg, FH1, FH2] if B_enhance: new_avg, gb = apply_enhancement( new_avg, Tracker["constants"]["B_start"], Tracker["constants"]["pixel_size"], Tracker["constants"]["Bfactor"], ) sp_global_def.sxprint(" %6d %6.3f %4.3f %4.3f" % (iavg, gb, FH1, FH2)) elif adjust_to_given_pw2: roo = sp_utilities.read_text_file(Tracker["constants"]["modelpw"], -1) roo = roo[0] # always on the first column new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], roo) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif adjust_to_analytic_model: new_avg = adjust_pw_to_model(new_avg, Tracker["constants"]["pixel_size"], None) sp_global_def.sxprint(" %6d %4.3f %4.3f " % (iavg, FH1, FH2)) elif no_adjustment: pass if Tracker["constants"]["low_pass_filter"] != -1.0: if Tracker["constants"]["low_pass_filter"] == 0.0: low_pass_filter = FH1 elif Tracker["constants"]["low_pass_filter"] == 1.0: low_pass_filter = FH2 if not options.local_alignment: low_pass_filter = FH1 else: low_pass_filter = Tracker["constants"]["low_pass_filter"] if low_pass_filter >= 0.45: low_pass_filter = 0.45 new_avg = sp_filter.filt_tanl(new_avg, low_pass_filter, 0.02) else: # No low pass filter but if enforced if enforced_to_H1: new_avg = sp_filter.filt_tanl(new_avg, FH1, 0.02) if B_enhance: new_avg = sp_fundamentals.fft(new_avg) new_avg.set_attr("members", list_dict[iavg]) new_avg.set_attr("n_objects", len(list_dict[iavg])) slist[iavg] = new_avg sp_global_def.sxprint( time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()) + " =>", "Refined average %7d" % iavg, ) ## send to main node to write mpi.mpi_barrier(mpi.MPI_COMM_WORLD) for im in range(navg): # avg if (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] != Blockdata["main_node"]): sp_utilities.send_EMData(slist[im], Blockdata["main_node"], tag_sharpen_avg) elif (cpu_dict[im] == Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): slist[im].set_attr("members", memlist[im]) slist[im].set_attr("n_objects", len(memlist[im])) slist[im].write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) elif (cpu_dict[im] != Blockdata["myid"] and Blockdata["myid"] == Blockdata["main_node"]): new_avg_other_cpu = sp_utilities.recv_EMData( cpu_dict[im], tag_sharpen_avg) new_avg_other_cpu.set_attr("members", memlist[im]) new_avg_other_cpu.set_attr("n_objects", len(memlist[im])) new_avg_other_cpu.write_image( os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), im, ) if options.local_alignment: if cpu_dict[im] == Blockdata["myid"]: sp_utilities.write_text_row( plist_dict[im], os.path.join( Tracker["constants"]["masterdir"], "ali2d_local_params_avg", "ali2d_local_params_avg_%03d.txt" % im, ), ) if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(plist_dict[im], Blockdata["main_node"], mpi.MPI_COMM_WORLD) sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) plist_dict[im] = dummy dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] else: if (cpu_dict[im] == Blockdata["myid"] and cpu_dict[im] != Blockdata["main_node"]): sp_utilities.wrap_mpi_send(FH_list, Blockdata["main_node"], mpi.MPI_COMM_WORLD) elif (cpu_dict[im] != Blockdata["main_node"] and Blockdata["myid"] == Blockdata["main_node"]): dummy = sp_utilities.wrap_mpi_recv(cpu_dict[im], mpi.MPI_COMM_WORLD) FH_list[im] = dummy[im] mpi.mpi_barrier(mpi.MPI_COMM_WORLD) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if options.local_alignment: if Blockdata["myid"] == Blockdata["main_node"]: ali3d_local_params = [None for im in range(len(ptl_list))] for im in range(len(ptl_list)): ali3d_local_params[im] = [ptl_list[im]] + plist_dict[ global_dict[ptl_list[im]][0]][global_dict[ptl_list[im]][1]] sp_utilities.write_text_row( ali3d_local_params, os.path.join(Tracker["constants"]["masterdir"], "ali2d_local_params.txt"), ) sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) else: if Blockdata["myid"] == Blockdata["main_node"]: sp_utilities.write_text_row( FH_list, os.path.join(Tracker["constants"]["masterdir"], "FH_list.txt")) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) target_xr = 3 target_yr = 3 if Blockdata["myid"] == 0: cmd = "{} {} {} {} {} {} {} {} {} {}".format( "sp_chains.py", os.path.join(Tracker["constants"]["masterdir"], "class_averages.hdf"), os.path.join(Tracker["constants"]["masterdir"], "junk.hdf"), os.path.join(Tracker["constants"]["masterdir"], "ordered_class_averages.hdf"), "--circular", "--radius=%d" % Tracker["constants"]["radius"], "--xr=%d" % (target_xr + 1), "--yr=%d" % (target_yr + 1), "--align", ">/dev/null", ) junk = sp_utilities.cmdexecute(cmd) cmd = "{} {}".format( "rm -rf", os.path.join(Tracker["constants"]["masterdir"], "junk.hdf")) junk = sp_utilities.cmdexecute(cmd) return
def resample( prjfile, outdir, bufprefix, nbufvol, nvol, seedbase,\ delta, d, snr, CTF, npad,\ MPI, myid, ncpu, verbose = 0 ): from utilities import even_angles from random import seed, jumpahead, shuffle import os from sys import exit nprj = EMUtil.get_image_count( prjfile ) if MPI: from mpi import mpi_barrier, MPI_COMM_WORLD if myid == 0: if os.path.exists(outdir): nx = 1 else: nx = 0 else: nx = 0 ny = bcast_number_to_all(nx, source_node = 0) if ny == 1: ERROR('Output directory exists, please change the name and restart the program', "resample", 1,myid) mpi_barrier(MPI_COMM_WORLD) if myid == 0: os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) else: if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "resample", 1,0) os.mkdir(outdir) if(verbose == 1): finfo=open( os.path.join(outdir, "progress%04d.txt" % myid), "w" ) else: finfo = None #print " before evenangles",myid from utilities import getvec from numpy import array, reshape refa = even_angles(delta) nrefa = len(refa) refnormal = zeros((nrefa,3),'float32') tetref = [0.0]*nrefa for i in xrange(nrefa): tr = getvec( refa[i][0], refa[i][1] ) for j in xrange(3): refnormal[i][j] = tr[j] tetref[i] = refa[i][1] del refa vct = array([0.0]*(3*nprj),'float32') if myid == 0: print " will read ",myid tr = EMUtil.get_all_attributes(prjfile,'xform.projection') tetprj = [0.0]*nprj for i in xrange(nprj): temp = tr[i].get_params("spider") tetprj[i] = temp["theta"] if(tetprj[i] > 90.0): tetprj[i] = 180.0 - tetprj[i] vct[3*i+0] = tr[i].at(2,0) vct[3*i+1] = tr[i].at(2,1) vct[3*i+2] = tr[i].at(2,2) del tr else: tetprj = [0.0]*nprj #print " READ ",myid if MPI: #print " will bcast",myid from mpi import mpi_bcast, MPI_FLOAT, MPI_COMM_WORLD vct = mpi_bcast(vct,len(vct),MPI_FLOAT,0,MPI_COMM_WORLD) from utilities import bcast_list_to_all tetprj = bcast_list_to_all(tetprj, myid, 0) #print " reshape ",myid vct = reshape(vct,(nprj,3)) assignments = [[] for i in xrange(nrefa)] dspn = 1.25*delta for k in xrange(nprj): best_s = -1.0 best_i = -1 for i in xrange( nrefa ): if(abs(tetprj[k] - tetref[i]) <= dspn): s = abs(refnormal[i][0]*vct[k][0] + refnormal[i][1]*vct[k][1] + refnormal[i][2]*vct[k][2]) if s > best_s: best_s = s best_i = i assignments[best_i].append(k) am = len(assignments[0]) mufur = 1.0/am for i in xrange(1,len(assignments)): ti = len(assignments[i]) am = min(am, ti) if(ti>0): mufur += 1.0/ti del tetprj,tetref dp = 1.0 - d # keep that many in each direction keep = int(am*dp +0.5) mufur = keep*nrefa/(1.0 - mufur*keep/float(nrefa)) if myid == 0: print " Number of projections ",nprj,". Number of reference directions ",nrefa,", multiplicative factor for the variance ",mufur print " Minimum number of assignments ",am," Number of projections used per stratum ", keep," Number of projections in resampled structure ",int(am*dp +0.5)*nrefa if am <2 or am == keep: print "incorrect settings" exit() # FIX if(seedbase < 1): seed() jumpahead(17*myid+123) else: seed(seedbase) jumpahead(17*myid+123) volfile = os.path.join(outdir, "bsvol%04d.hdf" % myid) from random import randint niter = nvol/ncpu/nbufvol for kiter in xrange(niter): if(verbose == 1): finfo.write( "Iteration %d: \n" % kiter ) finfo.flush() iter_start = time() # the following has to be converted to resample mults=1 means take given projection., mults=0 means omit mults = [ [0]*nprj for i in xrange(nbufvol) ] for i in xrange(nbufvol): for l in xrange(nrefa): mass = assignments[l][:] shuffle(mass) mass = mass[:keep] mass.sort() #print l, " * ",mass for k in xrange(keep): mults[i][mass[k]] = 1 ''' lout = [] for l in xrange(len(mults[i])): if mults[i][l] == 1: lout.append(l) write_text_file(lout, os.path.join(outdir, "list%04d_%03d.txt" %(i, myid))) del lout ''' del mass rectors, fftvols, wgtvols = resample_prepare( prjfile, nbufvol, snr, CTF, npad ) resample_insert( bufprefix, fftvols, wgtvols, mults, CTF, npad, finfo ) del mults resample_finish( rectors, fftvols, wgtvols, volfile, kiter, nprj, finfo ) rectors = None fftvols = None wgtvols = None if(verbose == 1): finfo.write( "time for iteration: %10.3f\n" % (time() - iter_start) ) finfo.flush()
def ali3d_MPI(stack, ref_vol, outdir, maskfile = None, ir = 1, ou = -1, rs = 1, xr = "4 2 2 1", yr = "-1", ts = "1 1 0.5 0.25", delta = "10 6 4 4", an = "-1", center = 0, maxit = 5, term = 95, CTF = False, fourvar = False, snr = 1.0, ref_a = "S", sym = "c1", sort=True, cutoff=999.99, pix_cutoff="0", two_tail=False, model_jump="1 1 1 1 1", restart=False, save_half=False, protos=None, oplane=None, lmask=-1, ilmask=-1, findseam=False, vertstep=None, hpars="-1", hsearch="73.0 170.0", full_output = False, compare_repro = False, compare_ref_free = "-1", ref_free_cutoff= "-1 -1 -1 -1", wcmask = None, debug = False, recon_pad = 4): from alignment import Numrinit, prepare_refrings from utilities import model_circle, get_image, drop_image, get_input_from_string from utilities import bcast_list_to_all, bcast_number_to_all, reduce_EMData_to_root, bcast_EMData_to_all from utilities import send_attr_dict from utilities import get_params_proj, file_type from fundamentals import rot_avg_image import os import types from utilities import print_begin_msg, print_end_msg, print_msg from mpi import mpi_bcast, mpi_comm_size, mpi_comm_rank, MPI_FLOAT, MPI_COMM_WORLD, mpi_barrier, mpi_reduce from mpi import mpi_reduce, MPI_INT, MPI_SUM, mpi_finalize from filter import filt_ctf from projection import prep_vol, prgs from statistics import hist_list, varf3d_MPI, fsc_mask from numpy import array, bincount, array2string, ones number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 if myid == main_node: if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "ali3d_MPI", 1) os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) if debug: from time import sleep while not os.path.exists(outdir): print "Node ",myid," waiting..." sleep(5) info_file = os.path.join(outdir, "progress%04d"%myid) finfo = open(info_file, 'w') else: finfo = None mjump = get_input_from_string(model_jump) xrng = get_input_from_string(xr) if yr == "-1": yrng = xrng else : yrng = get_input_from_string(yr) step = get_input_from_string(ts) delta = get_input_from_string(delta) ref_free_cutoff = get_input_from_string(ref_free_cutoff) pix_cutoff = get_input_from_string(pix_cutoff) lstp = min(len(xrng), len(yrng), len(step), len(delta)) if an == "-1": an = [-1] * lstp else: an = get_input_from_string(an) # make sure pix_cutoff is set for all iterations if len(pix_cutoff)<lstp: for i in xrange(len(pix_cutoff),lstp): pix_cutoff.append(pix_cutoff[-1]) # don't waste time on sub-pixel alignment for low-resolution ang incr for i in range(len(step)): if (delta[i] > 4 or delta[i] == -1) and step[i] < 1: step[i] = 1 first_ring = int(ir) rstep = int(rs) last_ring = int(ou) max_iter = int(maxit) center = int(center) nrefs = EMUtil.get_image_count( ref_vol ) nmasks = 0 if maskfile: # read number of masks within each maskfile (mc) nmasks = EMUtil.get_image_count( maskfile ) # open masks within maskfile (mc) maskF = EMData.read_images(maskfile, xrange(nmasks)) vol = EMData.read_images(ref_vol, xrange(nrefs)) nx = vol[0].get_xsize() ## make sure box sizes are the same if myid == main_node: im=EMData.read_images(stack,[0]) bx = im[0].get_xsize() if bx!=nx: print_msg("Error: Stack box size (%i) differs from initial model (%i)\n"%(bx,nx)) sys.exit() del im,bx # for helical processing: helicalrecon = False if protos is not None or hpars != "-1" or findseam is True: helicalrecon = True # if no out-of-plane param set, use 5 degrees if oplane is None: oplane=5.0 if protos is not None: proto = get_input_from_string(protos) if len(proto) != nrefs: print_msg("Error: insufficient protofilament numbers supplied") sys.exit() if hpars != "-1": hpars = get_input_from_string(hpars) if len(hpars) != 2*nrefs: print_msg("Error: insufficient helical parameters supplied") sys.exit() ## create helical parameter file for helical reconstruction if helicalrecon is True and myid == main_node: from hfunctions import createHpar # create initial helical parameter files dp=[0]*nrefs dphi=[0]*nrefs vdp=[0]*nrefs vdphi=[0]*nrefs for iref in xrange(nrefs): hpar = os.path.join(outdir,"hpar%02d.spi"%(iref)) params = False if hpars != "-1": # if helical parameters explicitly given, set twist & rise params = [float(hpars[iref*2]),float(hpars[(iref*2)+1])] dp[iref],dphi[iref],vdp[iref],vdphi[iref] = createHpar(hpar,proto[iref],params,vertstep) # get values for helical search parameters hsearch = get_input_from_string(hsearch) if len(hsearch) != 2: print_msg("Error: specify outer and inner radii for helical search") sys.exit() if last_ring < 0 or last_ring > int(nx/2)-2 : last_ring = int(nx/2) - 2 if myid == main_node: # import user_functions # user_func = user_functions.factory[user_func_name] print_begin_msg("ali3d_MPI") print_msg("Input stack : %s\n"%(stack)) print_msg("Reference volume : %s\n"%(ref_vol)) print_msg("Output directory : %s\n"%(outdir)) if nmasks > 0: print_msg("Maskfile (number of masks) : %s (%i)\n"%(maskfile,nmasks)) print_msg("Inner radius : %i\n"%(first_ring)) print_msg("Outer radius : %i\n"%(last_ring)) print_msg("Ring step : %i\n"%(rstep)) print_msg("X search range : %s\n"%(xrng)) print_msg("Y search range : %s\n"%(yrng)) print_msg("Translational step : %s\n"%(step)) print_msg("Angular step : %s\n"%(delta)) print_msg("Angular search range : %s\n"%(an)) print_msg("Maximum iteration : %i\n"%(max_iter)) print_msg("Center type : %i\n"%(center)) print_msg("CTF correction : %s\n"%(CTF)) print_msg("Signal-to-Noise Ratio : %f\n"%(snr)) print_msg("Reference projection method : %s\n"%(ref_a)) print_msg("Symmetry group : %s\n"%(sym)) print_msg("Fourier padding for 3D : %i\n"%(recon_pad)) print_msg("Number of reference models : %i\n"%(nrefs)) print_msg("Sort images between models : %s\n"%(sort)) print_msg("Allow images to jump : %s\n"%(mjump)) print_msg("CC cutoff standard dev : %f\n"%(cutoff)) print_msg("Two tail cutoff : %s\n"%(two_tail)) print_msg("Termination pix error : %f\n"%(term)) print_msg("Pixel error cutoff : %s\n"%(pix_cutoff)) print_msg("Restart : %s\n"%(restart)) print_msg("Full output : %s\n"%(full_output)) print_msg("Compare reprojections : %s\n"%(compare_repro)) print_msg("Compare ref free class avgs : %s\n"%(compare_ref_free)) print_msg("Use cutoff from ref free : %s\n"%(ref_free_cutoff)) if protos: print_msg("Protofilament numbers : %s\n"%(proto)) print_msg("Using helical search range : %s\n"%hsearch) if findseam is True: print_msg("Using seam-based reconstruction\n") if hpars != "-1": print_msg("Using hpars : %s\n"%hpars) if vertstep != None: print_msg("Using vertical step : %.2f\n"%vertstep) if save_half is True: print_msg("Saving even/odd halves\n") for i in xrange(100) : print_msg("*") print_msg("\n\n") if maskfile: if type(maskfile) is types.StringType: mask3D = get_image(maskfile) else: mask3D = maskfile else: mask3D = model_circle(last_ring, nx, nx, nx) numr = Numrinit(first_ring, last_ring, rstep, "F") mask2D = model_circle(last_ring,nx,nx) - model_circle(first_ring,nx,nx) fscmask = model_circle(last_ring,nx,nx,nx) if CTF: from filter import filt_ctf from reconstruction_rjh import rec3D_MPI_noCTF if myid == main_node: active = EMUtil.get_all_attributes(stack, 'active') list_of_particles = [] for im in xrange(len(active)): if active[im]: list_of_particles.append(im) del active nima = len(list_of_particles) else: nima = 0 total_nima = bcast_number_to_all(nima, source_node = main_node) if myid != main_node: list_of_particles = [-1]*total_nima list_of_particles = bcast_list_to_all(list_of_particles, source_node = main_node) image_start, image_end = MPI_start_end(total_nima, number_of_proc, myid) # create a list of images for each node list_of_particles = list_of_particles[image_start: image_end] nima = len(list_of_particles) if debug: finfo.write("image_start, image_end: %d %d\n" %(image_start, image_end)) finfo.flush() data = EMData.read_images(stack, list_of_particles) t_zero = Transform({"type":"spider","phi":0,"theta":0,"psi":0,"tx":0,"ty":0}) transmulti = [[t_zero for i in xrange(nrefs)] for j in xrange(nima)] for iref,im in ((iref,im) for iref in xrange(nrefs) for im in xrange(nima)): if nrefs == 1: transmulti[im][iref] = data[im].get_attr("xform.projection") else: # if multi models, keep track of eulers for all models try: transmulti[im][iref] = data[im].get_attr("eulers_txty.%i"%iref) except: data[im].set_attr("eulers_txty.%i"%iref,t_zero) scoremulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] pixelmulti = [[0.0 for i in xrange(nrefs)] for j in xrange(nima)] ref_res = [0.0 for x in xrange(nrefs)] apix = data[0].get_attr('apix_x') # for oplane parameter, create cylindrical mask if oplane is not None and myid == main_node: from hfunctions import createCylMask cmaskf=os.path.join(outdir, "mask3D_cyl.mrc") mask3D = createCylMask(data,ou,lmask,ilmask,cmaskf) # if finding seam of helix, create wedge masks if findseam is True: wedgemask=[] for pf in xrange(nrefs): wedgemask.append(EMData()) # wedgemask option if wcmask is not None: wcmask = get_input_from_string(wcmask) if len(wcmask) != 3: print_msg("Error: wcmask option requires 3 values: x y radius") sys.exit() # determine if particles have helix info: try: data[0].get_attr('h_angle') original_data = [] boxmask = True from hfunctions import createBoxMask except: boxmask = False # prepare particles for im in xrange(nima): data[im].set_attr('ID', list_of_particles[im]) data[im].set_attr('pix_score', int(0)) if CTF: # only phaseflip particles, not full CTF correction ctf_params = data[im].get_attr("ctf") st = Util.infomask(data[im], mask2D, False) data[im] -= st[0] data[im] = filt_ctf(data[im], ctf_params, sign = -1, binary=1) data[im].set_attr('ctf_applied', 1) # for window mask: if boxmask is True: h_angle = data[im].get_attr("h_angle") original_data.append(data[im].copy()) bmask = createBoxMask(nx,apix,ou,lmask,h_angle) data[im]*=bmask del bmask if debug: finfo.write( '%d loaded \n' % nima ) finfo.flush() if myid == main_node: # initialize data for the reference preparation function ref_data = [ mask3D, max(center,0), None, None, None, None ] # for method -1, switch off centering in user function from time import time # this is needed for gathering of pixel errors disps = [] recvcount = [] disps_score = [] recvcount_score = [] for im in xrange(number_of_proc): if( im == main_node ): disps.append(0) disps_score.append(0) else: disps.append(disps[im-1] + recvcount[im-1]) disps_score.append(disps_score[im-1] + recvcount_score[im-1]) ib, ie = MPI_start_end(total_nima, number_of_proc, im) recvcount.append( ie - ib ) recvcount_score.append((ie-ib)*nrefs) pixer = [0.0]*nima cs = [0.0]*3 total_iter = 0 volodd = EMData.read_images(ref_vol, xrange(nrefs)) voleve = EMData.read_images(ref_vol, xrange(nrefs)) if restart: # recreate initial volumes from alignments stored in header itout = "000_00" for iref in xrange(nrefs): if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index = group, npad = recon_pad) if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%itout),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%itout),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%itout),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res = fl else: res_msg = "Models filtered at resolution of: \t" res = apix / fl ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) bcast_EMData_to_all(vol[iref], myid, main_node) # write out headers, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) # projection matching for N_step in xrange(lstp): terminate = 0 Iter = -1 while(Iter < max_iter-1 and terminate == 0): Iter += 1 total_iter += 1 itout = "%03g_%02d" %(delta[N_step], Iter) if myid == main_node: print_msg("ITERATION #%3d, inner iteration #%3d\nDelta = %4.1f, an = %5.2f, xrange = %5.2f, yrange = %5.2f, step = %5.2f\n\n"%(N_step, Iter, delta[N_step], an[N_step], xrng[N_step],yrng[N_step],step[N_step])) for iref in xrange(nrefs): if myid == main_node: start_time = time() volft,kb = prep_vol( vol[iref] ) ## constrain projections to out of plane parameter theta1 = None theta2 = None if oplane is not None: theta1 = 90-oplane theta2 = 90+oplane refrings = prepare_refrings( volft, kb, nx, delta[N_step], ref_a, sym, numr, MPI=True, phiEqpsi = "Minus", initial_theta=theta1, delta_theta=theta2) del volft,kb if myid== main_node: print_msg( "Time to prepare projections for model %i: %s\n" % (iref, legibleTime(time()-start_time)) ) start_time = time() for im in xrange( nima ): data[im].set_attr("xform.projection", transmulti[im][iref]) if an[N_step] == -1: t1, peak, pixer[im] = proj_ali_incore(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],finfo) else: t1, peak, pixer[im] = proj_ali_incore_local(data[im],refrings,numr,xrng[N_step],yrng[N_step],step[N_step],an[N_step],finfo) #data[im].set_attr("xform.projection"%iref, t1) if nrefs > 1: data[im].set_attr("eulers_txty.%i"%iref,t1) scoremulti[im][iref] = peak from pixel_error import max_3D_pixel_error # t1 is the current param, t2 is old t2 = transmulti[im][iref] pixelmulti[im][iref] = max_3D_pixel_error(t1,t2,numr[-3]) transmulti[im][iref] = t1 if myid == main_node: print_msg("Time of alignment for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # gather scoring data from all processors from mpi import mpi_gatherv scoremultisend = sum(scoremulti,[]) pixelmultisend = sum(pixelmulti,[]) tmp = mpi_gatherv(scoremultisend,len(scoremultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp1 = mpi_gatherv(pixelmultisend,len(pixelmultisend),MPI_FLOAT, recvcount_score, disps_score, MPI_FLOAT, main_node,MPI_COMM_WORLD) tmp = mpi_bcast(tmp,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp1 = mpi_bcast(tmp1,(total_nima * nrefs), MPI_FLOAT,0, MPI_COMM_WORLD) tmp = map(float,tmp) tmp1 = map(float,tmp1) score = array(tmp).reshape(-1,nrefs) pixelerror = array(tmp1).reshape(-1,nrefs) score_local = array(scoremulti) mean_score = score.mean(axis=0) std_score = score.std(axis=0) cut = mean_score - (cutoff * std_score) cut2 = mean_score + (cutoff * std_score) res_max = score_local.argmax(axis=1) minus_cc = [0.0 for x in xrange(nrefs)] minus_pix = [0.0 for x in xrange(nrefs)] minus_ref = [0.0 for x in xrange(nrefs)] #output pixel errors if(myid == main_node): from statistics import hist_list lhist = 20 pixmin = pixelerror.min(axis=1) region, histo = hist_list(pixmin, lhist) if(region[0] < 0.0): region[0] = 0.0 print_msg("Histogram of pixel errors\n ERROR number of particles\n") for lhx in xrange(lhist): print_msg(" %10.3f %7d\n"%(region[lhx], histo[lhx])) # Terminate if 95% within 1 pixel error im = 0 for lhx in xrange(lhist): if(region[lhx] > 1.0): break im += histo[lhx] print_msg( "Percent of particles with pixel error < 1: %f\n\n"% (im/float(total_nima)*100)) term_cond = float(term)/100 if(im/float(total_nima) > term_cond): terminate = 1 print_msg("Terminating internal loop\n") del region, histo terminate = mpi_bcast(terminate, 1, MPI_INT, 0, MPI_COMM_WORLD) terminate = int(terminate[0]) for im in xrange(nima): if(sort==False): data[im].set_attr('group',999) elif (mjump[N_step]==1): data[im].set_attr('group',int(res_max[im])) pix_run = data[im].get_attr('pix_score') if (pix_cutoff[N_step]==1 and (terminate==1 or Iter == max_iter-1)): if (pixelmulti[im][int(res_max[im])] > 1): data[im].set_attr('pix_score',int(777)) if (score_local[im][int(res_max[im])]<cut[int(res_max[im])]) or (two_tail and score_local[im][int(res_max[im])]>cut2[int(res_max[im])]): data[im].set_attr('group',int(888)) minus_cc[int(res_max[im])] = minus_cc[int(res_max[im])] + 1 if(pix_run == 777): data[im].set_attr('group',int(777)) minus_pix[int(res_max[im])] = minus_pix[int(res_max[im])] + 1 if (compare_ref_free != "-1") and (ref_free_cutoff[N_step] != -1) and (total_iter > 1): id = data[im].get_attr('ID') if id in rejects: data[im].set_attr('group',int(666)) minus_ref[int(res_max[im])] = minus_ref[int(res_max[im])] + 1 minus_cc_tot = mpi_reduce(minus_cc,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_pix_tot = mpi_reduce(minus_pix,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) minus_ref_tot = mpi_reduce(minus_ref,nrefs,MPI_FLOAT,MPI_SUM,0,MPI_COMM_WORLD) if (myid == main_node): if(sort): tot_max = score.argmax(axis=1) res = bincount(tot_max) else: res = ones(nrefs) * total_nima print_msg("Particle distribution: \t\t%s\n"%(res*1.0)) afcut1 = res - minus_cc_tot afcut2 = afcut1 - minus_pix_tot afcut3 = afcut2 - minus_ref_tot print_msg("Particle distribution after cc cutoff:\t\t%s\n"%(afcut1)) print_msg("Particle distribution after pix cutoff:\t\t%s\n"%(afcut2)) print_msg("Particle distribution after ref cutoff:\t\t%s\n\n"%(afcut3)) res = [0.0 for i in xrange(nrefs)] for iref in xrange(nrefs): if(center == -1): from utilities import estimate_3D_center_MPI, rotate_3D_shift dummy=EMData() cs[0], cs[1], cs[2], dummy, dummy = estimate_3D_center_MPI(data, total_nima, myid, number_of_proc, main_node) cs = mpi_bcast(cs, 3, MPI_FLOAT, main_node, MPI_COMM_WORLD) cs = [-float(cs[0]), -float(cs[1]), -float(cs[2])] rotate_3D_shift(data, cs) if(sort): group = iref for im in xrange(nima): imgroup = data[im].get_attr('group') if imgroup == iref: data[im].set_attr('xform.projection',transmulti[im][iref]) else: group = int(999) for im in xrange(nima): data[im].set_attr('xform.projection',transmulti[im][iref]) if(nrefs == 1): modout = "" else: modout = "_model_%02d"%(iref) fscfile = os.path.join(outdir, "fsc_%s%s"%(itout,modout)) vol[iref], fscc, volodd[iref], voleve[iref] = rec3D_MPI_noCTF(data, sym, fscmask, fscfile, myid, main_node, index=group, npad=recon_pad) if myid == main_node: print_msg("3D reconstruction time for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() # Compute Fourier variance if fourvar: outvar = os.path.join(outdir, "volVar_%s.hdf"%(itout)) ssnr_file = os.path.join(outdir, "ssnr_%s"%(itout)) varf = varf3d_MPI(data, ssnr_text_file=ssnr_file, mask2D=None, reference_structure=vol[iref], ou=last_ring, rw=1.0, npad=1, CTF=None, sign=1, sym=sym, myid=myid) if myid == main_node: print_msg("Time to calculate 3D Fourier variance for model %i: %s\n"%(iref, legibleTime(time()-start_time))) start_time = time() varf = 1.0/varf varf.write_image(outvar,-1) else: varf = None if myid == main_node: if helicalrecon: from hfunctions import processHelicalVol vstep=None if vertstep is not None: vstep=(vdp[iref],vdphi[iref]) print_msg("Old rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) hvals=processHelicalVol(vol[iref],voleve[iref],volodd[iref],iref,outdir,itout, dp[iref],dphi[iref],apix,hsearch,findseam,vstep,wcmask) (vol[iref],voleve[iref],volodd[iref],dp[iref],dphi[iref],vdp[iref],vdphi[iref])=hvals print_msg("New rise and twist for model %i : %8.3f, %8.3f\n"%(iref,dp[iref],dphi[iref])) # get new FSC from symmetrized half volumes fscc = fsc_mask( volodd[iref], voleve[iref], mask3D, rstep, fscfile) print_msg("Time to search and apply helical symmetry for model %i: %s\n\n"%(iref, legibleTime(time()-start_time))) start_time = time() else: vol[iref].write_image(os.path.join(outdir, "vol_%s.hdf"%(itout)),-1) if save_half is True: volodd[iref].write_image(os.path.join(outdir, "volodd_%s.hdf"%(itout)),-1) voleve[iref].write_image(os.path.join(outdir, "voleve_%s.hdf"%(itout)),-1) if nmasks > 1: # Read mask for multiplying ref_data[0] = maskF[iref] ref_data[2] = vol[iref] ref_data[3] = fscc ref_data[4] = varf # call user-supplied function to prepare reference image, i.e., center and filter it vol[iref], cs,fl = ref_ali3d(ref_data) vol[iref].write_image(os.path.join(outdir, "volf_%s.hdf"%(itout)),-1) if (apix == 1): res_msg = "Models filtered at spatial frequency of:\t" res[iref] = fl else: res_msg = "Models filtered at resolution of: \t" res[iref] = apix / fl del varf bcast_EMData_to_all(vol[iref], myid, main_node) if compare_ref_free != "-1": compare_repro = True if compare_repro: outfile_repro = comp_rep(refrings, data, itout, modout, vol[iref], group, nima, nx, myid, main_node, outdir) mpi_barrier(MPI_COMM_WORLD) if compare_ref_free != "-1": ref_free_output = os.path.join(outdir,"ref_free_%s%s"%(itout,modout)) rejects = compare(compare_ref_free, outfile_repro,ref_free_output,yrng[N_step], xrng[N_step], rstep,nx,apix,ref_free_cutoff[N_step], number_of_proc, myid, main_node) # retrieve alignment params from all processors par_str = ['xform.projection','ID','group'] if nrefs > 1: for iref in xrange(nrefs): par_str.append('eulers_txty.%i'%iref) if myid == main_node: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: ares = array2string(array(res), precision = 2) print_msg("%s%s\n\n"%(res_msg,ares)) dummy = EMData() if full_output: nimat = EMUtil.get_image_count(stack) output_file = os.path.join(outdir, "paramout_%s"%itout) foutput = open(output_file, 'w') for im in xrange(nimat): # save the parameters for each of the models outstring = "" dummy.read_image(stack,im,True) param3d = dummy.get_attr('xform.projection') g = dummy.get_attr("group") # retrieve alignments in EMAN-format pE = param3d.get_params('eman') outstring += "%f\t%f\t%f\t%f\t%f\t%i\n" %(pE["az"], pE["alt"], pE["phi"], pE["tx"], pE["ty"],g) foutput.write(outstring) foutput.close() del dummy mpi_barrier(MPI_COMM_WORLD) # mpi_finalize() if myid == main_node: print_end_msg("ali3d_MPI")
def filterlocal(ui, vi, m, falloff, myid, main_node, number_of_proc): from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv, mpi_send, mpi_recv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from utilities import bcast_number_to_all, bcast_list_to_all, model_blank, bcast_EMData_to_all, reduce_EMData_to_root from morphology import threshold_outside from filter import filt_tanl from fundamentals import fft, fftip if(myid == main_node): nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() # Round all resolution numbers to two digits for x in xrange(nx): for y in xrange(ny): for z in xrange(nz): ui.set_value_at_fast( x,y,z, round(ui.get_value_at(x,y,z), 2) ) dis = [nx,ny,nz] else: falloff = 0.0 radius = 0 dis = [0,0,0] falloff = bcast_number_to_all(falloff, main_node) dis = bcast_list_to_all(dis, myid, source_node = main_node) if(myid != main_node): nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) vi = model_blank(nx,ny,nz) ui = model_blank(nx,ny,nz) bcast_EMData_to_all(vi, myid, main_node) bcast_EMData_to_all(ui, myid, main_node) fftip(vi) # volume to be filtered st = Util.infomask(ui, m, True) filteredvol = model_blank(nx,ny,nz) cutoff = max(st[2] - 0.01,0.0) while(cutoff < st[3] ): cutoff = round(cutoff + 0.01, 2) #if(myid == main_node): print cutoff,st pt = Util.infomask( threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True) # Ideally, one would want to check only slices in question... if(pt[0] != 0.0): #print cutoff,pt[0] vovo = fft( filt_tanl(vi, cutoff, falloff) ) for z in xrange(myid, nz, number_of_proc): for x in xrange(nx): for y in xrange(ny): if(m.get_value_at(x,y,z) > 0.5): if(round(ui.get_value_at(x,y,z),2) == cutoff): filteredvol.set_value_at_fast(x,y,z,vovo.get_value_at(x,y,z)) mpi_barrier(MPI_COMM_WORLD) reduce_EMData_to_root(filteredvol, myid, main_node, MPI_COMM_WORLD) return filteredvol
def resample( prjfile, outdir, bufprefix, nbufvol, nvol, seedbase,\ delta, d, snr, CTF, npad,\ MPI, myid, ncpu, verbose = 0 ): from utilities import even_angles from random import seed, jumpahead, shuffle import os from sys import exit nprj = EMUtil.get_image_count(prjfile) if MPI: from mpi import mpi_barrier, MPI_COMM_WORLD if myid == 0: if os.path.exists(outdir): nx = 1 else: nx = 0 else: nx = 0 ny = bcast_number_to_all(nx, source_node=0) if ny == 1: ERROR( 'Output directory exists, please change the name and restart the program', "resample", 1, myid) mpi_barrier(MPI_COMM_WORLD) if myid == 0: os.mkdir(outdir) mpi_barrier(MPI_COMM_WORLD) else: if os.path.exists(outdir): ERROR( 'Output directory exists, please change the name and restart the program', "resample", 1, 0) os.mkdir(outdir) if (verbose == 1): finfo = open(os.path.join(outdir, "progress%04d.txt" % myid), "w") else: finfo = None #print " before evenangles",myid from utilities import getvec from numpy import array, reshape refa = even_angles(delta) nrefa = len(refa) refnormal = zeros((nrefa, 3), 'float32') tetref = [0.0] * nrefa for i in xrange(nrefa): tr = getvec(refa[i][0], refa[i][1]) for j in xrange(3): refnormal[i][j] = tr[j] tetref[i] = refa[i][1] del refa vct = array([0.0] * (3 * nprj), 'float32') if myid == 0: print " will read ", myid tr = EMUtil.get_all_attributes(prjfile, 'xform.projection') tetprj = [0.0] * nprj for i in xrange(nprj): temp = tr[i].get_params("spider") tetprj[i] = temp["theta"] if (tetprj[i] > 90.0): tetprj[i] = 180.0 - tetprj[i] vct[3 * i + 0] = tr[i].at(2, 0) vct[3 * i + 1] = tr[i].at(2, 1) vct[3 * i + 2] = tr[i].at(2, 2) del tr else: tetprj = [0.0] * nprj #print " READ ",myid if MPI: #print " will bcast",myid from mpi import mpi_bcast, MPI_FLOAT, MPI_COMM_WORLD vct = mpi_bcast(vct, len(vct), MPI_FLOAT, 0, MPI_COMM_WORLD) from utilities import bcast_list_to_all tetprj = bcast_list_to_all(tetprj, myid, 0) #print " reshape ",myid vct = reshape(vct, (nprj, 3)) assignments = [[] for i in xrange(nrefa)] dspn = 1.25 * delta for k in xrange(nprj): best_s = -1.0 best_i = -1 for i in xrange(nrefa): if (abs(tetprj[k] - tetref[i]) <= dspn): s = abs(refnormal[i][0] * vct[k][0] + refnormal[i][1] * vct[k][1] + refnormal[i][2] * vct[k][2]) if s > best_s: best_s = s best_i = i assignments[best_i].append(k) am = len(assignments[0]) mufur = 1.0 / am for i in xrange(1, len(assignments)): ti = len(assignments[i]) am = min(am, ti) if (ti > 0): mufur += 1.0 / ti del tetprj, tetref dp = 1.0 - d # keep that many in each direction keep = int(am * dp + 0.5) mufur = keep * nrefa / (1.0 - mufur * keep / float(nrefa)) if myid == 0: print " Number of projections ", nprj, ". Number of reference directions ", nrefa, ", multiplicative factor for the variance ", mufur print " Minimum number of assignments ", am, " Number of projections used per stratum ", keep, " Number of projections in resampled structure ", int( am * dp + 0.5) * nrefa if am < 2 or am == keep: print "incorrect settings" exit() # FIX if (seedbase < 1): seed() jumpahead(17 * myid + 123) else: seed(seedbase) jumpahead(17 * myid + 123) volfile = os.path.join(outdir, "bsvol%04d.hdf" % myid) from random import randint niter = nvol / ncpu / nbufvol for kiter in xrange(niter): if (verbose == 1): finfo.write("Iteration %d: \n" % kiter) finfo.flush() iter_start = time() # the following has to be converted to resample mults=1 means take given projection., mults=0 means omit mults = [[0] * nprj for i in xrange(nbufvol)] for i in xrange(nbufvol): for l in xrange(nrefa): mass = assignments[l][:] shuffle(mass) mass = mass[:keep] mass.sort() #print l, " * ",mass for k in xrange(keep): mults[i][mass[k]] = 1 ''' lout = [] for l in xrange(len(mults[i])): if mults[i][l] == 1: lout.append(l) write_text_file(lout, os.path.join(outdir, "list%04d_%03d.txt" %(i, myid))) del lout ''' del mass rectors, fftvols, wgtvols = resample_prepare(prjfile, nbufvol, snr, CTF, npad) resample_insert(bufprefix, fftvols, wgtvols, mults, CTF, npad, finfo) del mults resample_finish(rectors, fftvols, wgtvols, volfile, kiter, nprj, finfo) rectors = None fftvols = None wgtvols = None if (verbose == 1): finfo.write("time for iteration: %10.3f\n" % (time() - iter_start)) finfo.flush()
def helicalshiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im, pad from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D, fshift from utilities import get_params2D, set_params2D, chunks_distribution from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from time import time from pixel_error import ordersegments from math import sqrt, atan2, tan, pi nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("helical-shiftali_MPI") max_iter=int(maxit) if( myid == main_node): infils = EMUtil.get_all_attributes(stack, "filament") ptlcoords = EMUtil.get_all_attributes(stack, 'ptcl_source_coord') filaments = ordersegments(infils, ptlcoords) total_nfils = len(filaments) inidl = [0]*total_nfils for i in xrange(total_nfils): inidl[i] = len(filaments[i]) linidl = sum(inidl) nima = linidl tfilaments = [] for i in xrange(total_nfils): tfilaments += filaments[i] del filaments else: total_nfils = 0 linidl = 0 total_nfils = bcast_number_to_all(total_nfils, source_node = main_node) if myid != main_node: inidl = [-1]*total_nfils inidl = bcast_list_to_all(inidl, myid, source_node = main_node) linidl = bcast_number_to_all(linidl, source_node = main_node) if myid != main_node: tfilaments = [-1]*linidl tfilaments = bcast_list_to_all(tfilaments, myid, source_node = main_node) filaments = [] iendi = 0 for i in xrange(total_nfils): isti = iendi iendi = isti+inidl[i] filaments.append(tfilaments[isti:iendi]) del tfilaments,inidl if myid == main_node: print_msg( "total number of filaments: %d"%total_nfils) if total_nfils< nproc: ERROR('number of CPUs (%i) is larger than the number of filaments (%i), please reduce the number of CPUs used'%(nproc, total_nfils), "ehelix_MPI", 1,myid) # balanced load temp = chunks_distribution([[len(filaments[i]), i] for i in xrange(len(filaments))], nproc)[myid:myid+1][0] filaments = [filaments[temp[i][1]] for i in xrange(len(temp))] nfils = len(filaments) #filaments = [[0,1]] #print "filaments",filaments list_of_particles = [] indcs = [] k = 0 for i in xrange(nfils): list_of_particles += filaments[i] k1 = k+len(filaments[i]) indcs.append([k,k1]) k = k1 data = EMData.read_images(stack, list_of_particles) ldata = len(data) print "ldata=", ldata nx = data[0].get_xsize() ny = data[0].get_ysize() if maskfile == None: mrad = min(nx, ny)//2-2 mask = pad( model_blank(2*mrad+1, ny, 1, 1.0), nx, ny, 1, 0.0) else: mask = get_im(maskfile) # apply initial xform.align2d parameters stored in header init_params = [] for im in xrange(ldata): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], p['tx'], p['ty'], p['mirror'], p['scale']) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None ctf_abs_sum = None from utilities import info for im in xrange(ldata): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") qctf = data[im].get_attr("ctf_applied") if qctf == 0: data[im] = filt_ctf(fft(data[im]), ctf_params) data[im].set_attr('ctf_applied', 1) elif qctf != 1: ERROR('Incorrectly set qctf flag', "helicalshiftali_MPI", 1,myid) ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) else: data[im] = fft(data[im]) del list_of_particles if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) tsnr = 1./snr for i in xrange(0,nx+2,2): for j in xrange(ny): temp.set_value_at(i,j,tsnr) temp.set_value_at(i+1,j,0.0) #info(ctf_2_sum) Util.add_img(ctf_2_sum, temp) #info(ctf_2_sum) del temp total_iter = 0 shift_x = [0.0]*ldata for Iter in xrange(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n"%(total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in xrange(ldata): Util.add_img(avg, fshift(data[im], shift_x[im])) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0/float(nima)) else: tavg = model_blank(nx,ny) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask( tavg, mask, False ) tavg -= stat[0] Util.mul_img(tavg, mask) tavg.write_image("tavg.hdf",Iter) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) tavg = fft(tavg) sx_sum = 0.0 nxc = nx//2 for ifil in xrange(nfils): """ # Calculate filament average avg = EMData(nx, ny, 1, False) filnima = 0 for im in xrange(indcs[ifil][0], indcs[ifil][1]): Util.add_img(avg, data[im]) filnima += 1 tavg = Util.mult_scalar(avg, 1.0/float(filnima)) """ # Calculate 1D ccf between each segment and filament average nsegms = indcs[ifil][1]-indcs[ifil][0] ctx = [None]*nsegms pcoords = [None]*nsegms for im in xrange(indcs[ifil][0], indcs[ifil][1]): ctx[im-indcs[ifil][0]] = Util.window(ccf(tavg, data[im]), nx, 1) pcoords[im-indcs[ifil][0]] = data[im].get_attr('ptcl_source_coord') #ctx[im-indcs[ifil][0]].write_image("ctx.hdf",im-indcs[ifil][0]) #print " CTX ",myid,im,Util.infomask(ctx[im-indcs[ifil][0]], None, True) # search for best x-shift cents = nsegms//2 dst = sqrt(max((pcoords[cents][0] - pcoords[0][0])**2 + (pcoords[cents][1] - pcoords[0][1])**2, (pcoords[cents][0] - pcoords[-1][0])**2 + (pcoords[cents][1] - pcoords[-1][1])**2)) maxincline = atan2(ny//2-2-float(search_rng),dst) kang = int(dst*tan(maxincline)+0.5) #print " settings ",nsegms,cents,dst,search_rng,maxincline,kang # ## C code for alignment. @ming results = [0.0]*3; results = Util.helixshiftali(ctx, pcoords, nsegms, maxincline, kang, search_rng,nxc) sib = int(results[0]) bang = results[1] qm = results[2] #print qm, sib, bang # qm = -1.e23 # # for six in xrange(-search_rng, search_rng+1,1): # q0 = ctx[cents].get_value_at(six+nxc) # for incline in xrange(kang+1): # qt = q0 # qu = q0 # if(kang>0): tang = tan(maxincline/kang*incline) # else: tang = 0.0 # for kim in xrange(cents+1,nsegms): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # #print " A ", ifil,six,incline,kim,xl,ixl,dxl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # for kim in xrange(cents): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # if( qt > qm ): # qm = qt # sib = six # bang = tang # if( qu > qm ): # qm = qu # sib = six # bang = -tang #if incline == 0: print "incline = 0 ",six,tang,qt,qu #print qm,six,sib,bang #print " got results ",indcs[ifil][0], indcs[ifil][1], ifil,myid,qm,sib,tang,bang,len(ctx),Util.infomask(ctx[0], None, True) for im in xrange(indcs[ifil][0], indcs[ifil][1]): kim = im-indcs[ifil][0] dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) if(kim < cents): xl = -dst*bang+sib else: xl = dst*bang+sib shift_x[im] = xl # Average shift sx_sum += shift_x[indcs[ifil][0]+cents] # #print myid,sx_sum,total_nfils sx_sum = mpi_reduce(sx_sum, 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum = float(sx_sum[0])/total_nfils print_msg("Average shift %6.2f\n"%(sx_sum)) else: sx_sum = 0.0 sx_sum = 0.0 sx_sum = bcast_number_to_all(sx_sum, source_node = main_node) for im in xrange(ldata): shift_x[im] -= sx_sum #print " %3d %6.3f"%(im,shift_x[im]) #exit() # combine shifts found with the original parameters for im in xrange(ldata): t1 = Transform() ##import random ##shix=random.randint(-10, 10) ##t1.set_params({"type":"2D","tx":shix}) t1.set_params({"type":"2D","tx":shift_x[im]}) # combine t0 and t1 tt = t1*init_params[im] data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if(file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, 0, ldata, nproc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, 0, ldata, nproc) else: send_attr_dict(main_node, data, par_str, 0, ldata) if myid == main_node: print_end_msg("helical-shiftali_MPI")
def filterlocal(ui, vi, m, falloff, myid, main_node, number_of_proc): from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv, mpi_send, mpi_recv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from sp_utilities import bcast_number_to_all, bcast_list_to_all, model_blank, bcast_EMData_to_all, reduce_EMData_to_root from sp_morphology import threshold_outside from sp_filter import filt_tanl from sp_fundamentals import fft, fftip if (myid == main_node): nx = vi.get_xsize() ny = vi.get_ysize() nz = vi.get_zsize() # Round all resolution numbers to two digits for x in range(nx): for y in range(ny): for z in range(nz): ui.set_value_at_fast(x, y, z, round(ui.get_value_at(x, y, z), 2)) dis = [nx, ny, nz] else: falloff = 0.0 radius = 0 dis = [0, 0, 0] falloff = bcast_number_to_all(falloff, main_node) dis = bcast_list_to_all(dis, myid, source_node=main_node) if (myid != main_node): nx = int(dis[0]) ny = int(dis[1]) nz = int(dis[2]) vi = model_blank(nx, ny, nz) ui = model_blank(nx, ny, nz) bcast_EMData_to_all(vi, myid, main_node) bcast_EMData_to_all(ui, myid, main_node) fftip(vi) # volume to be filtered st = Util.infomask(ui, m, True) filteredvol = model_blank(nx, ny, nz) cutoff = max(st[2] - 0.01, 0.0) while (cutoff < st[3]): cutoff = round(cutoff + 0.01, 2) #if(myid == main_node): print cutoff,st pt = Util.infomask( threshold_outside(ui, cutoff - 0.00501, cutoff + 0.005), m, True ) # Ideally, one would want to check only slices in question... if (pt[0] != 0.0): #print cutoff,pt[0] vovo = fft(filt_tanl(vi, cutoff, falloff)) for z in range(myid, nz, number_of_proc): for x in range(nx): for y in range(ny): if (m.get_value_at(x, y, z) > 0.5): if (round(ui.get_value_at(x, y, z), 2) == cutoff): filteredvol.set_value_at_fast( x, y, z, vovo.get_value_at(x, y, z)) mpi_barrier(MPI_COMM_WORLD) reduce_EMData_to_root(filteredvol, myid, main_node, MPI_COMM_WORLD) return filteredvol
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D from utilities import get_params2D, set_params2D from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from EMAN2 import Processor from time import time number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("shiftali_MPI") max_iter=int(maxit) if myid == main_node: if ftp == "bdb": from EMAN2db import db_open_dict dummy = db_open_dict(stack, True) nima = EMUtil.get_image_count(stack) else: nima = 0 nima = bcast_number_to_all(nima, source_node = main_node) list_of_particles = range(nima) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) list_of_particles = list_of_particles[image_start: image_end] # read nx and ctf_app (if CTF) and broadcast to all nodes if myid == main_node: ima = EMData() ima.read_image(stack, list_of_particles[0], True) nx = ima.get_xsize() ny = ima.get_ysize() if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2) del ima else: nx = 0 ny = 0 if CTF: ctf_app = 0 nx = bcast_number_to_all(nx, source_node = main_node) ny = bcast_number_to_all(ny, source_node = main_node) if CTF: ctf_app = bcast_number_to_all(ctf_app, source_node = main_node) if ctf_app > 0: ERROR("data cannot be ctf-applied", "shiftali_MPI", 1, myid) if maskfile == None: mrad = min(nx, ny) mask = model_circle(mrad//2-2, nx, ny) else: mask = get_im(maskfile) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None from global_def import CACHE_DISABLE if CACHE_DISABLE: data = EMData.read_images(stack, list_of_particles) else: for i in xrange(number_of_proc): if myid == i: data = EMData.read_images(stack, list_of_particles) if ftp == "bdb": mpi_barrier(MPI_COMM_WORLD) for im in xrange(len(data)): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) else: ctf_2_sum = None if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) for i in xrange(0,nx,2): for j in xrange(ny): temp.set_value_at(i,j,snr) Util.add_img(ctf_2_sum, temp) del temp total_iter = 0 # apply initial xform.align2d parameters stored in header init_params = [] for im in xrange(len(data)): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale']) # fourier transform all images, and apply ctf if CTF for im in xrange(len(data)): if CTF: ctf_params = data[im].get_attr("ctf") data[im] = filt_ctf(fft(data[im]), ctf_params) else: data[im] = fft(data[im]) sx_sum=0 sy_sum=0 sx_sum_total=0 sy_sum_total=0 shift_x = [0.0]*len(data) shift_y = [0.0]*len(data) ishift_x = [0.0]*len(data) ishift_y = [0.0]*len(data) for Iter in xrange(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n"%(total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in data: Util.add_img(avg, im) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0/float(nima)) else: tavg = EMData(nx, ny, 1, False) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask( tavg, mask, False ) tavg -= stat[0] Util.mul_img(tavg, mask) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) tavg = fft(tavg) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) sx_sum=0 sy_sum=0 if search_rng > 0: nwx = 2*search_rng+1 else: nwx = nx if search_rng_y > 0: nwy = 2*search_rng_y+1 else: nwy = ny not_zero = 0 for im in xrange(len(data)): if oneDx: ctx = Util.window(ccf(data[im],tavg),nwx,1) p1 = peak_search(ctx) p1_x = -int(p1[0][3]) ishift_x[im] = p1_x sx_sum += p1_x else: p1 = peak_search(Util.window(ccf(data[im],tavg), nwx,nwy)) p1_x = -int(p1[0][4]) p1_y = -int(p1[0][5]) ishift_x[im] = p1_x ishift_y[im] = p1_y sx_sum += p1_x sy_sum += p1_y if not_zero == 0: if (not(ishift_x[im] == 0.0)) or (not(ishift_y[im] == 0.0)): not_zero = 1 sx_sum = mpi_reduce(sx_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if not oneDx: sy_sum = mpi_reduce(sy_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum_total = int(sx_sum[0]) if not oneDx: sy_sum_total = int(sy_sum[0]) else: sx_sum_total = 0 sy_sum_total = 0 sx_sum_total = bcast_number_to_all(sx_sum_total, source_node = main_node) if not oneDx: sy_sum_total = bcast_number_to_all(sy_sum_total, source_node = main_node) sx_ave = round(float(sx_sum_total)/nima) sy_ave = round(float(sy_sum_total)/nima) for im in xrange(len(data)): p1_x = ishift_x[im] - sx_ave p1_y = ishift_y[im] - sy_ave params2 = {"filter_type" : Processor.fourier_filter_types.SHIFT, "x_shift" : p1_x, "y_shift" : p1_y, "z_shift" : 0.0} data[im] = Processor.EMFourierFilter(data[im], params2) shift_x[im] += p1_x shift_y[im] += p1_y # stop if all shifts are zero not_zero = mpi_reduce(not_zero, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: not_zero_all = int(not_zero[0]) else: not_zero_all = 0 not_zero_all = bcast_number_to_all(not_zero_all, source_node = main_node) if myid == main_node: print_msg("Time of iteration = %12.2f\n"%(time()-start_time)) start_time = time() if not_zero_all == 0: break #for im in xrange(len(data)): data[im] = fft(data[im]) This should not be required as only header information is used # combine shifts found with the original parameters for im in xrange(len(data)): t0 = init_params[im] t1 = Transform() t1.set_params({"type":"2D","alpha":0,"scale":t0.get_scale(),"mirror":0,"tx":shift_x[im],"ty":shift_y[im]}) # combine t0 and t1 tt = t1*t0 data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if(file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("shiftali_MPI")
def main(): from sp_logger import Logger, BaseLogger_Files arglist = [] i = 0 while (i < len(sys.argv)): if sys.argv[i] == '-p4pg': i = i + 2 elif sys.argv[i] == '-p4wd': i = i + 2 else: arglist.append(sys.argv[i]) i = i + 1 progname = os.path.basename(arglist[0]) usage = progname + " stack outdir <mask> --focus=3Dmask --radius=outer_radius --delta=angular_step" +\ "--an=angular_neighborhood --maxit=max_iter --CTF --sym=c1 --function=user_function --independent=indenpendent_runs --number_of_images_per_group=number_of_images_per_group --low_pass_filter=.25 --seed=random_seed" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--focus", type="string", default='', help="bineary 3D mask for focused clustering ") parser.add_option( "--ir", type="int", default=1, help="inner radius for rotational correlation > 0 (set to 1)") parser.add_option( "--radius", type="int", default=-1, help= "particle radius in pixel for rotational correlation <nx-1 (set to the radius of the particle)" ) parser.add_option("--maxit", type="int", default=25, help="maximum number of iteration") parser.add_option( "--rs", type="int", default=1, help="step between rings in rotational correlation >0 (set to 1)") parser.add_option( "--xr", type="string", default='1', help="range for translation search in x direction, search is +/-xr ") parser.add_option( "--yr", type="string", default='-1', help= "range for translation search in y direction, search is +/-yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default='0.25', help= "step size of the translation search in both directions direction, search is -xr, -xr+ts, 0, xr-ts, xr " ) parser.add_option("--delta", type="string", default='2', help="angular step of reference projections") parser.add_option("--an", type="string", default='-1', help="angular neighborhood for local searches") parser.add_option( "--center", type="int", default=0, help= "0 - if you do not want the volume to be centered, 1 - center the volume using cog (default=0)" ) parser.add_option( "--nassign", type="int", default=1, help= "number of reassignment iterations performed for each angular step (set to 3) " ) parser.add_option( "--nrefine", type="int", default=0, help= "number of alignment iterations performed for each angular step (set to 0)" ) parser.add_option("--CTF", action="store_true", default=False, help="do CTF correction during clustring") parser.add_option( "--stoprnct", type="float", default=3.0, help="Minimum percentage of assignment change to stop the program") parser.add_option("--sym", type="string", default='c1', help="symmetry of the structure ") parser.add_option("--function", type="string", default='do_volume_mrk05', help="name of the reference preparation function") parser.add_option("--independent", type="int", default=3, help="number of independent run") parser.add_option("--number_of_images_per_group", type="int", default=1000, help="number of groups") parser.add_option( "--low_pass_filter", type="float", default=-1.0, help= "absolute frequency of low-pass filter for 3d sorting on the original image size" ) parser.add_option("--nxinit", type="int", default=64, help="initial image size for sorting") parser.add_option("--unaccounted", action="store_true", default=False, help="reconstruct the unaccounted images") parser.add_option( "--seed", type="int", default=-1, help="random seed for create initial random assignment for EQ Kmeans") parser.add_option("--smallest_group", type="int", default=500, help="minimum members for identified group") parser.add_option("--sausage", action="store_true", default=False, help="way of filter volume") parser.add_option("--chunk0", type="string", default='', help="chunk0 for computing margin of error") parser.add_option("--chunk1", type="string", default='', help="chunk1 for computing margin of error") parser.add_option( "--PWadjustment", type="string", default='', help= "1-D power spectrum of PDB file used for EM volume power spectrum correction" ) parser.add_option( "--protein_shape", type="string", default='g', help= "protein shape. It defines protein preferred orientation angles. Currently it has g and f two types " ) parser.add_option( "--upscale", type="float", default=0.5, help=" scaling parameter to adjust the power spectrum of EM volumes") parser.add_option("--wn", type="int", default=0, help="optimal window size for data processing") parser.add_option( "--interpolation", type="string", default="4nn", help="3-d reconstruction interpolation method, two options trl and 4nn" ) (options, args) = parser.parse_args(arglist[1:]) if len(args) < 1 or len(args) > 4: sxprint("Usage: " + usage) sxprint("Please run \'" + progname + " -h\' for detailed options") ERROR( "Invalid number of parameters used. Please see usage information above." ) return else: if len(args) > 2: mask_file = args[2] else: mask_file = None orgstack = args[0] masterdir = args[1] sp_global_def.BATCH = True #---initialize MPI related variables nproc = mpi.mpi_comm_size(mpi.MPI_COMM_WORLD) myid = mpi.mpi_comm_rank(mpi.MPI_COMM_WORLD) mpi_comm = mpi.MPI_COMM_WORLD main_node = 0 # import some utilities from sp_utilities import get_im, bcast_number_to_all, cmdexecute, write_text_file, read_text_file, wrap_mpi_bcast, get_params_proj, write_text_row from sp_applications import recons3d_n_MPI, mref_ali3d_MPI, Kmref_ali3d_MPI from sp_statistics import k_means_match_clusters_asg_new, k_means_stab_bbenum from sp_applications import mref_ali3d_EQ_Kmeans, ali3d_mref_Kmeans_MPI # Create the main log file from sp_logger import Logger, BaseLogger_Files if myid == main_node: log_main = Logger(BaseLogger_Files()) log_main.prefix = masterdir + "/" else: log_main = None #--- fill input parameters into dictionary named after Constants Constants = {} Constants["stack"] = args[0] Constants["masterdir"] = masterdir Constants["mask3D"] = mask_file Constants["focus3Dmask"] = options.focus Constants["indep_runs"] = options.independent Constants["stoprnct"] = options.stoprnct Constants[ "number_of_images_per_group"] = options.number_of_images_per_group Constants["CTF"] = options.CTF Constants["maxit"] = options.maxit Constants["ir"] = options.ir Constants["radius"] = options.radius Constants["nassign"] = options.nassign Constants["rs"] = options.rs Constants["xr"] = options.xr Constants["yr"] = options.yr Constants["ts"] = options.ts Constants["delta"] = options.delta Constants["an"] = options.an Constants["sym"] = options.sym Constants["center"] = options.center Constants["nrefine"] = options.nrefine #Constants["fourvar"] = options.fourvar Constants["user_func"] = options.function Constants[ "low_pass_filter"] = options.low_pass_filter # enforced low_pass_filter #Constants["debug"] = options.debug Constants["main_log_prefix"] = args[1] #Constants["importali3d"] = options.importali3d Constants["myid"] = myid Constants["main_node"] = main_node Constants["nproc"] = nproc Constants["log_main"] = log_main Constants["nxinit"] = options.nxinit Constants["unaccounted"] = options.unaccounted Constants["seed"] = options.seed Constants["smallest_group"] = options.smallest_group Constants["sausage"] = options.sausage Constants["chunk0"] = options.chunk0 Constants["chunk1"] = options.chunk1 Constants["PWadjustment"] = options.PWadjustment Constants["upscale"] = options.upscale Constants["wn"] = options.wn Constants["3d-interpolation"] = options.interpolation Constants["protein_shape"] = options.protein_shape # ----------------------------------------------------- # # Create and initialize Tracker dictionary with input options Tracker = {} Tracker["constants"] = Constants Tracker["maxit"] = Tracker["constants"]["maxit"] Tracker["radius"] = Tracker["constants"]["radius"] #Tracker["xr"] = "" #Tracker["yr"] = "-1" # Do not change! #Tracker["ts"] = 1 #Tracker["an"] = "-1" #Tracker["delta"] = "2.0" #Tracker["zoom"] = True #Tracker["nsoft"] = 0 #Tracker["local"] = False #Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] Tracker["upscale"] = Tracker["constants"]["upscale"] #Tracker["upscale"] = 0.5 Tracker[ "applyctf"] = False # Should the data be premultiplied by the CTF. Set to False for local continuous. #Tracker["refvol"] = None Tracker["nxinit"] = Tracker["constants"]["nxinit"] #Tracker["nxstep"] = 32 Tracker["icurrentres"] = -1 #Tracker["ireachedres"] = -1 #Tracker["lowpass"] = 0.4 #Tracker["falloff"] = 0.2 #Tracker["inires"] = options.inires # Now in A, convert to absolute before using Tracker["fuse_freq"] = 50 # Now in A, convert to absolute before using #Tracker["delpreviousmax"] = False #Tracker["anger"] = -1.0 #Tracker["shifter"] = -1.0 #Tracker["saturatecrit"] = 0.95 #Tracker["pixercutoff"] = 2.0 #Tracker["directory"] = "" #Tracker["previousoutputdir"] = "" #Tracker["eliminated-outliers"] = False #Tracker["mainiteration"] = 0 #Tracker["movedback"] = False #Tracker["state"] = Tracker["constants"]["states"][0] #Tracker["global_resolution"] =0.0 Tracker["orgstack"] = orgstack #-------------------------------------------------------------------- # import from utilities from sp_utilities import sample_down_1D_curve, get_initial_ID, remove_small_groups, print_upper_triangular_matrix, print_a_line_with_timestamp from sp_utilities import print_dict, get_resolution_mrk01, partition_to_groups, partition_independent_runs, get_outliers from sp_utilities import merge_groups, save_alist, margin_of_error, get_margin_of_error, do_two_way_comparison, select_two_runs, get_ali3d_params from sp_utilities import counting_projections, unload_dict, load_dict, get_stat_proj, create_random_list, get_number_of_groups, recons_mref from sp_utilities import apply_low_pass_filter, get_groups_from_partition, get_number_of_groups, get_complementary_elements_total, update_full_dict from sp_utilities import count_chunk_members, set_filter_parameters_from_adjusted_fsc, get_two_chunks_from_stack ####------------------------------------------------------------------ # # Get the pixel size; if none, set to 1.0, and the original image size from sp_utilities import get_shrink_data_huang if (myid == main_node): line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" sxprint((line + "Initialization of 3-D sorting")) a = get_im(orgstack) nnxo = a.get_xsize() if (Tracker["nxinit"] > nnxo): sp_global_def.ERROR( "Image size less than minimum permitted $d" % Tracker["nxinit"]) nnxo = -1 else: if Tracker["constants"]["CTF"]: i = a.get_attr('ctf') pixel_size = i.apix fq = pixel_size / Tracker["fuse_freq"] else: pixel_size = 1.0 # No pixel size, fusing computed as 5 Fourier pixels fq = 5.0 / nnxo del a else: nnxo = 0 fq = 0.0 pixel_size = 1.0 nnxo = bcast_number_to_all(nnxo, source_node=main_node) if (nnxo < 0): return pixel_size = bcast_number_to_all(pixel_size, source_node=main_node) fq = bcast_number_to_all(fq, source_node=main_node) if Tracker["constants"]["wn"] == 0: Tracker["constants"]["nnxo"] = nnxo else: Tracker["constants"]["nnxo"] = Tracker["constants"]["wn"] nnxo = Tracker["constants"]["nnxo"] Tracker["constants"]["pixel_size"] = pixel_size Tracker["fuse_freq"] = fq del fq, nnxo, pixel_size if (Tracker["constants"]["radius"] < 1): Tracker["constants"][ "radius"] = Tracker["constants"]["nnxo"] // 2 - 2 elif ((2 * Tracker["constants"]["radius"] + 2) > Tracker["constants"]["nnxo"]): sp_global_def.ERROR("Particle radius set too large!", myid=myid) ####----------------------------------------------------------------------------------------- # Master directory if myid == main_node: if masterdir == "": timestring = strftime("_%d_%b_%Y_%H_%M_%S", localtime()) masterdir = "master_sort3d" + timestring li = len(masterdir) cmd = "{} {}".format("mkdir -p", masterdir) os.system(cmd) else: li = 0 li = mpi.mpi_bcast(li, 1, mpi.MPI_INT, main_node, mpi.MPI_COMM_WORLD)[0] if li > 0: masterdir = mpi.mpi_bcast(masterdir, li, mpi.MPI_CHAR, main_node, mpi.MPI_COMM_WORLD) import string masterdir = string.join(masterdir, "") if myid == main_node: print_dict(Tracker["constants"], "Permanent settings of 3-D sorting program") ######### create a vstack from input stack to the local stack in masterdir # stack name set to default Tracker["constants"]["stack"] = "bdb:" + masterdir + "/rdata" Tracker["constants"]["ali3d"] = os.path.join(masterdir, "ali3d_init.txt") Tracker["constants"]["ctf_params"] = os.path.join( masterdir, "ctf_params.txt") Tracker["constants"]["partstack"] = Tracker["constants"][ "ali3d"] # also serves for refinement if myid == main_node: total_stack = EMUtil.get_image_count(Tracker["orgstack"]) else: total_stack = 0 total_stack = bcast_number_to_all(total_stack, source_node=main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from time import sleep while not os.path.exists(masterdir): sxprint("Node ", myid, " waiting...") sleep(5) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: log_main.add("Sphire sort3d ") log_main.add("the sort3d master directory is " + masterdir) ##### ###---------------------------------------------------------------------------------- # Initial data analysis and handle two chunk files from random import shuffle # Compute the resolution #### make chunkdir dictionary for computing margin of error import sp_user_functions user_func = sp_user_functions.factory[Tracker["constants"] ["user_func"]] chunk_dict = {} chunk_list = [] if myid == main_node: chunk_one = read_text_file(Tracker["constants"]["chunk0"]) chunk_two = read_text_file(Tracker["constants"]["chunk1"]) else: chunk_one = 0 chunk_two = 0 chunk_one = wrap_mpi_bcast(chunk_one, main_node) chunk_two = wrap_mpi_bcast(chunk_two, main_node) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ######################## Read/write bdb: data on main node ############################ if myid == main_node: if (orgstack[:4] == "bdb:"): cmd = "{} {} {}".format( "e2bdb.py", orgstack, "--makevstack=" + Tracker["constants"]["stack"]) else: cmd = "{} {} {}".format("sp_cpy.py", orgstack, Tracker["constants"]["stack"]) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=xform.projection", "--export=" + Tracker["constants"]["ali3d"], orgstack) junk = cmdexecute(cmd) cmd = "{} {} {}".format( "sp_header.py --params=ctf", "--export=" + Tracker["constants"]["ctf_params"], orgstack) junk = cmdexecute(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) ########----------------------------------------------------------------------------- Tracker["total_stack"] = total_stack Tracker["constants"]["total_stack"] = total_stack Tracker["shrinkage"] = float( Tracker["nxinit"]) / Tracker["constants"]["nnxo"] Tracker[ "radius"] = Tracker["constants"]["radius"] * Tracker["shrinkage"] if Tracker["constants"]["mask3D"]: Tracker["mask3D"] = os.path.join(masterdir, "smask.hdf") else: Tracker["mask3D"] = None if Tracker["constants"]["focus3Dmask"]: Tracker["focus3D"] = os.path.join(masterdir, "sfocus.hdf") else: Tracker["focus3D"] = None if myid == main_node: if Tracker["constants"]["mask3D"]: mask_3D = get_shrink_3dmask(Tracker["nxinit"], Tracker["constants"]["mask3D"]) mask_3D.write_image(Tracker["mask3D"]) if Tracker["constants"]["focus3Dmask"]: mask_3D = get_shrink_3dmask( Tracker["nxinit"], Tracker["constants"]["focus3Dmask"]) st = Util.infomask(mask_3D, None, True) if (st[0] == 0.0): ERROR( "Incorrect focused mask, after binarize all values zero" ) mask_3D.write_image(Tracker["focus3D"]) del mask_3D if Tracker["constants"]["PWadjustment"] != '': PW_dict = {} nxinit_pwsp = sample_down_1D_curve( Tracker["constants"]["nxinit"], Tracker["constants"]["nnxo"], Tracker["constants"]["PWadjustment"]) Tracker["nxinit_PW"] = os.path.join(masterdir, "spwp.txt") if myid == main_node: write_text_file(nxinit_pwsp, Tracker["nxinit_PW"]) PW_dict[Tracker["constants"] ["nnxo"]] = Tracker["constants"]["PWadjustment"] PW_dict[Tracker["constants"]["nxinit"]] = Tracker["nxinit_PW"] Tracker["PW_dict"] = PW_dict mpi.mpi_barrier(mpi.MPI_COMM_WORLD) #-----------------------From two chunks to FSC, and low pass filter-----------------------------------------### for element in chunk_one: chunk_dict[element] = 0 for element in chunk_two: chunk_dict[element] = 1 chunk_list = [chunk_one, chunk_two] Tracker["chunk_dict"] = chunk_dict Tracker["P_chunk0"] = len(chunk_one) / float(total_stack) Tracker["P_chunk1"] = len(chunk_two) / float(total_stack) ### create two volumes to estimate resolution if myid == main_node: for index in range(2): write_text_file( chunk_list[index], os.path.join(masterdir, "chunk%01d.txt" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) vols = [] for index in range(2): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], os.path.join(masterdir, "chunk%01d.txt" % index), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) vol = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) if myid == main_node: vol.write_image(os.path.join(masterdir, "vol%d.hdf" % index)) vols.append(vol) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) if myid == main_node: low_pass, falloff, currentres = get_resolution_mrk01( vols, Tracker["constants"]["radius"], Tracker["constants"]["nxinit"], masterdir, Tracker["mask3D"]) if low_pass > Tracker["constants"]["low_pass_filter"]: low_pass = Tracker["constants"]["low_pass_filter"] else: low_pass = 0.0 falloff = 0.0 currentres = 0.0 bcast_number_to_all(currentres, source_node=main_node) bcast_number_to_all(low_pass, source_node=main_node) bcast_number_to_all(falloff, source_node=main_node) Tracker["currentres"] = currentres Tracker["falloff"] = falloff if Tracker["constants"]["low_pass_filter"] == -1.0: Tracker["low_pass_filter"] = min( .45, low_pass / Tracker["shrinkage"]) # no better than .45 else: Tracker["low_pass_filter"] = min( .45, Tracker["constants"]["low_pass_filter"] / Tracker["shrinkage"]) Tracker["lowpass"] = Tracker["low_pass_filter"] Tracker["falloff"] = .1 Tracker["global_fsc"] = os.path.join(masterdir, "fsc.txt") ############################################################################################ if myid == main_node: log_main.add("The command-line inputs are as following:") log_main.add( "**********************************************************") for a in sys.argv: if myid == main_node: log_main.add(a) if myid == main_node: log_main.add("number of cpus used in this run is %d" % Tracker["constants"]["nproc"]) log_main.add( "**********************************************************") from sp_filter import filt_tanl ### START 3-D sorting if myid == main_node: log_main.add("----------3-D sorting program------- ") log_main.add( "current resolution %6.3f for images of original size in terms of absolute frequency" % Tracker["currentres"]) log_main.add("equivalent to %f Angstrom resolution" % (Tracker["constants"]["pixel_size"] / Tracker["currentres"] / Tracker["shrinkage"])) log_main.add("the user provided enforced low_pass_filter is %f" % Tracker["constants"]["low_pass_filter"]) #log_main.add("equivalent to %f Angstrom resolution"%(Tracker["constants"]["pixel_size"]/Tracker["constants"]["low_pass_filter"])) for index in range(2): filt_tanl( get_im(os.path.join(masterdir, "vol%01d.hdf" % index)), Tracker["low_pass_filter"], Tracker["falloff"]).write_image( os.path.join(masterdir, "volf%01d.hdf" % index)) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) from sp_utilities import get_input_from_string delta = get_input_from_string(Tracker["constants"]["delta"]) delta = delta[0] from sp_utilities import even_angles n_angles = even_angles(delta, 0, 180) this_ali3d = Tracker["constants"]["ali3d"] sampled = get_stat_proj(Tracker, delta, this_ali3d) if myid == main_node: nc = 0 for a in sampled: if len(sampled[a]) > 0: nc += 1 log_main.add("total sampled direction %10d at angle step %6.3f" % (len(n_angles), delta)) log_main.add( "captured sampled directions %10d percentage covered by data %6.3f" % (nc, float(nc) / len(n_angles) * 100)) number_of_images_per_group = Tracker["constants"][ "number_of_images_per_group"] if myid == main_node: log_main.add("user provided number_of_images_per_group %d" % number_of_images_per_group) Tracker["number_of_images_per_group"] = number_of_images_per_group number_of_groups = get_number_of_groups(total_stack, number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups generation = 0 partition_dict = {} full_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("---- generation %5d" % generation) log_main.add("number of images per group is set as %d" % number_of_images_per_group) log_main.add("the initial number of groups is %10d " % number_of_groups) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) list_to_be_processed = list(range(Tracker["constants"]["total_stack"])) Tracker["this_data_list"] = list_to_be_processed create_random_list(Tracker) ################################# full_dict = {} for iptl in range(Tracker["constants"]["total_stack"]): full_dict[iptl] = iptl Tracker["full_ID_dict"] = full_dict ################################# for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = list_to_be_processed Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_particle_text_file"] = os.path.join( workdir, "independent_list_%03d.txt" % indep_run) # for get_shrink_data if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_particle_text_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) ref_vol = apply_low_pass_filter(ref_vol, Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_particle_text_file"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["partition_dict"] = partition_dict Tracker["total_stack"] = len(Tracker["this_data_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] from time import sleep number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) if myid == main_node: log_main.add("group %d members %d " % (igrp, len(Tracker["this_data_list"]))) Tracker["number_of_ref_class"] = number_of_ref_class nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"][ "PWadjustment"] # no PW adjustment if myid == main_node: for iref in range(len(ref_vol_list)): refdata = [None] * 4 refdata[0] = ref_vol_list[iref] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image(os.path.join(workdir, "volf_stable.hdf"), iref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) Tracker["this_unaccounted_list"] = get_complementary_elements( list_to_be_processed, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) update_full_dict(Tracker["this_unaccounted_list"], Tracker) ####################################### number_of_groups = len(res_groups) vol_list = [] number_of_ref_class = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) if (myid == main_node): npergroup = len( read_text_file(os.path.join(outdir, "Class%d.txt" % igrp))) else: npergroup = 0 npergroup = bcast_number_to_all(npergroup, main_node) number_of_ref_class.append(npergroup) Tracker["number_of_ref_class"] = number_of_ref_class mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) Tracker["this_data_list"] = Tracker[ "this_unaccounted_list"] # reset parameters for the next round calculation Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["this_total_stack"] = Tracker["total_stack"] number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups while number_of_groups >= 2: generation += 1 partition_dict = {} workdir = os.path.join(masterdir, "generation%03d" % generation) Tracker["this_dir"] = workdir if myid == main_node: log_main.add("*********************************************") log_main.add("----- generation %5d " % generation) log_main.add("number of images per group is set as %10d " % number_of_images_per_group) log_main.add("the number of groups is %10d " % number_of_groups) log_main.add(" number of particles for clustering is %10d" % Tracker["total_stack"]) cmd = "{} {}".format("mkdir", workdir) os.system(cmd) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) create_random_list(Tracker) for indep_run in range(Tracker["constants"]["indep_runs"]): Tracker["this_particle_list"] = Tracker["this_indep_list"][ indep_run] ref_vol = recons_mref(Tracker) if myid == main_node: log_main.add("independent run %10d" % indep_run) outdir = os.path.join(workdir, "EQ_Kmeans%03d" % indep_run) Tracker["this_data_list"] = Tracker["this_unaccounted_list"] #ref_vol=apply_low_pass_filter(ref_vol,Tracker) mref_ali3d_EQ_Kmeans(ref_vol, outdir, Tracker["this_unaccounted_text"], Tracker) partition_dict[indep_run] = Tracker["this_partition"] Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) Tracker["partition_dict"] = partition_dict Tracker["this_total_stack"] = Tracker["total_stack"] total_list_of_this_run = Tracker["this_unaccounted_list"] ############################### do_two_way_comparison(Tracker) ############################### ref_vol_list = [] number_of_ref_class = [] for igrp in range(len(Tracker["two_way_stable_member"])): Tracker["this_data_list"] = Tracker["two_way_stable_member"][ igrp] Tracker["this_data_list_file"] = os.path.join( workdir, "stable_class%d.txt" % igrp) if myid == main_node: write_text_file(Tracker["this_data_list"], Tracker["this_data_list_file"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nxinit"], Tracker["this_data_list_file"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) if myid == main_node: volref.write_image(os.path.join(workdir, "vol_stable.hdf"), iref) #volref = resample(volref,Tracker["shrinkage"]) ref_vol_list.append(volref) number_of_ref_class.append(len(Tracker["this_data_list"])) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) Tracker["number_of_ref_class"] = number_of_ref_class Tracker["this_data_list"] = Tracker["this_accounted_list"] outdir = os.path.join(workdir, "Kmref") empty_group, res_groups, final_list = ali3d_mref_Kmeans_MPI( ref_vol_list, outdir, Tracker["this_accounted_text"], Tracker) # calculate the 3-D structure of original image size for each group number_of_groups = len(res_groups) Tracker["this_unaccounted_list"] = get_complementary_elements( total_list_of_this_run, final_list) if myid == main_node: log_main.add("the number of particles not processed is %d" % len(Tracker["this_unaccounted_list"])) write_text_file(Tracker["this_unaccounted_list"], Tracker["this_unaccounted_text"]) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) update_full_dict(Tracker["this_unaccounted_list"], Tracker) vol_list = [] for igrp in range(number_of_groups): data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], os.path.join(outdir, "Class%d.txt" % igrp), Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI( myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) vol_list.append(volref) mpi.mpi_barrier(mpi.MPI_COMM_WORLD) nx_of_image = ref_vol_list[0].get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if myid == main_node: for ivol in range(len(vol_list)): refdata = [None] * 4 refdata[0] = vol_list[ivol] refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) volref.write_image( os.path.join(workdir, "volf_of_Classes.hdf"), ivol) log_main.add("number of unaccounted particles %10d" % len(Tracker["this_unaccounted_list"])) log_main.add("number of accounted particles %10d" % len(Tracker["this_accounted_list"])) del vol_list mpi.mpi_barrier(mpi.MPI_COMM_WORLD) number_of_groups = get_number_of_groups( len(Tracker["this_unaccounted_list"]), number_of_images_per_group) Tracker["number_of_groups"] = number_of_groups Tracker["this_data_list"] = Tracker["this_unaccounted_list"] Tracker["total_stack"] = len(Tracker["this_unaccounted_list"]) if Tracker["constants"]["unaccounted"]: data, old_shifts = get_shrink_data_huang( Tracker, Tracker["constants"]["nnxo"], Tracker["this_unaccounted_text"], Tracker["constants"]["partstack"], myid, main_node, nproc, preshift=True) volref = recons3d_4nn_ctf_MPI(myid=myid, prjlist=data, symmetry=Tracker["constants"]["sym"], finfo=None) nx_of_image = volref.get_xsize() if Tracker["constants"]["PWadjustment"]: Tracker["PWadjustment"] = Tracker["PW_dict"][nx_of_image] else: Tracker["PWadjustment"] = Tracker["constants"]["PWadjustment"] if (myid == main_node): refdata = [None] * 4 refdata[0] = volref refdata[1] = Tracker refdata[2] = Tracker["constants"]["myid"] refdata[3] = Tracker["constants"]["nproc"] volref = user_func(refdata) #volref = filt_tanl(volref, Tracker["constants"]["low_pass_filter"],.1) volref.write_image( os.path.join(workdir, "volf_unaccounted.hdf")) # Finish program if myid == main_node: log_main.add("sxsort3d finishes") mpi.mpi_barrier(mpi.MPI_COMM_WORLD) return
def main(): def params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror): if mirror: m = 1 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 540.0-psi, 0, 0, 1.0) else: m = 0 alpha, sx, sy, scalen = compose_transform2(0, s2x, s2y, 1.0, 360.0-psi, 0, 0, 1.0) return alpha, sx, sy, m progname = os.path.basename(sys.argv[0]) usage = progname + " prj_stack --ave2D= --var2D= --ave3D= --var3D= --img_per_grp= --fl=0.2 --aa=0.1 --sym=symmetry --CTF" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--output_dir", type="string" , default="./", help="output directory") parser.add_option("--ave2D", type="string" , default=False, help="write to the disk a stack of 2D averages") parser.add_option("--var2D", type="string" , default=False, help="write to the disk a stack of 2D variances") parser.add_option("--ave3D", type="string" , default=False, help="write to the disk reconstructed 3D average") parser.add_option("--var3D", type="string" , default=False, help="compute 3D variability (time consuming!)") parser.add_option("--img_per_grp", type="int" , default=10 , help="number of neighbouring projections") parser.add_option("--no_norm", action="store_true", default=False, help="do not use normalization") #parser.add_option("--radius", type="int" , default=-1 , help="radius for 3D variability" ) parser.add_option("--npad", type="int" , default=2 , help="number of time to pad the original images") parser.add_option("--sym" , type="string" , default="c1" , help="symmetry") parser.add_option("--fl", type="float" , default=0.0 , help="stop-band frequency (Default - no filtration)") parser.add_option("--aa", type="float" , default=0.0 , help="fall off of the filter (Default - no filtration)") parser.add_option("--CTF", action="store_true", default=False, help="use CFT correction") parser.add_option("--VERBOSE", action="store_true", default=False, help="Long output for debugging") #parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") #parser.add_option("--radiuspca", type="int" , default=-1 , help="radius for PCA" ) #parser.add_option("--iter", type="int" , default=40 , help="maximum number of iterations (stop criterion of reconstruction process)" ) #parser.add_option("--abs", type="float" , default=0.0 , help="minimum average absolute change of voxels' values (stop criterion of reconstruction process)" ) #parser.add_option("--squ", type="float" , default=0.0 , help="minimum average squared change of voxels' values (stop criterion of reconstruction process)" ) parser.add_option("--VAR" , action="store_true", default=False, help="stack on input consists of 2D variances (Default False)") parser.add_option("--decimate", type="float", default= 1.0, help="image decimate rate, a number larger (expand image) or less (shrink image) than 1. default is 1") parser.add_option("--window", type="int", default=0, help="reduce images to a small image size without changing pixel_size. Default value is zero.") #parser.add_option("--SND", action="store_true", default=False, help="compute squared normalized differences (Default False)") parser.add_option("--nvec", type="int" , default=0 , help="number of eigenvectors, default = 0 meaning no PCA calculated") parser.add_option("--symmetrize", action="store_true", default=False, help="Prepare input stack for handling symmetry (Default False)") (options,args) = parser.parse_args() ##### from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, mpi_recv, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_reduce, mpi_bcast, mpi_send, MPI_FLOAT, MPI_SUM, MPI_INT, MPI_MAX from applications import MPI_start_end from reconstruction import recons3d_em, recons3d_em_MPI from reconstruction import recons3d_4nn_MPI, recons3d_4nn_ctf_MPI from utilities import print_begin_msg, print_end_msg, print_msg from utilities import read_text_row, get_image, get_im from utilities import bcast_EMData_to_all, bcast_number_to_all from utilities import get_symt # This is code for handling symmetries by the above program. To be incorporated. PAP 01/27/2015 from EMAN2db import db_open_dict # Set up global variables related to bdb cache if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() # Set up global variables related to ERROR function global_def.BATCH = True # detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ if RUNNING_UNDER_MPI: global_def.MPI = True if options.symmetrize : if RUNNING_UNDER_MPI: try: sys.argv = mpi_init(len(sys.argv), sys.argv) try: number_of_proc = mpi_comm_size(MPI_COMM_WORLD) if( number_of_proc > 1 ): ERROR("Cannot use more than one CPU for symmetry prepration","sx3dvariability",1) except: pass except: pass if options.output_dir !="./" and not os.path.exists(options.output_dir): os.mkdir(options.output_dir) # Input #instack = "Clean_NORM_CTF_start_wparams.hdf" #instack = "bdb:data" from logger import Logger,BaseLogger_Files if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") instack = args[0] sym = options.sym.lower() if( sym == "c1" ): ERROR("There is no need to symmetrize stack for C1 symmetry","sx3dvariability",1) line ="" for a in sys.argv: line +=" "+a log_main.add(line) if(instack[:4] !="bdb:"): if output_dir =="./": stack = "bdb:data" else: stack = "bdb:"+options.output_dir+"/data" delete_bdb(stack) junk = cmdexecute("sxcpy.py "+instack+" "+stack) else: stack = instack qt = EMUtil.get_all_attributes(stack,'xform.projection') na = len(qt) ts = get_symt(sym) ks = len(ts) angsa = [None]*na for k in xrange(ks): #Qfile = "Q%1d"%k if options.output_dir!="./": Qfile = os.path.join(options.output_dir,"Q%1d"%k) else: Qfile = os.path.join(options.output_dir, "Q%1d"%k) #delete_bdb("bdb:Q%1d"%k) delete_bdb("bdb:"+Qfile) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:"+Qfile) #DB = db_open_dict("bdb:Q%1d"%k) DB = db_open_dict("bdb:"+Qfile) for i in xrange(na): ut = qt[i]*ts[k] DB.set_attr(i, "xform.projection", ut) #bt = ut.get_params("spider") #angsa[i] = [round(bt["phi"],3)%360.0, round(bt["theta"],3)%360.0, bt["psi"], -bt["tx"], -bt["ty"]] #write_text_row(angsa, 'ptsma%1d.txt'%k) #junk = cmdexecute("e2bdb.py "+stack+" --makevstack=bdb:Q%1d"%k) #junk = cmdexecute("sxheader.py bdb:Q%1d --params=xform.projection --import=ptsma%1d.txt"%(k,k)) DB.close() if options.output_dir =="./": delete_bdb("bdb:sdata") else: delete_bdb("bdb:" + options.output_dir + "/"+"sdata") #junk = cmdexecute("e2bdb.py . --makevstack=bdb:sdata --filt=Q") sdata = "bdb:"+options.output_dir+"/"+"sdata" print(sdata) junk = cmdexecute("e2bdb.py " + options.output_dir +" --makevstack="+sdata +" --filt=Q") #junk = cmdexecute("ls EMAN2DB/sdata*") #a = get_im("bdb:sdata") a = get_im(sdata) a.set_attr("variabilitysymmetry",sym) #a.write_image("bdb:sdata") a.write_image(sdata) else: sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 1: stack = args[0] else: print(( "usage: " + usage)) print(( "Please run '" + progname + " -h' for detailed options")) return 1 t0 = time() # obsolete flags options.MPI = True options.nvec = 0 options.radiuspca = -1 options.iter = 40 options.abs = 0.0 options.squ = 0.0 if options.fl > 0.0 and options.aa == 0.0: ERROR("Fall off has to be given for the low-pass filter", "sx3dvariability", 1, myid) if options.VAR and options.SND: ERROR("Only one of var and SND can be set!", "sx3dvariability", myid) exit() if options.VAR and (options.ave2D or options.ave3D or options.var2D): ERROR("When VAR is set, the program cannot output ave2D, ave3D or var2D", "sx3dvariability", 1, myid) exit() #if options.SND and (options.ave2D or options.ave3D): # ERROR("When SND is set, the program cannot output ave2D or ave3D", "sx3dvariability", 1, myid) # exit() if options.nvec > 0 : ERROR("PCA option not implemented", "sx3dvariability", 1, myid) exit() if options.nvec > 0 and options.ave3D == None: ERROR("When doing PCA analysis, one must set ave3D", "sx3dvariability", myid=myid) exit() import string options.sym = options.sym.lower() # if global_def.CACHE_DISABLE: # from utilities import disable_bdb_cache # disable_bdb_cache() # global_def.BATCH = True if myid == main_node: if options.output_dir !="./" and not os.path.exists(options.output_dir): os.mkdir(options.output_dir) img_per_grp = options.img_per_grp nvec = options.nvec radiuspca = options.radiuspca from logger import Logger,BaseLogger_Files #if os.path.exists(os.path.join(options.output_dir, "log.txt")): os.remove(os.path.join(options.output_dir, "log.txt")) log_main=Logger(BaseLogger_Files()) log_main.prefix = os.path.join(options.output_dir, "./") if myid == main_node: line = "" for a in sys.argv: line +=" "+a log_main.add(line) log_main.add("-------->>>Settings given by all options<<<-------") log_main.add("instack :"+stack) log_main.add("output_dir :"+options.output_dir) log_main.add("var3d :"+options.var3D) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" #print_begin_msg("sx3dvariability") msg = "sx3dvariability" log_main.add(msg) print(line, msg) msg = ("%-70s: %s\n"%("Input stack", stack)) log_main.add(msg) print(line, msg) symbaselen = 0 if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() if options.sym != "c1" : imgdata = get_im(stack) try: i = imgdata.get_attr("variabilitysymmetry").lower() if(i != options.sym): ERROR("The symmetry provided does not agree with the symmetry of the input stack", "sx3dvariability", myid=myid) except: ERROR("Input stack is not prepared for symmetry, please follow instructions", "sx3dvariability", myid=myid) from utilities import get_symt i = len(get_symt(options.sym)) if((nima/i)*i != nima): ERROR("The length of the input stack is incorrect for symmetry processing", "sx3dvariability", myid=myid) symbaselen = nima/i else: symbaselen = nima else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) Tracker ={} Tracker["total_stack"] = nima if options.decimate==1.: if options.window !=0: nx = options.window ny = options.window else: if options.window ==0: nx = int(nx*options.decimate) ny = int(ny*options.decimate) else: nx = int(options.window*options.decimate) ny = nx Tracker["nx"] = nx Tracker["ny"] = ny Tracker["nz"] = nx symbaselen = bcast_number_to_all(symbaselen) if radiuspca == -1: radiuspca = nx/2-2 if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n"%("Number of projection", nima) log_main.add(msg) print(line, msg) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) """ if options.SND: from projection import prep_vol, prgs from statistics import im_diff from utilities import get_im, model_circle, get_params_proj, set_params_proj from utilities import get_ctf, generate_ctf from filter import filt_ctf imgdata = EMData.read_images(stack, range(img_begin, img_end)) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) bcast_EMData_to_all(vol, myid) volft, kb = prep_vol(vol) mask = model_circle(nx/2-2, nx, ny) varList = [] for i in xrange(img_begin, img_end): phi, theta, psi, s2x, s2y = get_params_proj(imgdata[i-img_begin]) ref_prj = prgs(volft, kb, [phi, theta, psi, -s2x, -s2y]) if options.CTF: ctf_params = get_ctf(imgdata[i-img_begin]) ref_prj = filt_ctf(ref_prj, generate_ctf(ctf_params)) diff, A, B = im_diff(ref_prj, imgdata[i-img_begin], mask) diff2 = diff*diff set_params_proj(diff2, [phi, theta, psi, s2x, s2y]) varList.append(diff2) mpi_barrier(MPI_COMM_WORLD) """ if options.VAR: #varList = EMData.read_images(stack, range(img_begin, img_end)) varList = [] this_image = EMData() for index_of_particle in xrange(img_begin,img_end): this_image.read_image(stack,index_of_particle) varList.append(image_decimate_window_xform_ctf(this_image, options.decimate, options.window,options.CTF)) else: from utilities import bcast_number_to_all, bcast_list_to_all, send_EMData, recv_EMData from utilities import set_params_proj, get_params_proj, params_3D_2D, get_params2D, set_params2D, compose_transform2 from utilities import model_blank, nearest_proj, model_circle from applications import pca from statistics import avgvar, avgvar_ctf, ccc from filter import filt_tanl from morphology import threshold, square_root from projection import project, prep_vol, prgs from sets import Set if myid == main_node: t1 = time() proj_angles = [] aveList = [] tab = EMUtil.get_all_attributes(stack, 'xform.projection') for i in xrange(nima): t = tab[i].get_params('spider') phi = t['phi'] theta = t['theta'] psi = t['psi'] x = theta if x > 90.0: x = 180.0 - x x = x*10000+psi proj_angles.append([x, t['phi'], t['theta'], t['psi'], i]) t2 = time() line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = "%-70s: %d\n"%("Number of neighboring projections", img_per_grp) log_main.add(msg) print(line, msg) msg = "...... Finding neighboring projections\n" log_main.add(msg) print(line, msg) if options.VERBOSE: msg = "Number of images per group: %d"%img_per_grp log_main.add(msg) print(line, msg) msg = "Now grouping projections" log_main.add(msg) print(line, msg) proj_angles.sort() proj_angles_list = [0.0]*(nima*4) if myid == main_node: for i in xrange(nima): proj_angles_list[i*4] = proj_angles[i][1] proj_angles_list[i*4+1] = proj_angles[i][2] proj_angles_list[i*4+2] = proj_angles[i][3] proj_angles_list[i*4+3] = proj_angles[i][4] proj_angles_list = bcast_list_to_all(proj_angles_list, myid, main_node) proj_angles = [] for i in xrange(nima): proj_angles.append([proj_angles_list[i*4], proj_angles_list[i*4+1], proj_angles_list[i*4+2], int(proj_angles_list[i*4+3])]) del proj_angles_list proj_list, mirror_list = nearest_proj(proj_angles, img_per_grp, range(img_begin, img_end)) all_proj = Set() for im in proj_list: for jm in im: all_proj.add(proj_angles[jm][3]) all_proj = list(all_proj) if options.VERBOSE: print("On node %2d, number of images needed to be read = %5d"%(myid, len(all_proj))) index = {} for i in xrange(len(all_proj)): index[all_proj[i]] = i mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n"%("Finding neighboring projections lasted [s]", time()-t2)) log_main.add(msg) print(msg) msg = ("%-70s: %d\n"%("Number of groups processed on the main node", len(proj_list))) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Grouping projections took: ", (time()-t2)/60 , "[min]") print("Number of groups on main node: ", len(proj_list)) mpi_barrier(MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("...... calculating the stack of 2D variances \n") log_main.add(msg) print(line, msg) if options.VERBOSE: print("Now calculating the stack of 2D variances") proj_params = [0.0]*(nima*5) aveList = [] varList = [] if nvec > 0: eigList = [[] for i in xrange(nvec)] if options.VERBOSE: print("Begin to read images on processor %d"%(myid)) ttt = time() #imgdata = EMData.read_images(stack, all_proj) imgdata = [] for index_of_proj in xrange(len(all_proj)): #img = EMData() #img.read_image(stack, all_proj[index_of_proj]) dmg = image_decimate_window_xform_ctf(get_im(stack, all_proj[index_of_proj]), options.decimate, options.window, options.CTF) #print dmg.get_xsize(), "init" imgdata.append(dmg) if options.VERBOSE: print("Reading images on processor %d done, time = %.2f"%(myid, time()-ttt)) print("On processor %d, we got %d images"%(myid, len(imgdata))) mpi_barrier(MPI_COMM_WORLD) ''' imgdata2 = EMData.read_images(stack, range(img_begin, img_end)) if options.fl > 0.0: for k in xrange(len(imgdata2)): imgdata2[k] = filt_tanl(imgdata2[k], options.fl, options.aa) if options.CTF: vol = recons3d_4nn_ctf_MPI(myid, imgdata2, 1.0, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) else: vol = recons3d_4nn_MPI(myid, imgdata2, symmetry=options.sym, npad=options.npad, xysize=-1, zsize=-1) if myid == main_node: vol.write_image("vol_ctf.hdf") print_msg("Writing to the disk volume reconstructed from averages as : %s\n"%("vol_ctf.hdf")) del vol, imgdata2 mpi_barrier(MPI_COMM_WORLD) ''' from applications import prepare_2d_forPCA from utilities import model_blank for i in xrange(len(proj_list)): ki = proj_angles[proj_list[i][0]][3] if ki >= symbaselen: continue mi = index[ki] phiM, thetaM, psiM, s2xM, s2yM = get_params_proj(imgdata[mi]) grp_imgdata = [] for j in xrange(img_per_grp): mj = index[proj_angles[proj_list[i][j]][3]] phi, theta, psi, s2x, s2y = get_params_proj(imgdata[mj]) alpha, sx, sy, mirror = params_3D_2D_NEW(phi, theta, psi, s2x, s2y, mirror_list[i][j]) if thetaM <= 90: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, phiM-phi, 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, 180-(phiM-phi), 0.0, 0.0, 1.0) else: if mirror == 0: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(phiM-phi), 0.0, 0.0, 1.0) else: alpha, sx, sy, scale = compose_transform2(alpha, sx, sy, 1.0, -(180-(phiM-phi)), 0.0, 0.0, 1.0) set_params2D(imgdata[mj], [alpha, sx, sy, mirror, 1.0]) grp_imgdata.append(imgdata[mj]) #print grp_imgdata[j].get_xsize(), imgdata[mj].get_xsize() if not options.no_norm: #print grp_imgdata[j].get_xsize() mask = model_circle(nx/2-2, nx, nx) for k in xrange(img_per_grp): ave, std, minn, maxx = Util.infomask(grp_imgdata[k], mask, False) grp_imgdata[k] -= ave grp_imgdata[k] /= std del mask if options.fl > 0.0: from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d(fft( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa) ),nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: for k in xrange(img_per_grp): grp_imgdata[k] = filt_tanl( grp_imgdata[k], options.fl, options.aa) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) else: from utilities import pad, read_text_file from filter import filt_ctf, filt_table from fundamentals import fft, window2d nx2 = 2*nx ny2 = 2*ny if options.CTF: from utilities import pad for k in xrange(img_per_grp): grp_imgdata[k] = window2d( fft( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1) ) , nx,ny) #grp_imgdata[k] = window2d(fft( filt_table( filt_tanl( filt_ctf(fft(pad(grp_imgdata[k], nx2, ny2, 1,0.0)), grp_imgdata[k].get_attr("ctf"), binary=1), options.fl, options.aa), fifi) ),nx,ny) #grp_imgdata[k] = filt_tanl(grp_imgdata[k], options.fl, options.aa) ''' if i < 10 and myid == main_node: for k in xrange(10): grp_imgdata[k].write_image("grp%03d.hdf"%i, k) ''' """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("pp.hdf", pp) """ ave, grp_imgdata = prepare_2d_forPCA(grp_imgdata) """ if myid == main_node and i==0: for pp in xrange(len(grp_imgdata)): grp_imgdata[pp].write_image("qq.hdf", pp) """ var = model_blank(nx,ny) for q in grp_imgdata: Util.add_img2( var, q ) Util.mul_scalar( var, 1.0/(len(grp_imgdata)-1)) # Switch to std dev var = square_root(threshold(var)) #if options.CTF: ave, var = avgvar_ctf(grp_imgdata, mode="a") #else: ave, var = avgvar(grp_imgdata, mode="a") """ if myid == main_node: ave.write_image("avgv.hdf",i) var.write_image("varv.hdf",i) """ set_params_proj(ave, [phiM, thetaM, 0.0, 0.0, 0.0]) set_params_proj(var, [phiM, thetaM, 0.0, 0.0, 0.0]) aveList.append(ave) varList.append(var) if options.VERBOSE: print("%5.2f%% done on processor %d"%(i*100.0/len(proj_list), myid)) if nvec > 0: eig = pca(input_stacks=grp_imgdata, subavg="", mask_radius=radiuspca, nvec=nvec, incore=True, shuffle=False, genbuf=True) for k in xrange(nvec): set_params_proj(eig[k], [phiM, thetaM, 0.0, 0.0, 0.0]) eigList[k].append(eig[k]) """ if myid == 0 and i == 0: for k in xrange(nvec): eig[k].write_image("eig.hdf", k) """ del imgdata # To this point, all averages, variances, and eigenvectors are computed if options.ave2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(os.path.join(options.output_dir, options.ave2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) """ nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pix_err', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) """ tmpvol=fpol(ave, Tracker["nx"],Tracker["nx"],1) tmpvol.write_image(os.path.join(options.output_dir, options.ave2D), km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) """ members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pix_err') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) """ if options.ave3D: from fundamentals import fpol if options.VERBOSE: print("Reconstructing 3D average volume") ave3D = recons3d_4nn_MPI(myid, aveList, symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(ave3D, myid) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" ave3D=fpol(ave3D,Tracker["nx"],Tracker["nx"],Tracker["nx"]) ave3D.write_image(os.path.join(options.output_dir, options.ave3D)) msg = ("%-70s: %s\n"%("Writing to the disk volume reconstructed from averages as", options.ave3D)) log_main.add(msg) print(line, msg) del ave, var, proj_list, stack, phi, theta, psi, s2x, s2y, alpha, sx, sy, mirror, aveList if nvec > 0: for k in xrange(nvec): if options.VERBOSE: print("Reconstruction eigenvolumes", k) cont = True ITER = 0 mask2d = model_circle(radiuspca, nx, nx) while cont: #print "On node %d, iteration %d"%(myid, ITER) eig3D = recons3d_4nn_MPI(myid, eigList[k], symmetry=options.sym, npad=options.npad) bcast_EMData_to_all(eig3D, myid, main_node) if options.fl > 0.0: eig3D = filt_tanl(eig3D, options.fl, options.aa) if myid == main_node: eig3D.write_image(os.path.join(options.outpout_dir, "eig3d_%03d.hdf"%(k, ITER))) Util.mul_img( eig3D, model_circle(radiuspca, nx, nx, nx) ) eig3Df, kb = prep_vol(eig3D) del eig3D cont = False icont = 0 for l in xrange(len(eigList[k])): phi, theta, psi, s2x, s2y = get_params_proj(eigList[k][l]) proj = prgs(eig3Df, kb, [phi, theta, psi, s2x, s2y]) cl = ccc(proj, eigList[k][l], mask2d) if cl < 0.0: icont += 1 cont = True eigList[k][l] *= -1.0 u = int(cont) u = mpi_reduce([u], 1, MPI_INT, MPI_MAX, main_node, MPI_COMM_WORLD) icont = mpi_reduce([icont], 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" u = int(u[0]) msg = (" Eigenvector: ",k," number changed ",int(icont[0])) log_main.add(msg) print(line, msg) else: u = 0 u = bcast_number_to_all(u, main_node) cont = bool(u) ITER += 1 del eig3Df, kb mpi_barrier(MPI_COMM_WORLD) del eigList, mask2d if options.ave3D: del ave3D if options.var2D: from fundamentals import fpol if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(varList)): tmpvol=fpol(varList[im], Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(os.path.join(options.output_dir, options.var2D), km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) tmpvol=fpol(ave, Tracker["nx"], Tracker["nx"],1) tmpvol.write_image(os.path.join(options.output_dir, options.var2D, km)) km += 1 else: mpi_send(len(varList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(varList)): send_EMData(varList[im], main_node, im+myid+70000)# What with the attributes?? mpi_barrier(MPI_COMM_WORLD) if options.var3D: if myid == main_node and options.VERBOSE: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("Reconstructing 3D variability volume") log_main.add(msg) print(line, msg) t6 = time() # radiusvar = options.radius # if( radiusvar < 0 ): radiusvar = nx//2 -3 res = recons3d_4nn_MPI(myid, varList, symmetry=options.sym, npad=options.npad) #res = recons3d_em_MPI(varList, vol_stack, options.iter, radiusvar, options.abs, True, options.sym, options.squ) if myid == main_node: from fundamentals import fpol res =fpol(res, Tracker["nx"], Tracker["nx"], Tracker["nx"]) res.write_image(os.path.join(options.output_dir, options.var3D)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n"%("Reconstructing 3D variability took [s]", time()-t6)) log_main.add(msg) print(line, msg) if options.VERBOSE: print("Reconstruction took: %.2f [min]"%((time()-t6)/60)) if myid == main_node: line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("%-70s: %.2f\n"%("Total time for these computations [s]", time()-t0)) print(line, msg) log_main.add(msg) if options.VERBOSE: print("Total time for these computations: %.2f [min]"%((time()-t0)/60)) line = strftime("%Y-%m-%d_%H:%M:%S", localtime()) + " =>" msg = ("sx3dvariability") print(line, msg) log_main.add(msg) from mpi import mpi_finalize mpi_finalize() if RUNNING_UNDER_MPI: global_def.MPI = False global_def.BATCH = False
def shiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1, oneDx=False, search_rng_y=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D from utilities import get_params2D, set_params2D from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from EMAN2 import Processor from time import time number_of_proc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("shiftali_MPI") max_iter = int(maxit) if myid == main_node: if ftp == "bdb": from EMAN2db import db_open_dict dummy = db_open_dict(stack, True) nima = EMUtil.get_image_count(stack) else: nima = 0 nima = bcast_number_to_all(nima, source_node=main_node) list_of_particles = list(range(nima)) image_start, image_end = MPI_start_end(nima, number_of_proc, myid) list_of_particles = list_of_particles[image_start:image_end] # read nx and ctf_app (if CTF) and broadcast to all nodes if myid == main_node: ima = EMData() ima.read_image(stack, list_of_particles[0], True) nx = ima.get_xsize() ny = ima.get_ysize() if CTF: ctf_app = ima.get_attr_default('ctf_applied', 2) del ima else: nx = 0 ny = 0 if CTF: ctf_app = 0 nx = bcast_number_to_all(nx, source_node=main_node) ny = bcast_number_to_all(ny, source_node=main_node) if CTF: ctf_app = bcast_number_to_all(ctf_app, source_node=main_node) if ctf_app > 0: ERROR("data cannot be ctf-applied", "shiftali_MPI", 1, myid) if maskfile == None: mrad = min(nx, ny) mask = model_circle(mrad // 2 - 2, nx, ny) else: mask = get_im(maskfile) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None from global_def import CACHE_DISABLE if CACHE_DISABLE: data = EMData.read_images(stack, list_of_particles) else: for i in range(number_of_proc): if myid == i: data = EMData.read_images(stack, list_of_particles) if ftp == "bdb": mpi_barrier(MPI_COMM_WORLD) for im in range(len(data)): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) else: ctf_2_sum = None if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) for i in range(0, nx, 2): for j in range(ny): temp.set_value_at(i, j, snr) Util.add_img(ctf_2_sum, temp) del temp total_iter = 0 # apply initial xform.align2d parameters stored in header init_params = [] for im in range(len(data)): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], sx=p['tx'], sy=p['ty'], mirror=p['mirror'], scale=p['scale']) # fourier transform all images, and apply ctf if CTF for im in range(len(data)): if CTF: ctf_params = data[im].get_attr("ctf") data[im] = filt_ctf(fft(data[im]), ctf_params) else: data[im] = fft(data[im]) sx_sum = 0 sy_sum = 0 sx_sum_total = 0 sy_sum_total = 0 shift_x = [0.0] * len(data) shift_y = [0.0] * len(data) ishift_x = [0.0] * len(data) ishift_y = [0.0] * len(data) for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in data: Util.add_img(avg, im) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = EMData(nx, ny, 1, False) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) tavg = fft(tavg) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) sx_sum = 0 sy_sum = 0 if search_rng > 0: nwx = 2 * search_rng + 1 else: nwx = nx if search_rng_y > 0: nwy = 2 * search_rng_y + 1 else: nwy = ny not_zero = 0 for im in range(len(data)): if oneDx: ctx = Util.window(ccf(data[im], tavg), nwx, 1) p1 = peak_search(ctx) p1_x = -int(p1[0][3]) ishift_x[im] = p1_x sx_sum += p1_x else: p1 = peak_search(Util.window(ccf(data[im], tavg), nwx, nwy)) p1_x = -int(p1[0][4]) p1_y = -int(p1[0][5]) ishift_x[im] = p1_x ishift_y[im] = p1_y sx_sum += p1_x sy_sum += p1_y if not_zero == 0: if (not (ishift_x[im] == 0.0)) or (not (ishift_y[im] == 0.0)): not_zero = 1 sx_sum = mpi_reduce(sx_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if not oneDx: sy_sum = mpi_reduce(sy_sum, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum_total = int(sx_sum[0]) if not oneDx: sy_sum_total = int(sy_sum[0]) else: sx_sum_total = 0 sy_sum_total = 0 sx_sum_total = bcast_number_to_all(sx_sum_total, source_node=main_node) if not oneDx: sy_sum_total = bcast_number_to_all(sy_sum_total, source_node=main_node) sx_ave = round(float(sx_sum_total) / nima) sy_ave = round(float(sy_sum_total) / nima) for im in range(len(data)): p1_x = ishift_x[im] - sx_ave p1_y = ishift_y[im] - sy_ave params2 = { "filter_type": Processor.fourier_filter_types.SHIFT, "x_shift": p1_x, "y_shift": p1_y, "z_shift": 0.0 } data[im] = Processor.EMFourierFilter(data[im], params2) shift_x[im] += p1_x shift_y[im] += p1_y # stop if all shifts are zero not_zero = mpi_reduce(not_zero, 1, MPI_INT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: not_zero_all = int(not_zero[0]) else: not_zero_all = 0 not_zero_all = bcast_number_to_all(not_zero_all, source_node=main_node) if myid == main_node: print_msg("Time of iteration = %12.2f\n" % (time() - start_time)) start_time = time() if not_zero_all == 0: break #for im in xrange(len(data)): data[im] = fft(data[im]) This should not be required as only header information is used # combine shifts found with the original parameters for im in range(len(data)): t0 = init_params[im] t1 = Transform() t1.set_params({ "type": "2D", "alpha": 0, "scale": t0.get_scale(), "mirror": 0, "tx": shift_x[im], "ty": shift_y[im] }) # combine t0 and t1 tt = t1 * t0 data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if (file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, image_start, image_end, number_of_proc) else: send_attr_dict(main_node, data, par_str, image_start, image_end) if myid == main_node: print_end_msg("shiftali_MPI")
def helicalshiftali_MPI(stack, maskfile=None, maxit=100, CTF=False, snr=1.0, Fourvar=False, search_rng=-1): from applications import MPI_start_end from utilities import model_circle, model_blank, get_image, peak_search, get_im, pad from utilities import reduce_EMData_to_root, bcast_EMData_to_all, send_attr_dict, file_type, bcast_number_to_all, bcast_list_to_all from statistics import varf2d_MPI from fundamentals import fft, ccf, rot_shift3D, rot_shift2D, fshift from utilities import get_params2D, set_params2D, chunks_distribution from utilities import print_msg, print_begin_msg, print_end_msg import os import sys from mpi import mpi_init, mpi_comm_size, mpi_comm_rank, MPI_COMM_WORLD from mpi import mpi_reduce, mpi_bcast, mpi_barrier, mpi_gatherv from mpi import MPI_SUM, MPI_FLOAT, MPI_INT from time import time from pixel_error import ordersegments from math import sqrt, atan2, tan, pi nproc = mpi_comm_size(MPI_COMM_WORLD) myid = mpi_comm_rank(MPI_COMM_WORLD) main_node = 0 ftp = file_type(stack) if myid == main_node: print_begin_msg("helical-shiftali_MPI") max_iter = int(maxit) if (myid == main_node): infils = EMUtil.get_all_attributes(stack, "filament") ptlcoords = EMUtil.get_all_attributes(stack, 'ptcl_source_coord') filaments = ordersegments(infils, ptlcoords) total_nfils = len(filaments) inidl = [0] * total_nfils for i in range(total_nfils): inidl[i] = len(filaments[i]) linidl = sum(inidl) nima = linidl tfilaments = [] for i in range(total_nfils): tfilaments += filaments[i] del filaments else: total_nfils = 0 linidl = 0 total_nfils = bcast_number_to_all(total_nfils, source_node=main_node) if myid != main_node: inidl = [-1] * total_nfils inidl = bcast_list_to_all(inidl, myid, source_node=main_node) linidl = bcast_number_to_all(linidl, source_node=main_node) if myid != main_node: tfilaments = [-1] * linidl tfilaments = bcast_list_to_all(tfilaments, myid, source_node=main_node) filaments = [] iendi = 0 for i in range(total_nfils): isti = iendi iendi = isti + inidl[i] filaments.append(tfilaments[isti:iendi]) del tfilaments, inidl if myid == main_node: print_msg("total number of filaments: %d" % total_nfils) if total_nfils < nproc: ERROR( 'number of CPUs (%i) is larger than the number of filaments (%i), please reduce the number of CPUs used' % (nproc, total_nfils), "ehelix_MPI", 1, myid) # balanced load temp = chunks_distribution([[len(filaments[i]), i] for i in range(len(filaments))], nproc)[myid:myid + 1][0] filaments = [filaments[temp[i][1]] for i in range(len(temp))] nfils = len(filaments) #filaments = [[0,1]] #print "filaments",filaments list_of_particles = [] indcs = [] k = 0 for i in range(nfils): list_of_particles += filaments[i] k1 = k + len(filaments[i]) indcs.append([k, k1]) k = k1 data = EMData.read_images(stack, list_of_particles) ldata = len(data) print("ldata=", ldata) nx = data[0].get_xsize() ny = data[0].get_ysize() if maskfile == None: mrad = min(nx, ny) // 2 - 2 mask = pad(model_blank(2 * mrad + 1, ny, 1, 1.0), nx, ny, 1, 0.0) else: mask = get_im(maskfile) # apply initial xform.align2d parameters stored in header init_params = [] for im in range(ldata): t = data[im].get_attr('xform.align2d') init_params.append(t) p = t.get_params("2d") data[im] = rot_shift2D(data[im], p['alpha'], p['tx'], p['ty'], p['mirror'], p['scale']) if CTF: from filter import filt_ctf from morphology import ctf_img ctf_abs_sum = EMData(nx, ny, 1, False) ctf_2_sum = EMData(nx, ny, 1, False) else: ctf_2_sum = None ctf_abs_sum = None from utilities import info for im in range(ldata): data[im].set_attr('ID', list_of_particles[im]) st = Util.infomask(data[im], mask, False) data[im] -= st[0] if CTF: ctf_params = data[im].get_attr("ctf") qctf = data[im].get_attr("ctf_applied") if qctf == 0: data[im] = filt_ctf(fft(data[im]), ctf_params) data[im].set_attr('ctf_applied', 1) elif qctf != 1: ERROR('Incorrectly set qctf flag', "helicalshiftali_MPI", 1, myid) ctfimg = ctf_img(nx, ctf_params, ny=ny) Util.add_img2(ctf_2_sum, ctfimg) Util.add_img_abs(ctf_abs_sum, ctfimg) else: data[im] = fft(data[im]) del list_of_particles if CTF: reduce_EMData_to_root(ctf_2_sum, myid, main_node) reduce_EMData_to_root(ctf_abs_sum, myid, main_node) if CTF: if myid != main_node: del ctf_2_sum del ctf_abs_sum else: temp = EMData(nx, ny, 1, False) tsnr = 1. / snr for i in range(0, nx + 2, 2): for j in range(ny): temp.set_value_at(i, j, tsnr) temp.set_value_at(i + 1, j, 0.0) #info(ctf_2_sum) Util.add_img(ctf_2_sum, temp) #info(ctf_2_sum) del temp total_iter = 0 shift_x = [0.0] * ldata for Iter in range(max_iter): if myid == main_node: start_time = time() print_msg("Iteration #%4d\n" % (total_iter)) total_iter += 1 avg = EMData(nx, ny, 1, False) for im in range(ldata): Util.add_img(avg, fshift(data[im], shift_x[im])) reduce_EMData_to_root(avg, myid, main_node) if myid == main_node: if CTF: tavg = Util.divn_filter(avg, ctf_2_sum) else: tavg = Util.mult_scalar(avg, 1.0 / float(nima)) else: tavg = model_blank(nx, ny) if Fourvar: bcast_EMData_to_all(tavg, myid, main_node) vav, rvar = varf2d_MPI(myid, data, tavg, mask, "a", CTF) if myid == main_node: if Fourvar: tavg = fft(Util.divn_img(fft(tavg), vav)) vav_r = Util.pack_complex_to_real(vav) # normalize and mask tavg in real space tavg = fft(tavg) stat = Util.infomask(tavg, mask, False) tavg -= stat[0] Util.mul_img(tavg, mask) tavg.write_image("tavg.hdf", Iter) # For testing purposes: shift tavg to some random place and see if the centering is still correct #tavg = rot_shift3D(tavg,sx=3,sy=-4) if Fourvar: del vav bcast_EMData_to_all(tavg, myid, main_node) tavg = fft(tavg) sx_sum = 0.0 nxc = nx // 2 for ifil in range(nfils): """ # Calculate filament average avg = EMData(nx, ny, 1, False) filnima = 0 for im in xrange(indcs[ifil][0], indcs[ifil][1]): Util.add_img(avg, data[im]) filnima += 1 tavg = Util.mult_scalar(avg, 1.0/float(filnima)) """ # Calculate 1D ccf between each segment and filament average nsegms = indcs[ifil][1] - indcs[ifil][0] ctx = [None] * nsegms pcoords = [None] * nsegms for im in range(indcs[ifil][0], indcs[ifil][1]): ctx[im - indcs[ifil][0]] = Util.window(ccf(tavg, data[im]), nx, 1) pcoords[im - indcs[ifil][0]] = data[im].get_attr( 'ptcl_source_coord') #ctx[im-indcs[ifil][0]].write_image("ctx.hdf",im-indcs[ifil][0]) #print " CTX ",myid,im,Util.infomask(ctx[im-indcs[ifil][0]], None, True) # search for best x-shift cents = nsegms // 2 dst = sqrt( max((pcoords[cents][0] - pcoords[0][0])**2 + (pcoords[cents][1] - pcoords[0][1])**2, (pcoords[cents][0] - pcoords[-1][0])**2 + (pcoords[cents][1] - pcoords[-1][1])**2)) maxincline = atan2(ny // 2 - 2 - float(search_rng), dst) kang = int(dst * tan(maxincline) + 0.5) #print " settings ",nsegms,cents,dst,search_rng,maxincline,kang # ## C code for alignment. @ming results = [0.0] * 3 results = Util.helixshiftali(ctx, pcoords, nsegms, maxincline, kang, search_rng, nxc) sib = int(results[0]) bang = results[1] qm = results[2] #print qm, sib, bang # qm = -1.e23 # # for six in xrange(-search_rng, search_rng+1,1): # q0 = ctx[cents].get_value_at(six+nxc) # for incline in xrange(kang+1): # qt = q0 # qu = q0 # if(kang>0): tang = tan(maxincline/kang*incline) # else: tang = 0.0 # for kim in xrange(cents+1,nsegms): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # #print " A ", ifil,six,incline,kim,xl,ixl,dxl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # for kim in xrange(cents): # dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) # xl = -dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qt += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # xl = dst*tang+six+nxc # ixl = int(xl) # dxl = xl - ixl # qu += (1.0-dxl)*ctx[kim].get_value_at(ixl) + dxl*ctx[kim].get_value_at(ixl+1) # if( qt > qm ): # qm = qt # sib = six # bang = tang # if( qu > qm ): # qm = qu # sib = six # bang = -tang #if incline == 0: print "incline = 0 ",six,tang,qt,qu #print qm,six,sib,bang #print " got results ",indcs[ifil][0], indcs[ifil][1], ifil,myid,qm,sib,tang,bang,len(ctx),Util.infomask(ctx[0], None, True) for im in range(indcs[ifil][0], indcs[ifil][1]): kim = im - indcs[ifil][0] dst = sqrt((pcoords[cents][0] - pcoords[kim][0])**2 + (pcoords[cents][1] - pcoords[kim][1])**2) if (kim < cents): xl = -dst * bang + sib else: xl = dst * bang + sib shift_x[im] = xl # Average shift sx_sum += shift_x[indcs[ifil][0] + cents] # #print myid,sx_sum,total_nfils sx_sum = mpi_reduce(sx_sum, 1, MPI_FLOAT, MPI_SUM, main_node, MPI_COMM_WORLD) if myid == main_node: sx_sum = float(sx_sum[0]) / total_nfils print_msg("Average shift %6.2f\n" % (sx_sum)) else: sx_sum = 0.0 sx_sum = 0.0 sx_sum = bcast_number_to_all(sx_sum, source_node=main_node) for im in range(ldata): shift_x[im] -= sx_sum #print " %3d %6.3f"%(im,shift_x[im]) #exit() # combine shifts found with the original parameters for im in range(ldata): t1 = Transform() ##import random ##shix=random.randint(-10, 10) ##t1.set_params({"type":"2D","tx":shix}) t1.set_params({"type": "2D", "tx": shift_x[im]}) # combine t0 and t1 tt = t1 * init_params[im] data[im].set_attr("xform.align2d", tt) # write out headers and STOP, under MPI writing has to be done sequentially mpi_barrier(MPI_COMM_WORLD) par_str = ["xform.align2d", "ID"] if myid == main_node: from utilities import file_type if (file_type(stack) == "bdb"): from utilities import recv_attr_dict_bdb recv_attr_dict_bdb(main_node, stack, data, par_str, 0, ldata, nproc) else: from utilities import recv_attr_dict recv_attr_dict(main_node, stack, data, par_str, 0, ldata, nproc) else: send_attr_dict(main_node, data, par_str, 0, ldata) if myid == main_node: print_end_msg("helical-shiftali_MPI")
def main(): from logger import Logger, BaseLogger_Files import user_functions from optparse import OptionParser, SUPPRESS_HELP from global_def import SPARXVERSION from EMAN2 import EMData main_node = 0 mpi_init(0, []) mpi_comm = MPI_COMM_WORLD myid = mpi_comm_rank(MPI_COMM_WORLD) mpi_size = mpi_comm_size(MPI_COMM_WORLD) # Total number of processes, passed by --np option. # mpi_barrier(mpi_comm) # from mpi import mpi_finalize # mpi_finalize() # print "mpi finalize" # from sys import exit # exit() progname = os.path.basename(sys.argv[0]) usage = progname + " stack [output_directory] --ir=inner_radius --radius=outer_radius --rs=ring_step --xr=x_range --yr=y_range --ts=translational_search_step --delta=angular_step --an=angular_neighborhood --center=center_type --maxit1=max_iter1 --maxit2=max_iter2 --L2threshold=0.1 --fl --aa --ref_a=S --sym=c1" usage += """ stack 2D images in a stack file: (default required string) output_directory: directory name into which the output files will be written. If it does not exist, the directory will be created. If it does exist, the program will continue executing from where it stopped (if it did not already reach the end). The "--use_latest_master_directory" option can be used to choose the most recent directory that starts with "master". """ parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--radius", type="int", help="radius of the particle: has to be less than < int(nx/2)-1 (default required int)") parser.add_option("--ir", type="int", default=1, help="inner radius for rotational search: > 0 (default 1)") parser.add_option("--rs", type="int", default=1, help="step between rings in rotational search: >0 (default 1)") parser.add_option("--xr", type="string", default='0', help="range for translation search in x direction: search is +/xr in pixels (default '0')") parser.add_option("--yr", type="string", default='0', help="range for translation search in y direction: if omitted will be set to xr, search is +/yr in pixels (default '0')") parser.add_option("--ts", type="string", default='1.0', help="step size of the translation search in x-y directions: search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default '1.0')") parser.add_option("--delta", type="string", default='2.0', help="angular step of reference projections: (default '2.0')") #parser.add_option("--an", type="string", default= "-1", help="angular neighborhood for local searches (phi and theta)") parser.add_option("--center", type="float", default=-1.0, help="centering of 3D template: average shift method; 0: no centering; 1: center of gravity (default -1.0)") parser.add_option("--maxit1", type="int", default=400, help="maximum number of iterations performed for the GA part: (default 400)") parser.add_option("--maxit2", type="int", default=50, help="maximum number of iterations performed for the finishing up part: (default 50)") parser.add_option("--L2threshold", type="float", default=0.03, help="stopping criterion of GA: given as a maximum relative dispersion of volumes' L2 norms: (default 0.03)") parser.add_option("--doga", type="float", default=0.1, help="do GA when fraction of orientation changes less than 1.0 degrees is at least doga: (default 0.1)") parser.add_option("--n_shc_runs", type="int", default=4, help="number of quasi-independent shc runs (same as '--nruns' parameter from sxviper.py): (default 4)") parser.add_option("--n_rv_runs", type="int", default=10, help="number of rviper iterations: (default 10)") parser.add_option("--n_v_runs", type="int", default=3, help="number of viper runs for each r_viper cycle: (default 3)") parser.add_option("--outlier_percentile", type="float", default=95.0, help="percentile above which outliers are removed every rviper iteration: (default 95.0)") parser.add_option("--iteration_start", type="int", default=0, help="starting iteration for rviper: 0 means go to the most recent one (default 0)") #parser.add_option("--CTF", action="store_true", default=False, help="NOT IMPLEMENTED Consider CTF correction during the alignment ") #parser.add_option("--snr", type="float", default= 1.0, help="Signal-to-Noise Ratio of the data (default 1.0)") parser.add_option("--ref_a", type="string", default='S', help="method for generating the quasi-uniformly distributed projection directions: (default S)") parser.add_option("--sym", type="string", default='c1', help="point-group symmetry of the structure: (default c1)") # parser.add_option("--function", type="string", default="ref_ali3d", help="name of the reference preparation function (ref_ali3d by default)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--function", type="string", default="ref_ali3d", help=SUPPRESS_HELP) parser.add_option("--npad", type="int", default=2, help="padding size for 3D reconstruction: (default 2)") # parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction (default 2)") #options introduced for the do_volume function parser.add_option("--fl", type="float", default=0.25, help="cut-off frequency applied to the template volume: using a hyperbolic tangent low-pass filter (default 0.25)") parser.add_option("--aa", type="float", default=0.1, help="fall-off of hyperbolic tangent low-pass filter: (default 0.1)") parser.add_option("--pwreference", type="string", default='', help="text file with a reference power spectrum: (default none)") parser.add_option("--mask3D", type="string", default=None, help="3D mask file: (default sphere)") parser.add_option("--moon_elimination", type="string", default='', help="elimination of disconnected pieces: two arguments: mass in KDa and pixel size in px/A separated by comma, no space (default none)") # used for debugging, help is supressed with SUPPRESS_HELP ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--my_random_seed", type="int", default=123, help = SUPPRESS_HELP) ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--run_get_already_processed_viper_runs", action="store_true", dest="run_get_already_processed_viper_runs", default=False, help = SUPPRESS_HELP) ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--use_latest_master_directory", action="store_true", dest="use_latest_master_directory", default=False, help = SUPPRESS_HELP) parser.add_option("--criterion_name", type="string", default='80th percentile',help="criterion deciding if volumes have a core set of stable projections: '80th percentile', other options:'fastest increase in the last quartile' (default '80th percentile')") parser.add_option("--outlier_index_threshold_method",type="string", default='discontinuity_in_derivative',help="method that decides which images to keep: discontinuity_in_derivative, other options:percentile, angle_measure (default discontinuity_in_derivative)") parser.add_option("--angle_threshold", type="int", default=30, help="angle threshold for projection removal if using 'angle_measure': (default 30)") required_option_list = ['radius'] (options, args) = parser.parse_args(sys.argv[1:]) options.CTF = False options.snr = 1.0 options.an = -1 if options.moon_elimination == "": options.moon_elimination = [] else: options.moon_elimination = map(float, options.moon_elimination.split(",")) # Making sure all required options appeared. for required_option in required_option_list: if not options.__dict__[required_option]: print "\n ==%s== mandatory option is missing.\n"%required_option print "Please run '" + progname + " -h' for detailed options" return 1 mpi_barrier(MPI_COMM_WORLD) if(myid == main_node): print "****************************************************************" Util.version() print "****************************************************************" sys.stdout.flush() mpi_barrier(MPI_COMM_WORLD) # this is just for benefiting from a user friendly parameter name options.ou = options.radius my_random_seed = options.my_random_seed criterion_name = options.criterion_name outlier_index_threshold_method = options.outlier_index_threshold_method use_latest_master_directory = options.use_latest_master_directory iteration_start_default = options.iteration_start number_of_rrr_viper_runs = options.n_rv_runs no_of_viper_runs_analyzed_together_from_user_options = options.n_v_runs no_of_shc_runs_analyzed_together = options.n_shc_runs outlier_percentile = options.outlier_percentile angle_threshold = options.angle_threshold run_get_already_processed_viper_runs = options.run_get_already_processed_viper_runs get_already_processed_viper_runs(run_get_already_processed_viper_runs) import random random.seed(my_random_seed) if len(args) < 1 or len(args) > 3: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" return 1 # if len(args) > 2: # ref_vol = get_im(args[2]) # else: ref_vol = None # error_status = None # if myid == 0: # number_of_images = EMUtil.get_image_count(args[0]) # if mpi_size > number_of_images: # error_status = ('Number of processes supplied by --np in mpirun needs to be less than or equal to %d (total number of images) ' % number_of_images, getframeinfo(currentframe())) # if_error_then_all_processes_exit_program(error_status) bdb_stack_location = "" masterdir = "" if len(args) == 2: masterdir = args[1] if masterdir[-1] != DIR_DELIM: masterdir += DIR_DELIM elif len(args) == 1: if use_latest_master_directory: all_dirs = [d for d in os.listdir(".") if os.path.isdir(d)] import re; r = re.compile("^master.*$") all_dirs = filter(r.match, all_dirs) if len(all_dirs)>0: # all_dirs = max(all_dirs, key=os.path.getctime) masterdir = max(all_dirs, key=os.path.getmtime) masterdir += DIR_DELIM log = Logger(BaseLogger_Files()) error_status = 0 if mpi_size % no_of_shc_runs_analyzed_together != 0: ERROR('Number of processes needs to be a multiple of the number of quasi-independent runs (shc) within each viper run. ' 'Total quasi-independent runs by default are 3, you can change it by specifying ' '--n_shc_runs option (in sxviper this option is called --nruns). Also, to improve communication time it is recommended that ' 'the number of processes divided by the number of quasi-independent runs is a power ' 'of 2 (e.g. 2, 4, 8 or 16 depending on how many physical cores each node has).', 'sxviper', 1) error_status = 1 if_error_then_all_processes_exit_program(error_status) #Create folder for all results or check if there is one created already if(myid == main_node): #cmd = "{}".format("Rmycounter ccc") #cmdexecute(cmd) if( masterdir == ""): timestring = strftime("%Y_%m_%d__%H_%M_%S" + DIR_DELIM, localtime()) masterdir = "master"+timestring if not os.path.exists(masterdir): cmd = "{} {}".format("mkdir", masterdir) cmdexecute(cmd) if ':' in args[0]: bdb_stack_location = args[0].split(":")[0] + ":" + masterdir + args[0].split(":")[1] org_stack_location = args[0] if(not os.path.exists(os.path.join(masterdir,"EMAN2DB" + DIR_DELIM))): # cmd = "{} {}".format("cp -rp EMAN2DB", masterdir, "EMAN2DB" DIR_DELIM) # cmdexecute(cmd) cmd = "{} {} {}".format("e2bdb.py", org_stack_location,"--makevstack=" + bdb_stack_location + "_000") cmdexecute(cmd) from applications import header try: header(bdb_stack_location + "_000", params='original_image_index', fprint=True) print "Images were already indexed!" except KeyError: print "Indexing images" header(bdb_stack_location + "_000", params='original_image_index', consecutive=True) else: filename = os.path.basename(args[0]) bdb_stack_location = "bdb:" + masterdir + os.path.splitext(filename)[0] if(not os.path.exists(os.path.join(masterdir,"EMAN2DB" + DIR_DELIM))): cmd = "{} {} {}".format("sxcpy.py ", args[0], bdb_stack_location + "_000") cmdexecute(cmd) from applications import header try: header(bdb_stack_location + "_000", params='original_image_index', fprint=True) print "Images were already indexed!" except KeyError: print "Indexing images" header(bdb_stack_location + "_000", params='original_image_index', consecutive=True) # send masterdir to all processes dir_len = len(masterdir)*int(myid == main_node) dir_len = mpi_bcast(dir_len,1,MPI_INT,0,MPI_COMM_WORLD)[0] masterdir = mpi_bcast(masterdir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD) masterdir = string.join(masterdir,"") if masterdir[-1] != DIR_DELIM: masterdir += DIR_DELIM global_def.LOGFILE = os.path.join(masterdir, global_def.LOGFILE) print_program_start_information() # mpi_barrier(mpi_comm) # from mpi import mpi_finalize # mpi_finalize() # print "mpi finalize" # from sys import exit # exit() # send bdb_stack_location to all processes dir_len = len(bdb_stack_location)*int(myid == main_node) dir_len = mpi_bcast(dir_len,1,MPI_INT,0,MPI_COMM_WORLD)[0] bdb_stack_location = mpi_bcast(bdb_stack_location,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD) bdb_stack_location = string.join(bdb_stack_location,"") iteration_start = get_latest_directory_increment_value(masterdir, "main") if (myid == main_node): if (iteration_start < iteration_start_default): ERROR('Starting iteration provided is greater than last iteration performed. Quiting program', 'sxviper', 1) error_status = 1 if iteration_start_default!=0: iteration_start = iteration_start_default if (myid == main_node): if (number_of_rrr_viper_runs < iteration_start): ERROR('Please provide number of rviper runs (--n_rv_runs) greater than number of iterations already performed.', 'sxviper', 1) error_status = 1 if_error_then_all_processes_exit_program(error_status) for rviper_iter in range(iteration_start, number_of_rrr_viper_runs + 1): if(myid == main_node): all_projs = EMData.read_images(bdb_stack_location + "_%03d"%(rviper_iter - 1)) print "XXXXXXXXXXXXXXXXX" print "Number of projections (in loop): " + str(len(all_projs)) print "XXXXXXXXXXXXXXXXX" subset = range(len(all_projs)) else: all_projs = None subset = None runs_iter = get_latest_directory_increment_value(masterdir + NAME_OF_MAIN_DIR + "%03d"%rviper_iter, DIR_DELIM + NAME_OF_RUN_DIR, start_value=0) - 1 no_of_viper_runs_analyzed_together = max(runs_iter + 2, no_of_viper_runs_analyzed_together_from_user_options) first_time_entering_the_loop_need_to_do_full_check_up = True while True: runs_iter += 1 if not first_time_entering_the_loop_need_to_do_full_check_up: if runs_iter >= no_of_viper_runs_analyzed_together: break first_time_entering_the_loop_need_to_do_full_check_up = False this_run_is_NOT_complete = 0 if (myid == main_node): independent_run_dir = masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ('%03d' + DIR_DELIM + NAME_OF_RUN_DIR + "%03d" + DIR_DELIM)%(rviper_iter, runs_iter) if run_get_already_processed_viper_runs: cmd = "{} {}".format("mkdir -p", masterdir + DIR_DELIM + NAME_OF_MAIN_DIR + ('%03d' + DIR_DELIM)%(rviper_iter)); cmdexecute(cmd) cmd = "{} {}".format("rm -rf", independent_run_dir); cmdexecute(cmd) cmd = "{} {}".format("cp -r", get_already_processed_viper_runs() + " " + independent_run_dir); cmdexecute(cmd) if os.path.exists(independent_run_dir + "log.txt") and (string_found_in_file("Finish VIPER2", independent_run_dir + "log.txt")): this_run_is_NOT_complete = 0 else: this_run_is_NOT_complete = 1 cmd = "{} {}".format("rm -rf", independent_run_dir); cmdexecute(cmd) cmd = "{} {}".format("mkdir -p", independent_run_dir); cmdexecute(cmd) this_run_is_NOT_complete = mpi_bcast(this_run_is_NOT_complete,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] dir_len = len(independent_run_dir) dir_len = mpi_bcast(dir_len,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] independent_run_dir = mpi_bcast(independent_run_dir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD) independent_run_dir = string.join(independent_run_dir,"") else: this_run_is_NOT_complete = mpi_bcast(this_run_is_NOT_complete,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] dir_len = 0 independent_run_dir = "" dir_len = mpi_bcast(dir_len,1,MPI_INT,main_node,MPI_COMM_WORLD)[0] independent_run_dir = mpi_bcast(independent_run_dir,dir_len,MPI_CHAR,main_node,MPI_COMM_WORLD) independent_run_dir = string.join(independent_run_dir,"") if this_run_is_NOT_complete: mpi_barrier(MPI_COMM_WORLD) if independent_run_dir[-1] != DIR_DELIM: independent_run_dir += DIR_DELIM log.prefix = independent_run_dir options.user_func = user_functions.factory[options.function] # for debugging purposes #if (myid == main_node): #cmd = "{} {}".format("cp ~/log.txt ", independent_run_dir) #cmdexecute(cmd) #cmd = "{} {}{}".format("cp ~/paramdir/params$(mycounter ccc).txt ", independent_run_dir, "param%03d.txt"%runs_iter) #cmd = "{} {}{}".format("cp ~/paramdir/params$(mycounter ccc).txt ", independent_run_dir, "params.txt") #cmdexecute(cmd) if (myid == main_node): store_value_of_simple_vars_in_json_file(masterdir + 'program_state_stack.json', locals(), exclude_list_of_vars=["usage"], vars_that_will_show_only_size = ["subset"]) store_value_of_simple_vars_in_json_file(masterdir + 'program_state_stack.json', options.__dict__, write_or_append='a') # mpi_barrier(mpi_comm) # from mpi import mpi_finalize # mpi_finalize() # print "mpi finalize" # from sys import exit # exit() out_params, out_vol, out_peaks = multi_shc(all_projs, subset, no_of_shc_runs_analyzed_together, options, mpi_comm=mpi_comm, log=log, ref_vol=ref_vol) # end of: if this_run_is_NOT_complete: if runs_iter >= (no_of_viper_runs_analyzed_together_from_user_options - 1): increment_for_current_iteration = identify_outliers(myid, main_node, rviper_iter, no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options, masterdir, bdb_stack_location, outlier_percentile, criterion_name, outlier_index_threshold_method, angle_threshold) if increment_for_current_iteration == MUST_END_PROGRAM_THIS_ITERATION: break no_of_viper_runs_analyzed_together += increment_for_current_iteration # end of independent viper loop calculate_volumes_after_rotation_and_save_them(options, rviper_iter, masterdir, bdb_stack_location, myid, mpi_size, no_of_viper_runs_analyzed_together, no_of_viper_runs_analyzed_together_from_user_options) if increment_for_current_iteration == MUST_END_PROGRAM_THIS_ITERATION: if (myid == main_node): print "RVIPER found a core set of stable projections for the current RVIPER iteration (%d), the maximum angle difference between corresponding projections from different VIPER volumes is less than %.2f. Finishing."%(rviper_iter, ANGLE_ERROR_THRESHOLD) break else: if (myid == main_node): print "After running the last iteration (%d), RVIPER did not find a set of projections with the maximum angle difference between corresponding projections from different VIPER volumes less than %.2f Finishing."%(rviper_iter, ANGLE_ERROR_THRESHOLD) # end of RVIPER loop #mpi_finalize() #sys.exit() mpi_barrier(MPI_COMM_WORLD) mpi_finalize()
def main(): program_name = os.path.basename(sys.argv[0]) usage = program_name + """ input_image_path output_directory --selection_list=selection_list --wn=CTF_WINDOW_SIZE --apix=PIXEL_SIZE --Cs=CS --voltage=VOLTAGE --ac=AMP_CONTRAST --f_start=FREA_START --f_stop=FREQ_STOP --vpp --kboot=KBOOT --overlap_x=OVERLAP_X --overlap_y=OVERLAP_Y --edge_x=EDGE_X --edge_y=EDGE_Y --check_consistency --stack_mode --debug_mode Automated estimation of CTF parameters with error assessment. All Micrographs Mode - Process all micrographs in a directory: Specify a list of input micrographs using a wild card (*), called here input micrographs path pattern. Use the wild card to indicate the place of variable part of the file names (e.g. serial number, time stamp, and etc). Running from the command line requires enclosing the string by single quotes (') or double quotes ("). sxgui.py will automatically adds single quotes to the string. BDB files can not be selected as input micrographs. Then, specify output directory where all outputs should be saved. In this mode, all micrographs matching the path pattern will be processed. mpirun -np 16 sxcter.py './mic*.hdf' outdir_cter --wn=512 --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 Selected Micrographs Mode - Process all micrographs in a selection list file: In addition to input micrographs path pattern and output directry arguments, specify a name of micrograph selection list text file using --selection_list option (e.g. output of sxgui_unblur.py or sxgui_cter.py). The file extension must be ".txt". In this mode, only micrographs in the selection list which matches the file name part of the pattern (ignoring the directory paths) will be processed. If a micrograph name in the selection list does not exists in the directory specified by the micrograph path pattern, processing of the micrograph will be skipped. mpirun -np 16 sxcter.py './mic*.hdf' outdir_cter --selection_list=mic_list.txt --wn=512 --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 Single Micrograph Mode - Process a single micrograph: In addition to input micrographs path pattern and output directry arguments, specify a single micrograph name using --selection_list option. In this mode, only the specified single micrograph will be processed. If this micrograph name does not matches the file name part of the pattern (ignoring the directory paths), the process will exit without processing it. If this micrograph name matches the file name part of the pattern but does not exists in the directory which specified by the micrograph path pattern, again the process will exit without processing it. Use single processor for this mode. sxcter.py './mic*.hdf' outdir_cter --selection_list=mic0.hdf --wn=512 --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 Stack Mode - Process a particle stack (Not supported by SPHIRE GUI)):: Use --stack_mode option, then specify the path of particle stack file (without wild card "*") and output directory as arguments. This mode ignores --selection_list, --wn --overlap_x, --overlap_y, --edge_x, and --edge_y options. Use single processor for this mode. Not supported by SPHIRE GUI (sxgui.py). sxcter.py bdb:stack outdir_cter --apix=2.29 --Cs=2.0 --voltage=300 --ac=10.0 --stack_mode """ parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--selection_list", type="string", default=None, help="Micrograph selecting list: Specify path of a micrograph selection list text file for Selected Micrographs Mode. The file extension must be \'.txt\'. Alternatively, the file name of a single micrograph can be specified for Single Micrograph Mode. (default none)") parser.add_option("--wn", type="int", default=512, help="CTF window size [pixels]: The size should be slightly larger than particle box size. This will be ignored in Stack Mode. (default 512)") parser.add_option("--apix", type="float", default=-1.0, help="Pixel size [A/Pixels]: The pixel size of input micrograph(s) or images in input particle stack. (default -1.0)") parser.add_option("--Cs", type="float", default=2.0, help="Microscope spherical aberration (Cs) [mm]: The spherical aberration (Cs) of microscope used for imaging. (default 2.0)") parser.add_option("--voltage", type="float", default=300.0, help="Microscope voltage [kV]: The acceleration voltage of microscope used for imaging. (default 300.0)") parser.add_option("--ac", type="float", default=10.0, help="Amplitude contrast [%]: The typical amplitude contrast is in the range of 7% - 14%. The value mainly depends on the thickness of the ice embedding the particles. (default 10.0)") parser.add_option("--f_start", type="float", default=-1.0, help="Lowest resolution [A]: Lowest resolution to be considered in the CTF estimation. Determined automatically by default. (default -1.0)") parser.add_option("--f_stop", type="float", default=-1.0, help="Highest resolution [A]: Highest resolution to be considered in the CTF estimation. Determined automatically by default. (default -1.0)") parser.add_option("--kboot", type="int", default=16, help="Number of CTF estimates per micrograph: Used for error assessment. (default 16)") parser.add_option("--overlap_x", type="int", default=50, help="X overlap [%]: Overlap between the windows in the x direction. This will be ignored in Stack Mode. (default 50)") parser.add_option("--overlap_y", type="int", default=50, help="Y overlap [%]: Overlap between the windows in the y direction. This will be ignored in Stack Mode. (default 50)") parser.add_option("--edge_x", type="int", default=0, help="Edge x [pixels]: Defines the edge of the tiling area in the x direction. Normally it does not need to be modified. This will be ignored in Stack Mode. (default 0)") parser.add_option("--edge_y", type="int", default=0, help="Edge y [pixels]: Defines the edge of the tiling area in the y direction. Normally it does not need to be modified. This will be ignored in Stack Mode. (default 0)") parser.add_option("--check_consistency",action="store_true", default=False, help="Check consistency of inputs: Create a text file containing the list of inconsistent Micrograph ID entries (i.e. inconsist_mic_list_file.txt). (default False)") parser.add_option("--stack_mode", action="store_true", default=False, help="Use stack mode: Use a stack as the input. Please set the file path of a stack as the first argument and output directory for the second argument. This is advanced option. Not supported by sxgui. (default False)") parser.add_option("--debug_mode", action="store_true", default=False, help="Enable debug mode: Print out debug information. (default False)") parser.add_option("--vpp", action="store_true", default=False, help="Volta Phase Plate - fit smplitude contrast. (default False)") parser.add_option("--defocus_min", type="float", default=0.3, help="Minimum defocus search [um] (default 0.3)") parser.add_option("--defocus_max", type="float", default=9.0, help="Maximum defocus search [um] (default 9.0)") parser.add_option("--defocus_step", type="float", default=0.1, help="Step defocus search [um] (default 0.1)") parser.add_option("--phase_min", type="float", default=5.0, help="Minimum phase search [degrees] (default 5.0)") parser.add_option("--phase_max", type="float", default=175.0, help="Maximum phase search [degrees] (default 175.0)") parser.add_option("--phase_step", type="float", default=5.0, help="Step phase search [degrees] (default 5.0)") parser.add_option("--pap", action="store_true", default=False, help="Use power spectrum for fitting. (default False)") (options, args) = parser.parse_args(sys.argv[1:]) # ==================================================================================== # Prepare processing # ==================================================================================== # ------------------------------------------------------------------------------------ # Set up MPI related variables # ------------------------------------------------------------------------------------ # Detect if program is running under MPI RUNNING_UNDER_MPI = "OMPI_COMM_WORLD_SIZE" in os.environ main_mpi_proc = 0 if RUNNING_UNDER_MPI: ####mpi.mpi_init( 0, [] ) my_mpi_proc_id = mpi.mpi_comm_rank(MPI_COMM_WORLD) n_mpi_procs = mpi.mpi_comm_size(MPI_COMM_WORLD) sp_global_def.MPI = True else: my_mpi_proc_id = 0 n_mpi_procs = 1 # ------------------------------------------------------------------------------------ # Set up SPHIRE global definitions # ------------------------------------------------------------------------------------ if sp_global_def.CACHE_DISABLE: from sp_utilities import disable_bdb_cache disable_bdb_cache() # Change the name log file for error message original_logfilename = sp_global_def.LOGFILE sp_global_def.LOGFILE = os.path.splitext(program_name)[0] + '_' + original_logfilename + '.txt' # ------------------------------------------------------------------------------------ # Check error conditions of arguments and options, then prepare variables for arguments # ------------------------------------------------------------------------------------ input_image_path = None output_directory = None # not a real while, an if with the opportunity to use break when errors need to be reported error_status = None # change input unit freq_start = -1.0 freq_stop = -1.0 if options.f_start >0.0: if options.f_start <=0.5: ERROR( "f_start should be in Angstrom" ) # exclude abs frequencies and spatial frequencies else: freq_start = 1./options.f_start if options.f_stop >0.0: if options.f_stop <=0.5: ERROR( "f_stop should be in Angstrom" ) # exclude abs frequencies and spatial frequencies else: freq_stop = 1./options.f_stop while True: # -------------------------------------------------------------------------------- # Check the number of arguments. If OK, then prepare variables for them # -------------------------------------------------------------------------------- if len(args) != 2: error_status = ("Please check usage for number of arguments.\n Usage: " + usage + "\n" + "Please run %s -h for help." % (program_name), getframeinfo(currentframe())) break # NOTE: 2015/11/27 Toshio Moriya # Require single quotes (') or double quotes (") when input micrograph pattern is give for input_image_path # so that sys.argv does not automatically expand wild card and create a list of file names # input_image_path = args[0] output_directory = args[1] # -------------------------------------------------------------------------------- # NOTE: 2016/03/17 Toshio Moriya # cter_mrk() will take care of all the error conditions # -------------------------------------------------------------------------------- break if_error_then_all_processes_exit_program(error_status) # Toshio, please see how to make it informative assert input_image_path != None, " directory missing input_image_path" assert output_directory != None, " directory missing output_directory" if options.vpp == False : wrong_params = False import string as str vpp_options = ["--defocus_min","--defocus_max","--defocus_step","--phase_min","--phase_max","--phase_step"] for command_token in sys.argv: for vppo in vpp_options: if str.find(command_token, vppo) > -1 : wrong_params = True if wrong_params: break if wrong_params: break if wrong_params: ERROR( "Some options are valid only for Volta Phase Plate command s" % command_token, myid=my_mpi_proc_id ) if my_mpi_proc_id == main_mpi_proc: command_line = "" for command_token in sys.argv: command_line += command_token + " " sxprint(" ") sxprint("Shell line command:") sxprint(command_line) if options.vpp: vpp_options = [options.defocus_min, options.defocus_max, options.defocus_step, options.phase_min, options.phase_max, options.phase_step] from sp_morphology import cter_vpp result = cter_vpp(input_image_path, output_directory, options.selection_list, options.wn, \ options.apix, options.Cs, options.voltage, options.ac, freq_start, freq_stop, \ options.kboot, options.overlap_x, options.overlap_y, options.edge_x, options.edge_y, \ options.check_consistency, options.stack_mode, options.debug_mode, program_name, vpp_options, \ RUNNING_UNDER_MPI, main_mpi_proc, my_mpi_proc_id, n_mpi_procs) elif options.pap: from sp_morphology import cter_pap result = cter_pap(input_image_path, output_directory, options.selection_list, options.wn, \ options.apix, options.Cs, options.voltage, options.ac, freq_start, freq_stop, \ options.kboot, options.overlap_x, options.overlap_y, options.edge_x, options.edge_y, \ options.check_consistency, options.stack_mode, options.debug_mode, program_name, \ RUNNING_UNDER_MPI, main_mpi_proc, my_mpi_proc_id, n_mpi_procs) else: from sp_morphology import cter_mrk result = cter_mrk(input_image_path, output_directory, options.selection_list, options.wn, \ options.apix, options.Cs, options.voltage, options.ac, freq_start, freq_stop, \ options.kboot, options.overlap_x, options.overlap_y, options.edge_x, options.edge_y, \ options.check_consistency, options.stack_mode, options.debug_mode, program_name, \ RUNNING_UNDER_MPI, main_mpi_proc, my_mpi_proc_id, n_mpi_procs) if RUNNING_UNDER_MPI: mpi_barrier(MPI_COMM_WORLD) if main_mpi_proc == my_mpi_proc_id: if options.debug_mode: sxprint("Returned value from cter_mrk() := ", result) sxprint(" ") sxprint("DONE!!!") sxprint(" ") # ==================================================================================== # Clean up # ==================================================================================== # ------------------------------------------------------------------------------------ # Reset SPHIRE global definitions # ------------------------------------------------------------------------------------ sp_global_def.LOGFILE = original_logfilename # ------------------------------------------------------------------------------------ # Clean up MPI related variables # ------------------------------------------------------------------------------------ if RUNNING_UNDER_MPI: mpi.mpi_barrier( mpi.MPI_COMM_WORLD ) sys.stdout.flush() return
def main(args): from utilities import if_error_then_all_processes_exit_program, write_text_row, drop_image, model_gauss_noise, get_im, set_params_proj, wrap_mpi_bcast, model_circle from logger import Logger, BaseLogger_Files from mpi import mpi_init, mpi_finalize, MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_barrier import user_functions import sys import os from applications import MPI_start_end from optparse import OptionParser, SUPPRESS_HELP from global_def import SPARXVERSION from EMAN2 import EMData from multi_shc import multi_shc progname = os.path.basename(sys.argv[0]) usage = progname + " stack [output_directory] --ir=inner_radius --rs=ring_step --xr=x_range --yr=y_range --ts=translational_search_step --delta=angular_step --center=center_type --maxit1=max_iter1 --maxit2=max_iter2 --L2threshold=0.1 --ref_a=S --sym=c1" usage += """ stack 2D images in a stack file: (default required string) directory output directory name: into which the results will be written (if it does not exist, it will be created, if it does exist, the results will be written possibly overwriting previous results) (default required string) """ parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--radius", type="int", help="radius of the particle: has to be less than < int(nx/2)-1 (default required int)") parser.add_option("--xr", type="string", default='0', help="range for translation search in x direction: search is +/xr in pixels (default '0')") parser.add_option("--yr", type="string", default='0', help="range for translation search in y direction: if omitted will be set to xr, search is +/yr in pixels (default '0')") parser.add_option("--mask3D", type="string", default=None, help="3D mask file: (default sphere)") parser.add_option("--moon_elimination", type="string", default='', help="elimination of disconnected pieces: two arguments: mass in KDa and pixel size in px/A separated by comma, no space (default none)") parser.add_option("--ir", type="int", default=1, help="inner radius for rotational search: > 0 (default 1)") # 'radius' and 'ou' are the same as per Pawel's request; 'ou' is hidden from the user # the 'ou' variable is not changed to 'radius' in the 'sparx' program. This change is at interface level only for sxviper. ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--ou", type="int", default=-1, help=SUPPRESS_HELP) parser.add_option("--rs", type="int", default=1, help="step between rings in rotational search: >0 (default 1)") parser.add_option("--ts", type="string", default='1.0', help="step size of the translation search in x-y directions: search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default '1.0')") parser.add_option("--delta", type="string", default='2.0', help="angular step of reference projections: (default '2.0')") parser.add_option("--center", type="float", default=-1.0, help="centering of 3D template: average shift method; 0: no centering; 1: center of gravity (default -1.0)") parser.add_option("--maxit1", type="int", default=400, help="maximum number of iterations performed for the GA part: (default 400)") parser.add_option("--maxit2", type="int", default=50, help="maximum number of iterations performed for the finishing up part: (default 50)") parser.add_option("--L2threshold", type="float", default=0.03, help="stopping criterion of GA: given as a maximum relative dispersion of volumes' L2 norms: (default 0.03)") parser.add_option("--ref_a", type="string", default='S', help="method for generating the quasi-uniformly distributed projection directions: (default S)") parser.add_option("--sym", type="string", default='c1', help="point-group symmetry of the structure: (default c1)") # parser.add_option("--function", type="string", default="ref_ali3d", help="name of the reference preparation function (ref_ali3d by default)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--function", type="string", default="ref_ali3d", help= SUPPRESS_HELP) parser.add_option("--nruns", type="int", default=6, help="GA population: aka number of quasi-independent volumes (default 6)") parser.add_option("--doga", type="float", default=0.1, help="do GA when fraction of orientation changes less than 1.0 degrees is at least doga: (default 0.1)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction (default=2)") parser.add_option("--fl", type="float", default=0.25, help="cut-off frequency applied to the template volume: using a hyperbolic tangent low-pass filter (default 0.25)") parser.add_option("--aa", type="float", default=0.1, help="fall-off of hyperbolic tangent low-pass filter: (default 0.1)") parser.add_option("--pwreference", type="string", default='', help="text file with a reference power spectrum: (default none)") parser.add_option("--debug", action="store_true", default=False, help="debug info printout: (default False)") ##### XXXXXXXXXXXXXXXXXXXXXX option does not exist in docs XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX parser.add_option("--return_options", action="store_true", dest="return_options", default=False, help = SUPPRESS_HELP) #parser.add_option("--an", type="string", default= "-1", help="NOT USED angular neighborhood for local searches (phi and theta)") #parser.add_option("--CTF", action="store_true", default=False, help="NOT USED Consider CTF correction during the alignment ") #parser.add_option("--snr", type="float", default= 1.0, help="NOT USED Signal-to-Noise Ratio of the data (default 1.0)") # (options, args) = parser.parse_args(sys.argv[1:]) required_option_list = ['radius'] (options, args) = parser.parse_args(args) # option_dict = vars(options) # print parser if options.return_options: return parser if options.moon_elimination == "": options.moon_elimination = [] else: options.moon_elimination = map(float, options.moon_elimination.split(",")) # Making sure all required options appeared. for required_option in required_option_list: if not options.__dict__[required_option]: print "\n ==%s== mandatory option is missing.\n"%required_option print "Please run '" + progname + " -h' for detailed options" return 1 if len(args) < 2 or len(args) > 3: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" return 1 mpi_init(0, []) log = Logger(BaseLogger_Files()) # 'radius' and 'ou' are the same as per Pawel's request; 'ou' is hidden from the user # the 'ou' variable is not changed to 'radius' in the 'sparx' program. This change is at interface level only for sxviper. options.ou = options.radius runs_count = options.nruns mpi_rank = mpi_comm_rank(MPI_COMM_WORLD) mpi_size = mpi_comm_size(MPI_COMM_WORLD) # Total number of processes, passed by --np option. if mpi_rank == 0: all_projs = EMData.read_images(args[0]) subset = range(len(all_projs)) # if mpi_size > len(all_projs): # ERROR('Number of processes supplied by --np needs to be less than or equal to %d (total number of images) ' % len(all_projs), 'sxviper', 1) # mpi_finalize() # return else: all_projs = None subset = None outdir = args[1] if mpi_rank == 0: if mpi_size % options.nruns != 0: ERROR('Number of processes needs to be a multiple of total number of runs. Total runs by default are 3, you can change it by specifying --nruns option.', 'sxviper', 1) mpi_finalize() return if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxviper", 1) mpi_finalize() return os.mkdir(outdir) import global_def global_def.LOGFILE = os.path.join(outdir, global_def.LOGFILE) mpi_barrier(MPI_COMM_WORLD) if outdir[-1] != "/": outdir += "/" log.prefix = outdir # if len(args) > 2: # ref_vol = get_im(args[2]) # else: ref_vol = None options.user_func = user_functions.factory[options.function] options.CTF = False options.snr = 1.0 options.an = -1.0 from multi_shc import multi_shc out_params, out_vol, out_peaks = multi_shc(all_projs, subset, runs_count, options, mpi_comm=MPI_COMM_WORLD, log=log, ref_vol=ref_vol) mpi_finalize()
def main(args): from utilities import write_text_row, drop_image, model_gauss_noise, get_im, set_params_proj, wrap_mpi_bcast, model_circle from logger import Logger, BaseLogger_Files from mpi import mpi_init, mpi_finalize, MPI_COMM_WORLD, mpi_comm_rank, mpi_comm_size, mpi_barrier import user_functions import sys import os from applications import MPI_start_end from optparse import OptionParser, SUPPRESS_HELP from global_def import SPARXVERSION from EMAN2 import EMData from multi_shc import multi_shc progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_directory --ir=inner_radius --ou=outer_radius --rs=ring_step --xr=x_range --yr=y_range --ts=translational_search_step --delta=angular_step --center=center_type --maxit1=max_iter1 --maxit2=max_iter2 --L2threshold=0.1 --ref_a=S --sym=c1" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--ir", type= "int", default= 1, help="<inner radius> for rotational correlation > 0 (set to 1)") parser.add_option("--ou", type= "int", default= -1, help="<outer radius> for rotational correlation < int(nx/2)-1 (set to the radius of the particle)") parser.add_option("--rs", type= "int", default= 1, help="<step between> rings in rotational correlation >0 (set to 1)" ) parser.add_option("--xr", type="string", default= "0", help="<xr range> for translation search in x direction, search is +/xr (default 0)") parser.add_option("--yr", type="string", default= "-1", help="<yr range> for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string", default= "1", help="<ts step size> of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--delta", type="string", default= "2", help="<angular step> of reference projections (default 2)") parser.add_option("--center", type="float", default= -1, help="-1: average shift method; 0: no centering; 1: center of gravity (default=-1)") parser.add_option("--maxit1", type="float", default= 400, help="maximum number of iterations performed for the GA part (set to 400) ") parser.add_option("--maxit2", type="float", default= 50, help="maximum number of iterations performed for the finishing up part (set to 50) ") parser.add_option("--L2threshold", type="float", default= 0.03, help="Stopping criterion of GA given as a maximum relative dispersion of L2 norms (set to 0.03) ") parser.add_option("--ref_a", type="string", default= "S", help="method for generating the quasi-uniformly distributed projection directions (default S)") parser.add_option("--sym", type="string", default= "c1", help="<symmetry> of the refined structure") # parser.add_option("--function", type="string", default="ref_ali3d", help="name of the reference preparation function (ref_ali3d by default)") parser.add_option("--function", type="string", default="ref_ali3d", help= SUPPRESS_HELP) parser.add_option("--nruns", type="int", default= 6, help="number of quasi-independent runs (default=6)") parser.add_option("--doga", type="float", default= 0.1, help="do GA when fraction of orientation changes less than 1.0 degrees is at least doga (default=0.1)") parser.add_option("--npad", type="int", default= 2, help="padding size for 3D reconstruction (default=2)") parser.add_option("--fl", type="float", default=0.25, help="<cut-off frequency> of hyperbolic tangent low-pass Fourier filter (default 0.25)") parser.add_option("--aa", type="float", default=0.1, help="<fall-off frequency> of hyperbolic tangent low-pass Fourier filter (default 0.1)") parser.add_option("--pwreference", type="string", default="", help="<power spectrum> reference text file (default no power spectrum adjustment) (advanced)") parser.add_option("--mask3D", type="string", default=None, help="3D mask file (default a sphere)") parser.add_option("--moon_elimination", type="string", default="", help="<moon elimination> mass in KDa and resolution in px/A separated by comma, no space (advanced)") parser.add_option("--debug", action="store_true", default=False, help="<debug> info printout (default = False)") parser.add_option("--return_options", action="store_true", dest="return_options", default=False, help = SUPPRESS_HELP) #parser.add_option("--an", type="string", default= "-1", help="NOT USED angular neighborhood for local searches (phi and theta)") #parser.add_option("--CTF", action="store_true", default=False, help="NOT USED Consider CTF correction during the alignment ") #parser.add_option("--snr", type="float", default= 1.0, help="NOT USED Signal-to-Noise Ratio of the data (default 1.0)") # (options, args) = parser.parse_args(sys.argv[1:]) (options, args) = parser.parse_args(args) # option_dict = vars(options) # print parser if options.return_options: return parser if options.moon_elimination == "": options.moon_elimination = [] else: options.moon_elimination = map(float, options.moon_elimination.split(",")) if len(args) < 2 or len(args) > 3: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" return 1 mpi_init(0, []) log = Logger(BaseLogger_Files()) runs_count = options.nruns mpi_rank = mpi_comm_rank(MPI_COMM_WORLD) mpi_size = mpi_comm_size(MPI_COMM_WORLD) # Total number of processes, passed by --np option. if mpi_rank == 0: all_projs = EMData.read_images(args[0]) subset = range(len(all_projs)) # if mpi_size > len(all_projs): # ERROR('Number of processes supplied by --np needs to be less than or equal to %d (total number of images) ' % len(all_projs), 'sxviper', 1) # mpi_finalize() # return else: all_projs = None subset = None outdir = args[1] if mpi_rank == 0: if mpi_size % options.nruns != 0: ERROR('Number of processes needs to be a multiple of total number of runs. Total runs by default are 3, you can change it by specifying --nruns option.', 'sxviper', 1) mpi_finalize() return if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxviper", 1) mpi_finalize() return os.mkdir(outdir) import global_def global_def.LOGFILE = os.path.join(outdir, global_def.LOGFILE) mpi_barrier(MPI_COMM_WORLD) if outdir[-1] != "/": outdir += "/" log.prefix = outdir # if len(args) > 2: # ref_vol = get_im(args[2]) # else: ref_vol = None options.user_func = user_functions.factory[options.function] options.CTF = False options.snr = 1.0 options.an = -1.0 out_params, out_vol, out_peaks = multi_shc(all_projs, subset, runs_count, options, mpi_comm=MPI_COMM_WORLD, log=log, ref_vol=ref_vol) mpi_finalize()