trainRef = mpii.annot['img_train'][0][0][0] allIdxs = np.arange(0,trainRef.shape[0]) with h5py.File('../../data/mpii/annot/multi-idxs.h5','r') as f: mTrain = f['train'][:] - 1 mTest = f['test'][:] - 1 multiRef[allIdxs[trainRef == 1][mTrain]] = 1 multiRef[allIdxs[trainRef == 0][mTest]] = 1 # Get image filenames imgnameRef = mpii.annot['annolist'][0][0][0]['image'][:] for idx in xrange(mpii.nimages): print "\r",idx, sys.stdout.flush() for person in xrange(mpii.numpeople(idx)): c,s = mpii.location(idx,person) if not c[0] == -1: # Add info to annotation list annot['index'] += [idx] annot['person'] += [person] imgname = np.zeros(16) refname = str(imgnameRef[idx][0][0][0][0]) for i in range(len(refname)): imgname[i] = ord(refname[i]) annot['imgname'] += [imgname] annot['center'] += [c] annot['scale'] += [s] annot['multi'] += [multiRef[idx]] if mpii.istrain(idx) == True: # Part annotations and visibility
trainRef = mpii.annot['img_train'][0][0][0] allIdxs = np.arange(0,trainRef.shape[0]) with h5py.File('../../data/mpii/annot/multi-idxs.h5','r') as f: mTrain = f['train'][:] - 1 mTest = f['test'][:] - 1 multiRef[allIdxs[trainRef == 1][mTrain]] = 1 multiRef[allIdxs[trainRef == 0][mTest]] = 1 # Get image filenames imgnameRef = mpii.annot['annolist'][0][0][0]['image'][:] for idx in xrange(mpii.nimages): print("\r",idx, end=' ') sys.stdout.flush() for person in xrange(mpii.numpeople(idx)): c,s = mpii.location(idx,person) if not c[0] == -1: # Add info to annotation list annot['index'] += [idx] annot['person'] += [person] imgname = np.zeros(16) refname = str(imgnameRef[idx][0][0][0][0]) for i in range(len(refname)): imgname[i] = ord(refname[i]) annot['imgname'] += [imgname] annot['center'] += [c] annot['scale'] += [s] annot['multi'] += [multiRef[idx]] if mpii.istrain(idx) == True: # Part annotations and visibility