Ejemplo n.º 1
0
def _valid_plot_kwargs():
    '''
    Construct and return the "valid kwargs table" for the mplfinance.plot() function.
    A valid kwargs table is a `dict` of `dict`s.  The keys of the outer dict are the
    valid key-words for the function.  The value for each key is a dict containing
    2 specific keys: "Default", and "Validator" with the following values:
        "Default"      - The default value for the kwarg if none is specified.
        "Validator"    - A function that takes the caller specified value for the kwarg,
                         and validates that it is the correct type, and (for kwargs with 
                         a limited set of allowed values) may also validate that the
                         kwarg value is one of the allowed values.
    '''

    vkwargs = {
        'type': {
            'Default':
            'ohlc',
            'Validator':
            lambda value: value in
            ['candle', 'candlestick', 'ohlc', 'bars', 'ohlc_bars', 'line']
        },
        'style': {
            'Default':
            'default',
            'Validator':
            lambda value: value in _styles.available_styles() or isinstance(
                value, dict)
        },
        'volume': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'mav': {
            'Default': None,
            'Validator': _mav_validator
        },
        'study': {
            'Default': None,
            #'Validator'   : lambda value: isinstance(value,dict) }, #{'studyname': {study parms}} example: {'TE':{'mav':20,'upper':2,'lower':2}}
            'Validator': lambda value: _kwarg_not_implemented(value)
        },
        'marketcolors': {
            'Default': None,  # use 'style' for default, instead.
            'Validator': lambda value: isinstance(value, dict)
        },
        'no_xgaps': {
            'Default': True,  # None means follow default logic below:
            'Validator': lambda value: _warn_no_xgaps_deprecated(value)
        },
        'show_nontrading': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'figscale': {
            'Default':
            1.0,  # scale base figure size up or down.
            'Validator':
            lambda value: isinstance(value, float) or isinstance(value, int)
        },
        'figratio': {
            'Default':
            (8.00,
             5.75),  # aspect ratio; will equal fig size when figscale=1.0
            'Validator':
            lambda value: isinstance(value,
                                     (tuple, list)) and len(value) == 2 and
            isinstance(value[0],
                       (float, int)) and isinstance(value[1], (float, int))
        },
        'linecolor': {
            'Default': 'k',  # line color in line plot
            'Validator': lambda value: mcolors.is_color_like(value)
        },
        'title': {
            'Default': None,  # Plot Title
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel': {
            'Default': 'Price',  # y-axis label
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel_lower': {
            'Default': None,  # y-axis label default logic below
            'Validator': lambda value: isinstance(value, str)
        },

        #'xlabel'      : { 'Default'     : None,  # x-axis label, default is None because obvious it's time or date
        #                  'Validator'   : lambda value: isinstance(value,str) },
        'addplot': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or (isinstance(
                value, list) and all([isinstance(d, dict) for d in value]))
        },
        'savefig': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or isinstance(value, str) or
            isinstance(value, io.BytesIO)
        },
        'block': {
            'Default': True,
            'Validator': lambda value: isinstance(value, bool)
        },
    }

    _validate_vkwargs_dict(vkwargs)

    return vkwargs
Ejemplo n.º 2
0
def _valid_plot_kwargs():
    """
    Construct and return the "valid kwargs table" for the mplfinance.plot() function.
    A valid kwargs table is a `dict` of `dict`s.  The keys of the outer dict are the
    valid key-words for the function.  The value for each key is a dict containing
    2 specific keys: "Default", and "Validator" with the following values:
        "Default"      - The default value for the kwarg if none is specified.
        "Validator"    - A function that takes the caller specified value for the kwarg,
                         and validates that it is the correct type, and (for kwargs with
                         a limited set of allowed values) may also validate that the
                         kwarg value is one of the allowed values.
    """

    vkwargs = {
        "columns": {
            "Default": ("Open", "High", "Low", "Close", "Volume"),
            "Validator":
            lambda value: isinstance(value, (tuple, list)) and len(value) == 5
            and all(isinstance(c, str) for c in value),
        },
        "type": {
            "Default":
            "ohlc",
            "Validator":
            lambda value: value in [
                "candle",
                "candlestick",
                "ohlc",
                "bars",
                "ohlc_bars",
                "line",
                "renko",
                "pnf",
                "p&f",
                "pointnfigure",
            ],
        },
        "style": {
            "Default":
            "default",
            "Validator":
            lambda value: value in _styles.available_styles() or isinstance(
                value, dict),
        },
        "volume": {
            "Default": False,
            "Validator": lambda value: isinstance(value, bool),
        },
        "mav": {
            "Default": None,
            "Validator": _mav_validator
        },
        "renko_params": {
            "Default": dict(),
            "Validator": lambda value: isinstance(value, dict),
        },
        "pointnfig_params": {
            "Default": dict(),
            "Validator": lambda value: isinstance(value, dict),
        },
        "study": {
            "Default": None,
            #'Validator'   : lambda value: isinstance(value,dict) }, #{'studyname': {study parms}} example: {'TE':{'mav':20,'upper':2,'lower':2}}
            "Validator": lambda value: _kwarg_not_implemented(value),
        },
        "marketcolors": {
            "Default": None,  # use 'style' for default, instead.
            "Validator": lambda value: isinstance(value, dict),
        },
        "no_xgaps": {
            "Default": True,  # None means follow default logic below:
            "Validator": lambda value: _warn_no_xgaps_deprecated(value),
        },
        "show_nontrading": {
            "Default": False,
            "Validator": lambda value: isinstance(value, bool),
        },
        "figscale": {
            "Default":
            1.0,  # scale base figure size up or down.
            "Validator":
            lambda value: isinstance(value, float) or isinstance(value, int),
        },
        "figratio": {
            "Default": (
                8.00,
                5.75,
            ),  # aspect ratio; will equal fig size when figscale=1.0
            "Validator":
            lambda value: isinstance(value,
                                     (tuple, list)) and len(value) == 2 and
            isinstance(value[0],
                       (float, int)) and isinstance(value[1], (float, int)),
        },
        "linecolor": {
            "Default": "k",  # line color in line plot
            "Validator": lambda value: mcolors.is_color_like(value),
        },
        "title": {
            "Default": None,  # Plot Title
            "Validator": lambda value: isinstance(value, str),
        },
        "ylabel": {
            "Default": "Price",  # y-axis label
            "Validator": lambda value: isinstance(value, str),
        },
        "ylabel_lower": {
            "Default": None,  # y-axis label default logic below
            "Validator": lambda value: isinstance(value, str),
        },
        #'xlabel'                    : { 'Default'     : None,  # x-axis label, default is None because obvious it's time or date
        #                                'Validator'   : lambda value: isinstance(value,str) },
        "addplot": {
            "Default":
            None,
            "Validator":
            lambda value: isinstance(value, dict) or (isinstance(
                value, list) and all([isinstance(d, dict) for d in value])),
        },
        "savefig": {
            "Default":
            None,
            "Validator":
            lambda value: isinstance(value, dict) or isinstance(value, str) or
            isinstance(value, io.BytesIO),
        },
        "block": {
            "Default": True,
            "Validator": lambda value: isinstance(value, bool)
        },
        "returnfig": {
            "Default": False,
            "Validator": lambda value: isinstance(value, bool),
        },
        "return_calculated_values": {
            "Default": None,
            "Validator":
            lambda value: isinstance(value, dict) and len(value) == 0,
        },
    }

    _validate_vkwargs_dict(vkwargs)

    return vkwargs
Ejemplo n.º 3
0
def _valid_plot_kwargs():
    '''
    Construct and return the "valid kwargs table" for the mplfinance.plot() function.
    A valid kwargs table is a `dict` of `dict`s.  The keys of the outer dict are the
    valid key-words for the function.  The value for each key is a dict containing
    2 specific keys: "Default", and "Validator" with the following values:
        "Default"      - The default value for the kwarg if none is specified.
        "Validator"    - A function that takes the caller specified value for the kwarg,
                         and validates that it is the correct type, and (for kwargs with 
                         a limited set of allowed values) may also validate that the
                         kwarg value is one of the allowed values.
    '''

    vkwargs = {
        'columns': {
            'Default': ('Open', 'High', 'Low', 'Close', 'Volume'),
            'Validator':
            lambda value: isinstance(value, (tuple, list)) and len(value) == 5
            and all(isinstance(c, str) for c in value)
        },
        'type': {
            'Default':
            'ohlc',
            'Validator':
            lambda value: value in ('candle', 'candlestick', 'ohlc',
                                    'ohlc_bars', 'line', 'renko', 'pnf')
        },
        'style': {
            'Default':
            'default',
            'Validator':
            lambda value: value in _styles.available_styles() or isinstance(
                value, dict)
        },
        'volume': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'mav': {
            'Default': None,
            'Validator': _mav_validator
        },
        'renko_params': {
            'Default': dict(),
            'Validator': lambda value: isinstance(value, dict)
        },
        'pnf_params': {
            'Default': dict(),
            'Validator': lambda value: isinstance(value, dict)
        },
        'study': {
            'Default': None,
            'Validator': lambda value: _kwarg_not_implemented(value)
        },
        'marketcolors': {
            'Default': None,  # use 'style' for default, instead.
            'Validator': lambda value: isinstance(value, dict)
        },
        'no_xgaps': {
            'Default': True,  # None means follow default logic below:
            'Validator': lambda value: _warn_no_xgaps_deprecated(value)
        },
        'show_nontrading': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'figscale': {
            'Default':
            1.0,  # scale base figure size up or down.
            'Validator':
            lambda value: isinstance(value, float) or isinstance(value, int)
        },
        'figratio': {
            'Default':
            DEFAULT_FIGRATIO,  # aspect ratio; scaled to 8.0 height
            'Validator':
            lambda value: isinstance(value,
                                     (tuple, list)) and len(value) == 2 and
            isinstance(value[0],
                       (float, int)) and isinstance(value[1], (float, int))
        },
        'figsize': {
            'Default':
            None,  # figure size; overrides figratio and figscale
            'Validator':
            lambda value: isinstance(value,
                                     (tuple, list)) and len(value) == 2 and
            isinstance(value[0],
                       (float, int)) and isinstance(value[1], (float, int))
        },
        'linecolor': {
            'Default': None,  # line color in line plot
            'Validator': lambda value: mcolors.is_color_like(value)
        },
        'title': {
            'Default': None,  # Plot Title
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel': {
            'Default': 'Price',  # y-axis label
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel_lower': {
            'Default': None,  # y-axis label default logic below
            'Validator': lambda value: isinstance(value, str)
        },
        'addplot': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or (isinstance(
                value, list) and all([isinstance(d, dict) for d in value]))
        },
        'savefig': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or isinstance(value, str) or
            isinstance(value, io.BytesIO)
        },
        'block': {
            'Default': True,
            'Validator': lambda value: isinstance(value, bool)
        },
        'returnfig': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'return_calculated_values': {
            'Default': None,
            'Validator':
            lambda value: isinstance(value, dict) and len(value) == 0
        },
        'set_ylim': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (list, tuple)) and len(value) == 2
            and all([isinstance(v, (int, float)) for v in value])
        },
        'set_ylim_panelB': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (list, tuple)) and len(value) == 2
            and all([isinstance(v, (int, float)) for v in value])
        },
        'hlines': {
            'Default': None,
            'Validator': lambda value: _hlines_validator(value)
        },
        'vlines': {
            'Default': None,
            'Validator': lambda value: _vlines_validator(value)
        },
        'alines': {
            'Default': None,
            'Validator': lambda value: _alines_validator(value)
        },
        'tlines': {
            'Default': None,
            'Validator': lambda value: _tlines_validator(value)
        },
        'panel_ratios': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (tuple, list)) and len(value) <= 10
            and all([isinstance(v, (int, float)) for v in value])
        },
        'main_panel': {
            'Default': 0,
            'Validator': lambda value: _valid_panel_id(value)
        },
        'volume_panel': {
            'Default': 1,
            'Validator': lambda value: _valid_panel_id(value)
        },
        'num_panels': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, int) and value in range(1, 10 + 1)
        },
        'datetime_format': {
            'Default': None,
            'Validator': lambda value: isinstance(value, str)
        },
        'xrotation': {
            'Default': 45,
            'Validator': lambda value: isinstance(value, (int, float))
        },
        'axisoff': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'closefig': {
            'Default': 'auto',
            'Validator': lambda value: isinstance(value, bool)
        },
        'fill_between': {
            'Default':
            None,
            'Validator':
            lambda value: _num_or_seq_of_num(value) or
            (isinstance(value, dict) and 'y1' in value and _num_or_seq_of_num(
                value['y1']))
        },
        'tight_layout': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'width_adjuster_version': {
            'Default': 'v1',
            'Validator': lambda value: value in ('v0', 'v1')
        },
        'scale_width_adjustment': {
            'Default': None,
            'Validator':
            lambda value: isinstance(value, dict) and len(value) > 0
        },
        'update_width_config': {
            'Default': None,
            'Validator':
            lambda value: isinstance(value, dict) and len(value) > 0
        },
        'return_width_config': {
            'Default': None,
            'Validator':
            lambda value: isinstance(value, dict) and len(value) == 0
        },
        'saxbelow': {
            'Default': True,  # Issue#115 Comment#639446764
            'Validator': lambda value: isinstance(value, bool)
        },
    }

    _validate_vkwargs_dict(vkwargs)

    return vkwargs
Ejemplo n.º 4
0
def _valid_plot_kwargs():
    '''
    Construct and return the "valid kwargs table" for the mplfinance.plot() function.
    A valid kwargs table is a `dict` of `dict`s.  The keys of the outer dict are the
    valid key-words for the function.  The value for each key is a dict containing
    2 specific keys: "Default", and "Validator" with the following values:
        "Default"      - The default value for the kwarg if none is specified.
        "Validator"    - A function that takes the caller specified value for the kwarg,
                         and validates that it is the correct type, and (for kwargs with 
                         a limited set of allowed values) may also validate that the
                         kwarg value is one of the allowed values.
    '''

    vkwargs = {
        'columns': {
            'Default': ('Open', 'High', 'Low', 'Close', 'Volume'),
            'Validator':
            lambda value: isinstance(value, (tuple, list)) and len(value) == 5
            and all(isinstance(c, str) for c in value)
        },
        'type': {
            'Default':
            'ohlc',
            'Validator':
            lambda value: value in ('candle', 'candlestick', 'ohlc',
                                    'ohlc_bars', 'line', 'renko', 'pnf')
        },
        'style': {
            'Default':
            'default',
            'Validator':
            lambda value: value in _styles.available_styles() or isinstance(
                value, dict)
        },
        'volume': {
            'Default':
            False,
            'Validator':
            lambda value: isinstance(value, bool) or value in ['B', 'C']
        },
        'mav': {
            'Default': None,
            'Validator': _mav_validator
        },
        'renko_params': {
            'Default': dict(),
            'Validator': lambda value: isinstance(value, dict)
        },
        'pnf_params': {
            'Default': dict(),
            'Validator': lambda value: isinstance(value, dict)
        },
        'study': {
            'Default': None,
            'Validator': lambda value: _kwarg_not_implemented(value)
        },
        'marketcolors': {
            'Default': None,  # use 'style' for default, instead.
            'Validator': lambda value: isinstance(value, dict)
        },
        'no_xgaps': {
            'Default': True,  # None means follow default logic below:
            'Validator': lambda value: _warn_no_xgaps_deprecated(value)
        },
        'show_nontrading': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'figscale': {
            'Default':
            1.0,  # scale base figure size up or down.
            'Validator':
            lambda value: isinstance(value, float) or isinstance(value, int)
        },
        'figratio': {
            'Default':
            (8.00,
             5.75),  # aspect ratio; will equal fig size when figscale=1.0
            'Validator':
            lambda value: isinstance(value,
                                     (tuple, list)) and len(value) == 2 and
            isinstance(value[0],
                       (float, int)) and isinstance(value[1], (float, int))
        },
        'linecolor': {
            'Default': None,  # line color in line plot
            'Validator': lambda value: mcolors.is_color_like(value)
        },
        'title': {
            'Default': None,  # Plot Title
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel': {
            'Default': 'Price',  # y-axis label
            'Validator': lambda value: isinstance(value, str)
        },
        'ylabel_lower': {
            'Default': None,  # y-axis label default logic below
            'Validator': lambda value: isinstance(value, str)
        },
        'addplot': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or (isinstance(
                value, list) and all([isinstance(d, dict) for d in value]))
        },
        'savefig': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, dict) or isinstance(value, str) or
            isinstance(value, io.BytesIO)
        },
        'block': {
            'Default': True,
            'Validator': lambda value: isinstance(value, bool)
        },
        'returnfig': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'return_calculated_values': {
            'Default': None,
            'Validator':
            lambda value: isinstance(value, dict) and len(value) == 0
        },
        'set_ylim': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (list, tuple)) and len(value) == 2
            and all([isinstance(v, (int, float)) for v in value])
        },
        'set_ylim_panelB': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (list, tuple)) and len(value) == 2
            and all([isinstance(v, (int, float)) for v in value])
        },
        'set_ylim_panelC': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, (list, tuple)) and len(value) == 2
            and all([isinstance(v, (int, float)) for v in value])
        },
        'hlines': {
            'Default': None,
            'Validator': lambda value: _hlines_validator(value)
        },
        'vlines': {
            'Default': None,
            'Validator': lambda value: _vlines_validator(value)
        },
        'alines': {
            'Default': None,
            'Validator': lambda value: _alines_validator(value)
        },
        'tlines': {
            'Default': None,
            'Validator': lambda value: _tlines_validator(value)
        },
        'panel_order': {
            'Default':
            'ABC',
            'Validator':
            lambda value: isinstance(value, str) and len(value) == 3 and (
                ('A' in value and 'B' in value and 'C' in value) or
                ('a' in value and 'b' in value and 'c' in value))
        },
        'panel_ratio': {
            'Default': (5, 2, 2),
            'Validator':
            lambda value: isinstance(value, (tuple, list)) and len(value) == 3
            and all([isinstance(v, (int, float)) for v in value])
        },
        'datetime_format': {
            'Default': None,
            'Validator': lambda value: isinstance(value, str)
        },
        'xrotation': {
            'Default': 45,
            'Validator': lambda value: isinstance(value, (int, float))
        },
        'axesoff': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'axesoffdark': {
            'Default': False,
            'Validator': lambda value: isinstance(value, bool)
        },
        'closefig': {
            'Default': 'auto',
            'Validator': lambda value: isinstance(value, bool)
        },
        'yscale': {
            'Default':
            None,
            'Validator':
            lambda value: isinstance(value, str) or
            (isinstance(value, dict) and 'yscale' in value)
        },
    }

    _validate_vkwargs_dict(vkwargs)

    return vkwargs