Ejemplo n.º 1
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1
    import numpy as np
    import mpl_toolkits.axes_grid.angle_helper as angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axes_grid.parasite_axes import SubplotHost

    from mpl_toolkits.axes_grid.grid_helper_curvelinear import GridHelperCurveLinear

    # see demo_curvelinear_grid.py for details
    tr = Affine2D().scale(np.pi / 180., 1.) + PolarAxes.PolarTransform()

    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=360,
        lat_cycle=None,
        lon_minmax=None,
        lat_minmax=(0, np.inf),
    )

    grid_locator1 = angle_helper.LocatorDMS(12)

    tick_formatter1 = angle_helper.FormatterDMS()

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1)

    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    fig.add_subplot(ax1)

    # Now creates floating axis

    #grid_helper = ax1.get_grid_helper()
    # floating axis whose first coordinate (theta) is fixed at 60
    ax1.axis["lat"] = axis = ax1.new_floating_axis(0, 60)
    axis.label.set_text(r"$\theta = 60^{\circ}$")
    axis.label.set_visible(True)

    # floating axis whose second coordinate (r) is fixed at 6
    ax1.axis["lon"] = axis = ax1.new_floating_axis(1, 6)
    axis.label.set_text(r"$r = 6$")

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)
def curvelinear_test1(fig):
    """
    grid for custom transform.
    """
    def tr(x, y):
        sgn = np.sign(x)
        x, y = np.abs(np.asarray(x)), np.asarray(y)
        return sgn * x**.5, y

    def inv_tr(x, y):
        sgn = np.sign(x)
        x, y = np.asarray(x), np.asarray(y)
        return sgn * x**2, y

    extreme_finder = angle_helper.ExtremeFinderCycle(
        20,
        20,
        lon_cycle=None,
        lat_cycle=None,
        # (0, np.inf),
        lon_minmax=None,
        lat_minmax=None,
    )

    grid_helper = GridHelperCurveLinear((tr, inv_tr),
                                        extreme_finder=extreme_finder)

    ax1 = Subplot(fig, 111, grid_helper=grid_helper)
    # ax1 will have a ticks and gridlines defined by the given
    # transform (+ transData of the Axes). Note that the transform of
    # the Axes itself (i.e., transData) is not affected by the given
    # transform.

    fig.add_subplot(ax1)

    ax1.imshow(np.arange(25).reshape(5, 5),
               vmax=50,
               cmap=plt.cm.gray_r,
               interpolation="nearest",
               origin="lower")

    # tick density
    grid_helper.grid_finder.grid_locator1._nbins = 6
    grid_helper.grid_finder.grid_locator2._nbins = 6
Ejemplo n.º 3
0
def curvelinear_test2(fig):
    """
    polar projection, but in a rectangular box.
    """
    global ax1
    import numpy as np
    import  mpl_toolkits.axes_grid.angle_helper as angle_helper
    from matplotlib.projections import PolarAxes
    from matplotlib.transforms import Affine2D

    from mpl_toolkits.axes_grid.parasite_axes import SubplotHost, \
         ParasiteAxesAuxTrans
    import matplotlib.cbook as cbook

    # PolarAxes.PolarTransform takes radian. However, we want our coordinate
    # system in degree
    tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform()

    # polar projection, which involves cycle, and also has limits in
    # its coordinates, needs a special method to find the extremes
    # (min, max of the coordinate within the view).

    # 20, 20 : number of sampling points along x, y direction
    extreme_finder = angle_helper.ExtremeFinderCycle(20, 20,
                                                     lon_cycle = 360,
                                                     lat_cycle = None,
                                                     lon_minmax = None,
                                                     lat_minmax = (0, np.inf),
                                                     )

    grid_locator1 = angle_helper.LocatorDMS(12)
    # Find a grid values appropriate for the coordinate (degree,
    # minute, second).

    tick_formatter1 = angle_helper.FormatterDMS()
    # And also uses an appropriate formatter.  Note that,the
    # acceptable Locator and Formatter class is a bit different than
    # that of mpl's, and you cannot directly use mpl's Locator and
    # Formatter here (but may be possible in the future).

    grid_helper = GridHelperCurveLinear(tr,
                                        extreme_finder=extreme_finder,
                                        grid_locator1=grid_locator1,
                                        tick_formatter1=tick_formatter1
                                        )


    ax1 = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper)

    # make ticklabels of right and top axis visible.
    ax1.axis["right"].major_ticklabels.set_visible(True)
    ax1.axis["top"].major_ticklabels.set_visible(True)

    # let right axis shows ticklabels for 1st coordinate (angle)
    ax1.axis["right"].get_helper().nth_coord_ticks=0
    # let bottom axis shows ticklabels for 2nd coordinate (radius)
    ax1.axis["bottom"].get_helper().nth_coord_ticks=1

    fig.add_subplot(ax1)

    grid_helper = ax1.get_grid_helper()
    ax1.axis["lat"] = axis = grid_helper.new_floating_axis(0, 60, axes=ax1)
    axis.label.set_text("Test")
    axis.label.set_visible(True)
    #axis.label.set_text("Test")
    #axis.major_ticklabels.set_visible(False)
    #axis.major_ticks.set_visible(False)

    ax1.axis["lon"] = axis = grid_helper.new_floating_axis(1, 6, axes=ax1)
    #axis.major_ticklabels.set_visible(False)
    #axis.major_ticks.set_visible(False)
    axis.label.set_text("Test 2")

    # A parasite axes with given transform
    ax2 = ParasiteAxesAuxTrans(ax1, tr, "equal")
    # note that ax2.transData == tr + ax1.transData
    # Anthing you draw in ax2 will match the ticks and grids of ax1.
    ax1.parasites.append(ax2)
    intp = cbook.simple_linear_interpolation
    ax2.plot(intp(np.array([0, 30]), 50),
             intp(np.array([10., 10.]), 50))

    ax1.set_aspect(1.)
    ax1.set_xlim(-5, 12)
    ax1.set_ylim(-5, 10)

    ax1.grid(True)